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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

CLASSES OF GRAPHS DEFINABLE BY GRAPH ALGEBRA 
IDENTITIES OR QUASI-IDENTITIES 

Reinrrard POSCHEL and Walter WESSEL 

Abstract Graph algebras establish a useful connection between 
graphs and universal algebras. A graph theoretic cha

racterization of graph quasi-varieties and graph varieties,, 
resp., i.e. classes of graphs definable by graph algebra quasi-
identities and identities, resp., is given. The results are 
structure theorems of "Birkhoff type": A class of finite undirec
ted graphs is a graph quasi-variety (graph variety, resp.) iff 
it is closed w.r.t. isomorphisms, Induced subgraphs, finite dis
joint unions and homogeneous subproducts (direct products, r e s p . ) . 
Some examples and applications are also considered. 

Key words Graph algebra, graph variety, graph quasi-variety, 
term, identity, quasi-identity, homogeneous subproduct. 

AMS Subject Classification 05C99, 08B99, 08A05, 05C75. 

INTRODUCTION 

There are many fruitful algebraic concepts in graph theory which 

use mostly linear algebra or group theory (automorphism groups). 

Less attention has been paid to connections between graph theory 

and universal algebra. The introduction of graph algebras C171, 

C7](Shallon algebras CIOJ) establishes one possible connection 

between graphs and universal algebras. This approach has been ex

tensively used for the benefit of universal algebra (see e.g.C7], 

CI], where many algebras with nonfinitely based identities have 

been found among graph algebras; subvarieties of varieties gene

rated by graph algebras are characterized in C51). 

In the present paper the opposite point of view is considered: We 

are interested in which graph theoretic results (structure theo

rems) can be obtained from universal algebra via graph algebras. 

In particular, we ask for a graph theoretic characterization of 

classes of (finite, undirected) graphs which can be defined by 

quasi-identities or identities in their corresponding graph alge

bras. As an answer to this question we obtain theorems which use 
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only graph theoretic cloeure operations: A claas of finite undi

rected graphs id a graph quaai-variety (graph variety, resp.) iff 

it is closed w.r.t. iaomorphisros, induced subgraphs, disjoint 

unions and homogeneous 9ubproduct3 (direct products, resp.). 

The present paper ia a revised version of the manuscript 1131; 

however, after the manuscript had been finished we learned that 

the characterization of graph varieties had been found indepen

dently by E.W. Kiss t41(with a different proof). Therefore we 

shall deal with this result only briefly (in §3). Moreover, in the 

meanwhile thia result has been extended also to directed graphs 

till. Thus, in the following we are interested mainly in the cha

racterization of quasi-varieties (§2). 

We want to call attention to the interplay between universal al

gebra and graph theory. Therefore, at a first step, we shall re

strict ourselves to the case of finite undirected graphs, which 

is easier to handle. There ia no doubt that all results can be ge

neralized to directed graphs (in case of varieties see fill, for 

varieties of arbitrary relational systems see 1121). 

In the last section of the paper we give several examples and 

show how the structure theorem (for graph varieties) could be 

applied, e.g., every finite undirected graph without loops is an 

induced subgraph of a suitable power of the graph G with two ad

jacent vertices and one loop. 

Throughout the paper by a graph we mean a directed graph without 

multiple edges (i.e. a binary relation on the set of vertices). 

ACKNOWLEDGEMENTS. Thanks are due to I.G. Rosenberg and A. Pultr 

for critical comments and many useful hints. 

1. PRELIMINARIES 

We recall the following terminology and notations. 

