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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLІNAE 

28,4(1987) 

FORCED PERIODIC OSCILLATIONS IM THE CLIMATE SYSTEM 

VIA AN ENERGY BALANCE MODEL 

x) 
Georg HETZER 

Abetract: This note deals with the existence of periodic solutions via 
shooting method for a class of semilinear diffusion equations arising from 
highly idealized climate models. Sub- and supersolutions come from an asso
ciated stationary diffusion problem studied in 163. The procedure closely 
follows £2}. From the climatic viewpoint it is important that our approach 
allows us to estimate the amplitude of these periodic solutions by means of 
a forthcoming numerical analysis of the stationary diffusion problem which 
is based on 18,9}. 

Key words: Semilinear diffusion equation, compact oriented surface, 
Legendre type operator, periodic solutions. 

Classification; Primary 35K57 

Secondary 58G99 

Introduction. A class of h igh l y idealized climate models, so-called 

energy balance models, relies on a climatically averaged sea level atmosphe

ric temperature T as the only climatic indicator (cf. f6J and the references 

therein). T is determined from the energy budget by 

(1) c ( x ) | | (x,t)-(4T)(x,t)=Q(x,t)tl-it(x,T(x,t))}-Re(x,T(x,t)), 

where x varies in M and M means either S or f-1,1} depending on whether 

longitudinal asymmetries are taken into account or not. c denotes the heat 

capacity, Q the incoming solar radiate, R the outgoing terrestrial radi

ation, and «-* the albedo. 4^ replaces the mean horizontal heat flux, which 

is very roughly modelled either by a diffusion operator 

(2) <tyw~ ~ div(k grad w) 
2 

on S or by a Legendre operator 

x) "mis paper contains results from the research project "Mathematische 
Sensitivitatsanalyse globaler Klimamodelle" sponsored by means of the 
"tkindesminister fur Forschung und Technologie" of the Federal Republic of 
Germany under contract n. KF 2012 8. The author is responsible for the 
contents. 
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(3) tyw)(x)= -^~[(l-x2)k(x)w'(x)] 
9 

on C-l»l], where the diffusion coefficient k t C (M) is positive. Unlike in 
t6), here Q depends periodically on t in accordance with our purpose to get 
insight into the response of the climate system (seasonally independent en
erge t ic pa r t ) to a slow per iod ic forcing with regard to the incoming radi

ation. By the way, our result also extends to approaches including a sea
sonal cycle in such a way as it is done in [10], where some computer simu

lations are made thereto. 
Our interest in periodic forcing is partly motivated by the astronomi

cal theory of ice-ages due to Milankovitch (cf. t3,7l e.g.). This theory re
lates the va r i a t i on of the earth's climate between glacials and in te rg l ac i -
als to corresponding variations of the earth's orbit , namely of its eccent

ricity, obliquity and position of the perihelion. There are well made 

doubts that annually averaged energy balance models might be able to repro
duce these cycles because of the extremely small differences in year ly ener
gy caused thereof. 

In order to underpin (or object against) them, one should be able to ma

ke use of a forthcoming numerical analysis of 
(4) (^w)(x)={uQo(x)[l-oc(x,w(x))] - Re(x,w(x)) 

(xfcM) by means of an algorithm due to Jarausch and Mackens [8,9], Q Q de

notes the actual annual mean of the incoming radiation and <ue R+ is the so-

called solar constant, which serves for s t ruc tu ra l sensitivity studies in 

this context. Therefore we establish here that given solutions ( ̂ a.,w-.). 

( ft2,w2) of (4) satisfying w,^w 2 and <a,Q (x) .£ Q(x,t) * ̂ Q (x) for all 

x fcM and ttR, there is a per iod ic solution T of (1) with w,(x) £T(x,t) & 
J£W2(X) for all xfcM, t 6 R. Moreover, it turns out that every per iod ic so
lution T, which satisfies the last inequality for one t€R, fulfils it for 

every tt R such that Nw,-w2 11^ is an upper bound of the amplitude f o r the 

climatically relevant oscillations. 

As in [2] our proof relies on w r i t ing (1) as an evolution equation and 
observing that the Poincare" operator associated with (1), i.e. the operator 

assigning to every initial value of the order i n t e r v a l Lw,,w2] the solution 

of (1) a f t e r one per iod is compact and pointwise increasing. 

The required solution pairs of (4) are obtained for concrete setups by 
the numerical studies mentioned above, and thei r existence can also be dis
cussed by v i r tue of the S-structure of the p r i n c i p a l solution branch of 
(4), which [6) deals with. 
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The nain result. Throughout we deal with (1) under the following set

ting. 