1*1 Let G»(V(G)#E(G)) be a directed gragh (V(G) - aet of yerti-

£22- E(G)feV(G)xV(G) " set of 2S.922)* G i 9 celled undirected, if 

E(G) is a symmetric relation. A graph G* ia called an induced 

SS&aESeb o f G if V(G*)gV(G) and E(G') - E(G)A V(G')«V(G')• Given 
graphs Gi (161), the direct product G « T T G . i Is the graph G with 

, «-—•«••»-->-» i c i 

v( Q)"lT v( Gi) (carteaian product) and E(G)*{(a,b)*V(G)xV(G) | 

Vici: (a(i),b(i))€E(Gi)J; here, for acV(G), let a(i) denote the 
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i-th component: a • (a(i)) i € l. Assume the sets V ( G . ) ( i * I ) to be 

pairwise disjoint (otherwise make the sets VJG^) disjoint, e.g. 

use V(G.,)x{i^)f then the disjoint union G« C G 4 is simply the i .- i 6 I x 

union of the graphs G,, i.e., V(G)»Uv(G,), E ( G ) « U E ( G 4 ) . 1 i€I x 161 x 

Products or unions are called finite, if I is finite. A mapping 

h : V(G) — > V ( G * ) is a ho22!22EB!}i22 from a graph G into a graph G* 

if, for all a,bcV(G), (a,b)€E(G) implies (h(a),h(b))€E(G'). The 

horaomorphismvh is called strong if also (atb)$E(G) implies 

(h(a),h(b))^E(G*). An isgmorghism (graph isomorphism) is a bijec-

tive strong homomorphism. Hom(G,G*) denotes the set of all homo-

morphisms from G into G*. 

For a class K of graphs, let I # , SX , PTC » Pf *K , U # , u f ^ 

denote the class of all isomorphic copies, induced subgraphs, 

direct products, finite direct products, disjoint unions, finite 

disjoint unions of members of % , respectively. Let fyf and $uf 

be the class of finite directed graphs and undirected graphs, 

resp., without multiple edges. We omit the index f (--finite), if 

also infinite graphs are to be considered. 

1.2 For all graphs G under consideration, let <B be a fixed 

element such that ao^V(G). Given a graph G, we define a binary 

operation-(expressed by juxtaposition) on V(G)M{ooJby setting 

ab » a if (a,b)eE(G) and ab= a> otherwise (in particular a ao =-cDa--

03 for a€V(G)). In general, this operation is neither commutative 

nor associative. The algebra 

G#*<V(G)u|co};-, a*} 

is called the gragh algebra of G (171, Shallon algebra E10J); 

here ao denotes a nullary operation. Remark: G can be considered 

as the one-point completion of the partial first projection of 

E(G) together with the constant operation ao. For graphs G., and 
G 2 ' n:Gi"""""> G2 i 8 a 8 t r o n 9 homomorphism iff h ^ - * — G 2 (exten

ded by h(oD)»oo) is a homomorphism of the corresponding graph al

gebras. 

1.3 Let T(X) be the set of all terms over the the alphabet 
x " {xo'xl,x2* ~*J U 8 i n 9 juxtaposition and the symbol CD. T(X) is 
defined inductively as follows: 
(i) every xi (i»0#l,2, -.)(al3o called variable) and CD is a term; 
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(ii) if t and t* are terms, then (tt") is a term; 
(iii) T(X) is the set of all terms which can be obtained from (i) 

and (ii) in finitely many steps. 
The leftmost variable of a term t is denoted by Left(t). A term 
in which the symbol OD occurs is called trivial. Let T*' (X) be the 
set of all non-trivial terms. To every non-trivial term t we as
sign a directed graph G(t)«(V(t),R(t)) where V(t) is the set of 
all variables in t and R(t) is defined inductively by R(t)»0 if 
tcX and R((tf))«R(t) v R(f)v {(Left(t),Left( f))} . Note that 
G(t) always is a connected graph. 
Example: For t»((x0x1)(x2x3)) we have Left(t)«xQ, 
V(t)»{x0,x1,x2,x3J and R(t)«{(xo,x1). (x2,x3), (xQ,x2)}. 

1.4 Given t€T(X), G€ ̂  and a mapping (assignment) h:V(t) — • 

V(G)V{CD], let h(t) denote the value of t in G* if every variable 

x€V(t) is substituted by h(x). Let t,t*€T(X). A graph G satisfies 
tne idsntit^ t»t* (or the identity holds in G) , notation G^t»tf , 

if h(t)»h(f) holds in G* (notation Gfc* h(t)«h(t*)) for every as

signment h:V(t) — • V ( G ) V { O D } . For a set £ of identities and an 

assignment h:V(£) — > V(G)v/̂ 00} (V(J[) denotes the set of variables 

occuring in £ ) we write Gfch(£) if, for all (t»t*)€£, GJ-h(t)» 

h(f); and we write G^-£ if G|* t»f for all (tefjeJT. 

1»5 Proposition (cf. also 171,151,fill). Let G be a graph. 

(*) F o r ttT(X) and an assignment h : V(t) —•» V(G) the following 

are equivalent: 

( a ) h ( t ) j * 0 0 , 

(b) h(t) . h(Left ( t ) ) , 

(c) n iS £ homoroorphism from G(t) into G. 

Note in particular, i f the iwage of h is not connected, then h is 

not a homoroorphism and we have h(t)« CD. 

(2) For t , t ' tT ' (X) we have G f - t - f i f f Hom(G(t),G)» 

Horo(G(f),G) «: H and h(Left ( t ) )»h(Left ( f ) ) for a l l hcH. 

(note that V ( t ) / V ( f ) inplies H»0, i .e . G M - o i Gf- f » a o ) . 

(3) 3£SL h a v e G * t " t " ( t . t *«T' (X)) for every graph G i f f G(t)»G(f) 

and Left ( t )«Left ( t , ) # 
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(4) An undirected graph G can be represented as G«G(t) for some 

term t«T*(X) iff G is finite and connected. 

Proof. (1) and (4) follow from the definitions, (2) follows from 

(1), and (3) from (2).l 

Remark: For every trivial term t*T(X) and any graph G we have 

G(-<t»aD. Thus one can use T*(X)V/-(CD} instead of T(X) in all fur

ther considerations. Moreover, for h:V(t) -—->V(G)IA£OD} with 

tfcT'(X) and h(x)«a> for some x€V(t), we have G|*h(t)«cD. 

1.6 A gugsi-identity^q is a finite set J« -/(t^-t^), — . (t^t^)} 

of identities together with an identity t«f; we use the notation 

£ — * t « f or t1«t£A... Atn»tn —> t»f . A graph G satisfies the 

quasi-identiy q, notation Gfc q, if for every assignment h: V(q) 

----->V(G)u-{oo} (V(q) denotes the set of variables occuring in q) 

the following implication holds: 

h(t1)»h(tpA ~.Ah(tn)«h(tn) «* h(t)»h(f). 

This will be denoted by G*-h(£) —>h(t)»h(f) (or GJ»h(q)). Note 

that every identity t«f can be considered as a quasi-identity 

because Gf» t«f «£«> G£ a>« OD —» t»f . For %£$A and a set i 

of quasi-identities (or identities) we write &J* i if Gf« q for 

all qel and GcX*. 

2. CHARACTERIZATION OF GRAPH QUASI-VARIETIES 

2.1 Definitions. For a set I of quasi-identities and a class 
of graphs let I*»-?G€ ̂  | Gh •} and Qid(.K)««{q j q is a quasi-iden
tity and # ^ q } * We set Qvar(^) « (Qid(X))* and, for a given class 

ft of graphs, Qvar*(#) « Q A Qvar(#) .A class of this form is cal-
led 9y§S£zSSH§£i20Si o r a 3£HStl 9y2§i-¥2£ie.Sv. in $» ln particu
lar, Qvar*((K) is the graph quasi-variety generated by tfcin dl • 

2.2 Remark, in general, graph quasi-varieties are not quasi-varie-

ties in the usual universal-algebraic sense; e.g. the direct pro

duct of graph algebras is not a graph algebra again. Clearly, 

Qvar*(Jt) consists of graphs from $ whose graph algebras belong to 
the quasi-variety ISPPU#

# (cf .12; p. 219, Thm. 2.25 l,!fc#«-(G#|G€Xf). 

However, the most algebras in ISPPU&
# are not graph algebras. 
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Therefore it is reasonable to ask for an i n t e r n a l characteri

zation of Qvar/»(ft) using operations on binary relations (.-.graphs) 

only (which avoid ultraproducts and infinite graphs). 