(HI) M is either the compact interval £-1,1] or a connected, compact, orien

ted, 2-dimensional Riemannian manifold with Riemannian metric <p, . We 
write 4H> for the Lebesgue measure on [-1,13 or for the measure indu

ced by CJL on the Borel subsets of M. 
(H2) c,ksC2(M) positive. 

(H3) QeC2(Mx.R) bounded, inf Q.>0, <i>e(0,oo), 
Q(x,0 aperiodic for xeM. 

(H4) oC&C 2(MxR), 0<inf oc , supot<l, qell,oo), 

sup i|(32oC)(x,y)|/(l+|y|
q):x6M,yeR?< oo , 

(H5) R e&C
2(MxR), Re(x,0 odd for xeM, Re(x,y)>0 

for xeM, ye(0,oo), r, 6 ( 0 , O P ) , r2feR+: 

Re(x,y)ir1y-r2 for x*M, yeR+. 

sup {|02Rg)(x,y)|/(l+|y|
q):x6M, y 6 R } < o o . 

We refer to £61 for a discussion of the climatic background of this set

ting. 

We write X for the weighted Sobolev space W2,2((-l,l);p2k2) (cf. [123), 

p(x): = 1-x2 for xet-1,13, or for the Sobolev space W2,2(M), if M is a 2-

dimensional manifold. By a solution of (1) we understand a function 

v6.C(MxR+)AC
1(mH(0,oo)) with v(-,t)feX for t€(0,oo), which satisfies (1) 

pointwise .*H--almost everywhere. 

Actually, regularity theory yields K ,6*e(0,l) with 

v(x,O«c}£(0,ac>) locv 

for xeM, and 

v(.,t) 
r C1»€r(M)nC2((-l,D) M= [-1,1] 

1 C/,€r(M) otherwise 

for t&(0,oo). This follows similarly to U ; 3,1.33. 

Finally, we assume: 

2 
(H6) There are positive functions QpQ2^C*(M) satisfying 

Q1(x)^Q(x,t)^Q2(x) for xeM, t*R, and w - ^ e X 

with w,^w 2 such that for j=l,2 holds: 

(5) (^.w.)(x)=Qj(x) [l-*c(x,w.(x))3 -Re(x,w.(x)). 

Clearly, choosing solution pairs (t^i»wi)» ((^2»
w2) to (4) as indicated in 
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the introduction is the most natural special case of (H6) (Q.= ̂ a.Q ) from 

the climatic viewpoint. Moreover, fa and ^ wil* differ from 1 by at most 

a small percentage in dealing with the ice-age problem. 

Theorem. If (HI) - (H6) are satisfied, there exists an oJ-periodic so

lution v of (1) with w1(x).6v(x,t).6w2(x) for x&M and t€R + . 

More precisely, let P be the Poincare" operator induced by (1), then, de-

pending on j-T or 2, the Picard iteration (P wJk N converges uniformly to 

the initial values of the smallest respectively greatest periodic solution 

of (1) in the order interval Cw1,w2l of C(M). Moreover, the sequence is 

pointwise increasing for j=l, decreasing for j=2, Of course, there may be on

ly one periodic solution in tw,,w23 

Proof. In the following, we write H for t2(M), <, > for its standard 

inner product, and || || for the norm associated with < - > . We introduce a 

second inner product on H by 

for <£,yeH, and denote the induced norm by || || , which is obviously equi

valent to || ||. As in £63, we take advantage of the fact that selfadjoint-

ness depends on the given inner product. We associate with ̂ two linear ope

rators, namely A given by Aw- 4^vi for weX, and Ac given by (A w)(x)= ~-7~y 
(^w)(x) for w*X, xeM. A is selfadjoint concerning < ,> , A concerning 

< , ) Q , and the graph norms of both are equivalent to a once for all fixed 

natural Sobolev norm on X. Moreover, we have <Aw,w>>0 and <A w,w> £0 for 

wftX such that the fractional powers AT and A^ are defined, say, for y€ R+« 
For Y 6 , L0,ll, interpolation theory shows that both operators have the same 

domain called X^ in the following. We consider X T under the norm 11 11 

given by ||y|lY = ||(A+Id)
ry 11 for Y € X^ , and under || || given by 

llfll ,c
 s I|CA -t-Id̂ Y"!| for y^Xy. Ih norms are equivalent. We list the 

following imbedding properties: 

(6) Xp is compactly imbedded into XT for 0 4 r < #£l •> 

(7) X.y2 is continuously imbedded into L (M) for r€Q,oo), 

(8) X̂ - is continuously imbedded into X ,(*(M) for x c ( 7»13» an£-

6*e EQ,x-l/2), if M= C -l,ll, respectively 6*6 10,2^-1), otherwise. 