2.3 Definition. A graph G is called a Homogeneous subgroduct of 

a family (G±)±€l of graphs, if 

(1) G is an induced subgraph of TTG., , 
i€I 1 

(2) For all a,b*V(G) holds either Vi6l: (a(i),b(i))€E(Gi) 

or Viel: (a(i),b(i))^E(Gi). 

For a set % of graphs, let Pnjfc(Pnf#, resp.) denote the set of 

all homogeneous subproducts of families (finite families, resp.) 

of members of JC. 

2.4 Proposition. Let % be £ class of graphs and G be a graph with 

|V(G)|£2. Then G*IPntfc iff for aill a,b€V(G) with a/b there exists 

a Kt% and a strong homomorphism \ftG • > K such that u*(a)/^(b). 

Moreover, i£ G is finite, then G€lPn# implies G£lPn<f0fc. l£ case 

|V(G)|»1, G&LPJX, iff there is a strong homomorphism *fiG •—•• K. 

Proof. H " ! If G £ TTG. is a homogeneous subproduct, then every 
i l l 

projection p. :G —-• G± : a H-.*a(i) is a homomorphism which is 
strong by 2,3(2). Distinct a,beV(G) must differ in at least one 

component i«i, i.e. P^sO/p^b) • 
-^«": Let I»{(a,b) | a/b, a,b*V(G)} and assume that there is a 

strong homomorphism f(Qib) :.G — > K^^fX with f,af b)(a)/f(a#b)(b) 
for all (a,b)£I. Let B be the induced subgraph of TT Ki with 

V(B)«{(fi(c))i€I j c«V(G)j. Then B is a homogeneous subproduct 

since gicit (fi(c),fi(c*)KE(Ki) **> (c,C )6E(G) -*Vi€l: (f^c), 
*f̂ (c* ))€E(K.). Moreover, G is isomorphic to B because c i—•*• 

(i\(c^i€l *8 an isomorphism by construction, i.e. G£IPntr£. If 

G is finite, this construction gives also a finite set I. • 

Remark. Sometimes it is useful to know special operations which 

can be represented as homogeneous subproducts. E.g. every induced 

subgraph of G belongs to Pn{G}. Further, let O be an induced sub

graph of Gtty. which is an §Qticligue (i.e. E(0 )»0) such that 

all vertices in V(0 ) have the same neighbours in G (i.e. On is 

an autonomous subgraph of G in the sense of 181). Substitute On 

- 586 -



in G by another anticlique Om (preserving the same neighbourhood 

for all vertices) and let G£On/Om! be the resulting graph. Then 

we have n { 2 - 4 ^tO^/O^XP^G}, (n,m€{l,2,3,...}). 

Analogously one can use autonomous cliques K (with loops) instead 

of anticliques (then, for n£2, GfK^K^ciP^G}). Moreover, every 

homogeneous subproduct can be obtained from one of its factors by 

using the Just described operations (without restriction to n). 

In fact, if G«IPnX» by 2.4 there exists at least one strong homo-

morphism if:G — • K (K€&); but the image of T is a graph which 

arises from G by identifying vertices with equal neighbourhoods. 

2.5 Lemma. Let tft'€T'(X) and let B ^ T T G , be a homogeneous sub-
i 6 I a. 

product of (G±)±£T* Then for an assignment h:V(t)uV(t') -—• 

V(B)v{oo} we have B* h( t)»h( t') * * ViSI: G±\* h%( t)**hi( f ), 

where h. is the composition ot h and the i-th projection p., 

(hi(x)»pi(h(x))»(h(x))(i), and hi(x)» OD if h(x)-*a>). 

Proof. Since the pi are strong homomorphisms, h± is a homoraor-

phism iff h is a homomorphism. We are done by 1.5(1). • 

2.6 Lemma. Let s,s'£T'(X), G^-G^Gg, h:V(s) u V(s') •V(G)U-{OD} 

be an assignment and let hi:V(s)i/V(s') — • V ( G 1 ) ^ C D } be defined 

by h^xj-htx) if hfxJcVtG^ and hi(x)»OD otherwise (i€{l,2}). 