Assuming (H3) - (H5) we obtain a continuously FrSchet-differentiable 

mapping ft:R*L2 2(M)~* H by 

3i(t,w)(x)- -̂ ~-y (Q(x,t) Cl-cc(x,w(x))3 -Re(x,w(x))) 
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for t c R , w * L 2 2(M), and x&M. Moreover, the Frechet-derivative of H is 

bounded on bounded subsets of R> t-2q+2^» wbich guarantees in view of (6) 

and (7) that 91 cart be considered as a locally Lipschitz continuous map from 

R x X ^ into H for. 3T.2T1/2, and hence the evolution equation 

(9) u+Acu- H(t,u) 

associated with U ) in H falls into the scope of [53. In particular, this 

yields for each Y c xi/2 tnat tne i n i t i al value problem (9), u(0)= tf , pos

sesses exactly one maximal solution u(»;'«if): £ 0 , r Y ) — • Hd^-ft (0, ct>J) in 

the sense of 15; 3.3.13. Using the smoothing action of the semigroup genera

ted by A +Id and regularity properties of A which obviously carry over to A 

one gets quite similarly to C6; 3.1]: 

Lewna 1 

then w*» have: 

. Suppose that (HI) - (H5) are fulfilled, T f e J-l/2,1) ancfife X,, 

1. L . ; Y > « C ( 0,f1tr),XT)AC^((0,rr),X^) for £ e C 0 , D and K=(l-0)/2, 

2. u«fcC^((0,ifY), C
0>6(M)) for tf 6 £0,1/2) and K<(l-2«r)/4> 

3. iiCt)eC1,<f(M) for t<-(0,<* ) and 6*6 (0,1/2), and it belongs to C2,6*(M), 

if M is 2-dim. 

In order to establish global solvability as well as the fact that the Poiiv 

care* operator is increasing, we need the following comparison assertion: 

Lawns 2. Let (HI) and (H2) be satisfied, bfe(0,co), and f sC(M*ro,b)x 

x R ) . Assume that Djl exists and is continuous on M .*C0 ,b ) .<R. For j=l,2 

let v.« C(MxC0,b))nC1(Mx(0,b)) with v,(.,t)U and either <4 vi ) ( »t) 

being continuous on C-1,13 for t*(0,b), if M= [-1,13, or v.(*,t)*C (M) for 

t €.(0,b) otherwise. Finally, suppose 

(10) v1(x,0)2'v2(x,0) for xsM 

and 

(11) 
c(x) - ^ v1(x,t)+(^v1)(x,t)-f(x,t,v1(x,t))2-

Z c(x) -^ v2(x,t)^v2)(x,t)-f(x,t,v2(x,t)) 

for XftM and t«(0,b). 

Then we have v1(x,t)2 v2(x,t) for all x*M, t*(0,b). 

It is straightforward (cf. £4,11] e.g.) to reduce this assertion to the 

case where vxmOt f(x,t,y)*h(x,t)y for x*M, t*(0,b), yeR with 
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h*C(Mx(0,b)), and strict inequality holds in (10) and (11) and in the con
clusion. Now, if M is 2-dimensional, it is a matter of standard technique 
in reasoning by contradiction to establish this special case. We refer to 
C13], especially, with regard to the continuity assumptions which are some
what weaker than currently used. The same works for M= £-1,1J, too, except 
for the case where 0 is attained for the first time at a boundary point. 
Then one observes that for g€ C(C~1,13) and wfiXnC ( C - 1 , 1 J ) with ^r*w=9 
we have 
(12) 2k(-l)w'(-l)= i g(-l). 

Thus, let e.g. Te(0,b) with v2(-l,T)=0 and v2(x,t)< 0 for x & C - l , U , te 
*L0,T), then (11) and (12) yield 

c(-l) -|jr v2(-l,T)-2k(-l) ~Ĵ - v2(-l,T)<0, 
which contradicts T being the maximum of v2(-l,») on (0,TJ and -1 being the 
maximum of v2(-,T) on [-1,1]. 

Now we are able to establish global existence and the bounds we need: 

Lemma 3. Let (HI) - (H6) be satisfied, - y ^ 1 / 2 , ! ) , and j3s£0,l), then 
we have: 

1. If fe X^. fulfils w , (x )£. i jr (x ) .4 .w 2 (x ) for x&M, then 

w1(x)^u(t; Y)(x)**2(x) for all xeM, t«.(0,*^). 

2. n.^=oofor if* x r • 

3. Given a>0, there is some r>0 with ||u(t; Y)|L -& r for all teCa,oo) 
and if*x<y » satisfying Wj(x) * y(x).4w2(x) for all x&M. 