Then (GH h(s)-h(sa)) <H> (G^ h1(s)«h1(s') and G2J* h2(s)«h2(s') ). 

Proof. Obviously h(s)«a> if h(V(s)) ̂ V ^ ) and h(V(s)) f|v(G2) (by 

1.5(1)). Moreover, hi(s)»h(s) if h(V(s)) £ VCG^wtoo} and hi(s)«OD 

if h(V(s))gV(Gi). Using these properties it is easy to show 

h(s)-h(sf) +* (h1(3)»h1(8') &h2(s)»h2(s'))«l 

2.7 Lemma. For a class % of graphs we have IUPh*& gQvar ̂  . 

Proof. 1) Let B ^ T T G . be a homogeneous subproduct, G,£*r(i#I), 
i*I x 

and let q»(2 —V t»f )€Qid *X . We are going to show Bh q. Let h: 
V(q) —-*»V(B)w«{aD} be some assignment such that B*»h(£)# We have 
to 3how B|ih(t)«h(t'). By 2.5, Vi€l: G ^ n ^ D (h± defined as in 
2.5). Thus Vi€l: G ^ h t(t^h^f ) because G±f* q (note G±€*K). Again 
by 2.5, B|« h(t)«h(f). Consequently Bf> q. 
2) Let G a* Gi^ G2 ^e tne disJoint union of G14,G2£&and let 
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q»(£ — > t»t')*Qid(tX). We are going to show G|»q. --©t h:V(q) — * 
V(G) «-/-(oo} be an assignment and assume Gt*h(£). We have to show 
GJ- h(t)-h(f). We define assignments hx:V(q) >V{G1)u{ao}, h2: 
V(q) •V(G2)^o>} setting hJL(x)«h(x) if h(x)€V(GjL) and hi(x)»ao 
otherwise (i€-{lf2}). By 2.6, Gh

n(£) implies Gtkh±(£), conse
quently Gir* hi(t)-»hi(t*) (since G i r*q), and, again by 2.6, 
G*-h(t)-h(f). 
3) By 2.) we have Uf X £Qvar#. We get (cf. 3.3): GcUtfc *+$f{G}£ 
UPhXm+ Sf{G}fc U f^--^s f{G} *Qvar SK *-• G€Qvar # . • 

Now we are ready to formulate the main theorem for quasi-varie-
ties in §tuf. 

2.8 Characterization Theorem. Let ̂  be a non-empty subclass of 

$uf Tnen Qvar# {%) u IUfPnf*i. (For infinite graphs see 3.3.) 

Proof. Because of 2.7 and 2.4 it suffices to show QvarA {%) £ 
?uf 

IUfPht#. Since every graph is the disjoint union of its connected 
components it remains to show G€IP^X for every given connected 
undirected graph G€Qvar# (#).Let V(G)-*{a ,... ,a }. Consider the 

tfuf 
following set £ °f identities 

Zml*l*iu*l I (®i.
aj)^E(G)}u{xixJ»cx> | (a^a^EfG)}. 

£ is finite since G is finite. Obviously, under the canonical as
signment t:xiH*->>ai (i«0,~.,n) we have G £ t . ( £ ) . Thus for given 
ai,a1^v(G)» aj/8-i» tne quasi-identity £ — • xi"x-i does not hold in 
G. Since G€Qvar(*fc) there is some K€% with KJ*£ —frx^x.., i.e. 
there must be some assignment h:V(£) ——* V(K)u-(co} such that 
KI"h(Z) but KJ* h f x ^ - h f x . ) . By construction of £ and connected
ness of G, for every two variables x,y€V(^) there is some sequence 
z ix-z1 , - . . . ,zB |zB | - : 1«zB | , yzm»y of identities from £, (z^ . . . z ^ V © ) . 
Consequently h(x)«CD would imply h(y)»a> (note za>s.a>). Since 
h(xi)/h(x1) we have h(x)/oo for all X£V(£), i.e. h maps VQ[) into 
V(K). By construction of £» h,»tT h: a

i'
M^h(x i) is a strong homo-

morphisro from G into Kj in fact, (a.,a-|)€E(G) .«--> x(c
x
i»xk6 £

 9U^ 
Kl» h(xk)h(x1)«h(xk), i.e. (h

a(ak)vh
t(a1))6E(K); analogously one 

shows (ak,a1)^E(G) ~» (h*(ak) ,h* (a1))4E(K); k,l*(o,... ,n} . 
By 2.4 we can conclude G^IP^X .B 
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3. CHARACTERIZATION OF GRAPH VARIETIES 

In this section we present a characterization theorem for classes 

of undirected graphs which can be defined by identities. Defini

tions and results can be developed analogously to the case of 

quasi-varieties (cf. introduction). 

3.1 Definitions. For a set ]£ of identities and classes 06 and £ 

of graphs let £ * . { G € # d | 0*%}, Id(Ot) »{t«f |3> t»t', t,f £ 

T*(X)v{cD}}t V a r X «(Id(90)* (the gragh variety generated by %), 

Varjju(JC)» flf nVarft (the graph variety generated by fk. in & ) . 

3.2 Characterization Theorem. Let & . » $ u f — — non-empty class 

of finite undirected graphs. Then V a r * % • IUrSP* X . 
— j u f t t 

We omit our original proof given in 1131 and refer to E41 or till 

(in fill the general case of directed graphs is treated and 3.2 

is an easy consequence)• Note that if JC is finite then Var % is 

also generated by a single graph. 

3.3 Let us consider what happens if we want to treat also infi

nite graphs. Since every finitely generated subalgebra of a graph 

algebra is finite, we have V a r t O Var Sf9£ and Qvar3£»Qvar S f X 

for a given class % of graphs, where S f % denotes the class of 

all finite induced subgraphs of members of Cfc. Thus, for arbitra

ry *%tfu» we n a v e V a rft # « IU fS fP f 3£ and Q v a r ^ ^C » IS fU fP n f 

& • IU fP h fS f9C by 3.2 and 2.8. Moreover, we have 

GtQvarCK «->S f{G} g Q v a r ^ % and G^Var % 4 + S f < ( G } £ V a r # 9C . 
<fdf adf 

This characterizes general graph quasi-varieties and graph varie

ties; our restriction to finite graphs was not very essential. 

3.4 Remark. By a result of H. Werner (cf.fll) almost all varie

ties generated by graph algebras of undirected graphs are nonfini-

tely based. This situation changes if we consider graph varieties. 

Many classes defined by forbidden subgraphs can be characterized 

by finitely many identities. E.g., the class 9£ a { G £ £ f| G has 

no loops and <-?(G)£m} (co(G) • clique number • cardinality of a maxi
mum sized clique) is finitely based with respect to graph varie

ties (cf.1101), e.g. 5 ^ « { G € Juf| G|-(x 0(x 1(x 2x 0)))-a)}. However, 
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for m£2, % contains a chain with 4 vertices, the graph algebra 
of which generates a nonfinitely based variety (cf. CI]). 

4. EXAMPLES AND APPLICATIONS 

Many graph theoretic properties can be expressed as identities or 
quasi-identities. We mention here some examples which may be of 
graph theoretic interest* too. 

4.1 Examples of graph varieties. £ shall denote a set of identi
ties such that £ * is the indicated class of graphs: 
a) Graphs without loops: £m {x

Q
x

0
m 0°} » 

b) Undirected graphs: Jlm{x
0(

x±x
0)

mx
0

x±} : 

c) Posets (reflexive, antisymmetric and transitive relations): 
Z-{x0x0-x0. xo(x1xo)-x1(xox1)f xo(xjLx2)»(xox2)(x1x2)] ; 

d) Disjoint unions of complete graphs wtih loops: 

I - { x o x o " V xo<xlxo>*xoxi» <xoxi>x2itXo(xlx2>) • 
e) Undirected graphs with bounded clique number (cf. 3.4, there is 

one identity t« OD such that ^m
m{^fuf I Gfrt-co}). 

f) Undirected graphs with bounded chromatic number, in particular 
bipartite graphs (it is known that a J exists which consists of 
identities of the form t» a> only, but no £ is explicitely known, 
except for bipartite graphs, cf. fill). 