Proof. 1.: We apply Lemma 2 twice, on the one hand with v,=u(-;tjr) 
and v« -»w,, and on the other hand with v, -ft w2 and v2=u(.; ijr). (8) and Lem

ma 1.1 immediately yield (x,t) —*u(t)x to be continuous on M * ( 0 , Y ) « Obser
ving that (A+Id)"1 is a bounded mapping from C0,d(M) into C 1 , 6(M), we conc
lude because of 

u(t;y)=(A+Id)"1Cc«(t,u(t;Y))+u(t;Y)-cu(t;y)3 
and Lemma 1.2 that u(»;if) maps compact subsets of (0/O into bounded ones. 
This together with u(. ; y>)% ^((0,*^, C(M))aC((0,f:f), W

1,2(M)) according 
to Lemma 1 implies that u(» ; y ) can be represented by a C -function on 

2 
Mx(0,tu0. Moreover, Lemma 1.3 delivers u(t;f)«C (M) for tft(0,r^.)in ca
se that M-f»C-l,lJ, whereas ^u(t;y) continuous on C-1,1-1 follows from (9), 
Lemma 1 and (H3) - (H5). (10) and (11) are obviously satisfied, and hence 
Lemma 2 yields 1. 
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In order to establish (2) and (3), we first note that there are p p P 2 * 
6 R+ with \\u(X;Y^W^fi and I^(^^(t; if))| 1 ^ ^ for all t e ^ , ^ ) and 
all YB >V satisfying W ^ Y ^ W ^ . Moreover, since A +Id generates an analy
tic semigroup, we find some rl « R with 

| |(Ac+Id)
(3i»exp(-t(Ac+Id)) | \tcl £rpt-V* 

for t>0, || 11 - means the operator norm coming from || || . Using £5;3.3.23 
we get for t>0: 

I |u(t5^| |B.cH |(AC+Id)^u(t5^)| l ^ r V * ! ry| lc^(ft+ft)(^cd^)
1/2T(l-/3). 

Thus given ac(0,^r ), we have | |u(-, y-)| L bounded on ta.T^), which yields 
*-co in view of L5;3.3.4], i.e. Assertion 2. Furthermore, 3 is evident. 

Remark 1. Clearly, global existence already follows under (HI) - (H5) 

for every y ^ xi/2* 
In order to see this, let first y e X C y e (1/2,1)). One sets Q^ s inf Q, 
Q2 s£ sup Q and denotes the mapping TR, with Q. in place of Q for j=l,2, by jft. 
The global solutions of u+A u= 9£.u,u(0)= Y » which exist and are bounded ac-c j • 
cordingly to l6;3.i], take over the role of w, and w2 in the comparison argu
ments of the previous lemma. But, having established the case f > 1/2 one 
simply observes u(t; ijr) ^ x<y for t>0 in case that Y** xi/2' and uniqueness 
in order to get the full asser t ion . 

Now we finish the proof of the theorem. 
Let 7f s. (1/2,1), then Xy, is an ordered Banach space with regard to the 

pointwise ordering, since it can be continuously imbedded into C(M) accord
ing to ( 8 ) . In the following, Tw wJ] means the corresponding order interval 
in X^ , which is unbounded unless w^w,,. We define the Poincare" operator P to 

(9) on Cw1,w2l by • 
P-tjr. =u(co;t(r) 

for all Y * Cw1,w2.3. Lemma 3.1 guarantees P(Cw1,w23)c tWpW 2]. P being con
tinuous follows from the "continuous dependence on initial values" stated in 
t5;3.4], e.g. Applying Lemma 2 with v,=u(- ; 9?) and v2=u(« ; y ) , we get Py>& Py 
for all ^ ^ e C w p W ^ , c p ^ y . Finally, P(C y^, y^--) is bounded in xp for 

Pfi(y,l) according to Lemma 3.3, hence relatively compact in view of (6). 
Therefore, we can apply the fixed point theorem for compact, order in

creasing mappings on a closed order interval (cf. Cl; Cor. 6.2J), and get the 
existence of a fixed point of p in [w^w-p. Mo re precisely, we obtain that 
the Picard iteration ( P \ \ ^ H and (P kw 2) k c N converge in X y to the minimal 
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and maximal fixed point, respectively, and moreover, the first sequence is 

increasing, the second one decreasing with regard to the pointwise ordering. 

Clearly, each fixed point of P is the initial value to an co-periodic 
solution of ( 9 ) , which stays according to Lemma 3 at [WpW^Jfor all times. 

Combining Lemma 1 and the observation we made with regard to regularity in 

the proof of Lemma 3 we further see that each periodic solution of (9) can 

be considered as a solution of (1) in the sense introduced here. 

Renark 2, Clearly, a periodic solution can be extended to R, and 

CJ"'^((0,tr^.),...) can be substituted by C ,X(R,..,) for such a solution in 

Lemma 1. 

Moreover, the proof also shows that a periodic solution of (1) staying 

at one point of time in tw, ,w«3 is one of the solutions in LwpW^J, and hen

ce stays between the minimal and maximal periodic solution of tw,,w,p . 
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