Every graph variety is also a graph quadi-variety. The converse is 
not true, and we mention here some graph quasl-varieties (of undi
rected graphs without loops (4.1a,b) which are not graph varieties. 

4.2 Example. Let C6A fbe a connected graph without loops. Up to 
Isomorphism we can assume V(C) gX-{x ,x-,...} and (x .x.)cE(C). Let 
%t be the class of all undirected graphs without loops which con
tain no Induced subgraph isomorphic to C or to a strong honomor-
phic image of C (If different vertices of C have different neigh-
boorhoods then there are no strong homomorphic Images of C except 
C itself). Then % is * graph quasi-variety characterized by J(f« I* 
with i-{x0x0-oo. x0(x1x0)«x0x1- £(

c) — > * 0
m * ± } ShSIl 

Z(C)«{xy«xJ (xfy)6E(C)}u{xy-oo J(x.y)*E(C). x,y«V(C)}. 

4.3 Example* a) Perfect graphs (for definition see e.g. C31) form 
a graph quasi-variety in Juf» since they are closed w.r.t. Phf 

and Ux (this can be shown without difficulties, use e.g. 
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13; p.53, 3.11 and the remark after 2.4). A concrete system of 

quasi-identities characterizing perfect graphs is not known, 

b) If the Strong Perfect Graph Conjecture (cf. 13; p.711) were 

true, then perfect graphs are those which contain no induced sub

graph isomorphic to C2^± (odd cycles) or Cg^^i (tn© complementa

ry graph) for k£2. These graphs, however, can be characterized 

as a graph quasl-variety by the following set 1 of quasi-identi

ties if we apply 4.2: l-{x 0V°°'
 x

0(
x
1
x«)",x

0
xl}u{KC2k+l) ~ 

-•x0*x1 | k^2}u{2(C2k+l> — • V ^ l k* 2/- H e r e w e fissuroe 

V(C2k+1)-V(C2k+1)«{x0,x:L...,x2k}, E(C2k+1)-{(xi.x1+1) | i-0,..,2k} 

v {(xi+1,x1)| i»0,...,2k} (indices take oodulo 2k+l), 

E ( c 2 k + i ) - { ( x ' y ) < v ( c 2 k + i > 2 l (x.y>*E(c2k+i>J • 

4.4 Let G0£^uf be the graph Qs \r£ , i.e. V(G0)»{o,l}, 

E(G0)«{(0,1),(1,0),(1.1)}. From a result in 17; p*2ill follows 

that VarA {G } contains all undirected graphs without loops. 

Together with 3.2 this gives the following proposition: 

4.5 Proposition. Every finite undirected graph without loops is 

isomorphic to an induced subgraph of a finite direct power of G . 

• 

The graph G and the result 4.5 are considered more or less expli-

citely also in 1131,1171,191,[41,1141. Moreover, the graph G ap

pears in connection with investigations of subdirect irreducibles 

of "productive classes" of graphs (i.e. closed w.r.t. direct pro

ducts) in papers of A. Pultr and 3. Vinarek (e.g. 1151,1161). 

4.6 Definition. Let OcA. - be without loops. The least number n 
such that G is isomorphic to an induced subgraph of G n is called 

the G -dimension of G and it is denoted by dinu G. 
O —•»—«•————•» * l* 

O 

Proposition 4.5 ensures that every G*fyuf without loops has a fi
nite G -dimension. In 161, lower and upper bounds for dinu G are 

o i»o 

given, and the G -dimension is exactly determined for some clas
ses of graphs. The G -dimension is a special case of the dimen
sion proposed in 115; p.771, where the general problem to investi
gate the various kinds of dimension is posed. Let us note that 2.8 
and 3.2 provide structure theorems for every concretely given 
graph quasi-variety or variety and give rise to numerical numbers 
characterizing the complexity of the structure, like e.g. the GQ-
dimension. Here are many interesting problems of research. 
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