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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,4(1987) 

ON THE MULTIPLE BIRKHOFF RECURRENCE THEOREM IN DYNAMICS 

Bohuslav BALCAR, Pavel KALÁŠEK and Scott W. WILLIAMS1} 

Abstract; We prove the following extension of the Furstenberg-Weiss 
Multiple Birkhoff Recurrence Theorem: If the weight of a compact space X is 
less than £ and if 'f is a countable commuting set of maps from X toX, 
then £X,*P! has a multiple recurrent point. We also show that even for com

pact connected first countable spaces, the previous result is false if the 
weigh t is lifted. 

Key words; Dynamical system, recurrent point, weight of space. 

Classification; 54H20, 54A25, 03E65 

§ 0. Introduction. In this paper space means compact Hausdorff topolo

gical space. When X is a space, C(X,X) denotes the semigroup under composi

tion of all continuous functions from X into X. A family <^£C(X,X) is said 

t° De commuting whenever Vf ,g Q *f , fo g=gof. 

For us, a (dynamical) system will be a pair TX, sf 3 , where Xs*-0 is a 

space and 0-f S?£C(X,X). In the case *f = -if}, the system IX,^3 denoted by 

£X,f3 is traditionally called a discrete (dynamical) system. 

A point xftX is said to be multiple recurrent in the system fX,tf3 pro

vided that for each neighbourhood U of x, and for each finite set G & y , 

there is an ntN (the positive integers) such that VgfcG, gn(x)*U. In the 

discrete system case, a multiple recurrent point is exactly that which is u-

sually called a recurrent point. It is G. Birkhoff's theorem that each disc

rete system has a_ recurrent point (see CBi] or CFu],p. 20). H. Furstenberg 

and B. Weiss have proved the Multiple Birkhoff Recurrence Theorem (MBR). 

Jtf X is a compact metric space and if If is finite and commuting, then £X,^f] 
has a multiple recurrent point (see FW ). 

The main result shows the possibilities how to extend the MBR. 

1) Partially supported by N.S.F. Grant R 118239633 
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In 2.3 we prove the following: 

For a compact space X with w(X)*£ and a countable commuting subset 

*^fiC(X,X) there is a multiple recurrent point in the system CX, ^ 3 * 

We also present an example (3.1) showing that some restrictions to the 

space X are necessary even for finite *f . Nevertheless, we obtain (2.5) a 

slightly weaker result true for all systems CX, *f3 with ^ commuting. 

Notation: o>*Nu{ol. When X is a set, |x| denotes the cardinality of 

X. When X is a space, the weight of X,w(X) is the minimum cardinality of an 

open base for the topology of X. A family 0 of non-empty open sets of a spa

ce X is called a St-base provided that each non-empty open set contains a 

member of D. The well known cardinal characteristic £ concerns families of 

subsets of co . 

£*min {| A |: ji £ t**l? D/l'eliol for each finite A'* A and 

VB 4 ^ 1 * ^ 3 A 4 ^ ) |B-A|« w j . 

Equivalently, £ is the minimum cardinality possessed by a neighbourhood base 

of a non-empty nowhere dense subset of fi*>~ 4> .It is F. Hausdorff's classic

al result that £ £ 4 ^ . Very important for us is Bellas Theorem CBeJ: 

Each compact separable space X cannot be covered by less than £ nowhere den

se subsets. 

§ 1. Preliminaries on minimal sets and systems. Suppose £x,</] is a sy

stem. A set AfiX is said to be invariant in CX,^f3 provided that A is non-em

pty and for each f *<f is fCA3&A. 

A set MfcX is said to be minimal in the system Cx, tfl provided it is a 
minimal element in the partially ordered, by inclusion, set of all closed 

invariant sets. When X is minimal in fX,^fJ , then fX, <#} is said to be a mi
nimal system. Suppose ^f£C(X,X) is arbitrary, then <^f> denotes the set of 

all g6C(X,X) such that g is the composition of finitely many members of If, 
so < # > is a semigroup under composition. 

Although we do not in general assume (as Furstenberg) that & is either 

commuting or finite, the proofs of each of the following lemmas are either 

similar to the discrete system case and/or straightforward - so they are par

tially left to the reader (note that compactness is only necessary in 1.1 (i) 

and 1.2 (iii)). 

1.1* Lemma. Suppose CX, </3 is a system. Then the following two statem

ents are true: 
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(i) If A*X is closed and invariant inf X, *f3 then there is an MSA mi

nimal in CX,*fJ. 

(ii) M is minimal in CX,«fJ iff M is minimal in TX, <«=f>1 . 

Suppose that ( 2£L ,•) is any semigroup. Let us call S & .21 syndetic in 
51 orovided there is a finite set F £ 2E such that for each g « 2-u there e-

xists f€F so that f.gcS. 

1.2. Leone.. Suppose CX, </3 is a system and M is a closed invariant set 

in [X,*=if3 . Then the following three statements are equivalent: 

(i) M is a minimal set in TX,<*?>}. 

(ii) Vx*M, cl«f(x):f « <<f>|)=M -

(iii) V x * M and for each non-empty open U§f.M 

4f € <**> :f(x)cU is a syndetic set in < S O * 

Proof. We show (ii)-f~*(iii). 

( — * ) We claim that Uirtul.f 6 < V>?=M for each non-empty open set 

U. When M -U-lf"*1CU3:f & < ^ > M i then this set must be invariant. Therefo

re from the compactness of M we get f,,...,f. so that .O* f7 CU!=M. For 

g €<<tf>and g(x)=y we obtain f. so that y*fl £U3 and finally f. «g(x)«U, so 

that S= -if • < tf> :f(x)6U J is syndetic. 

(*-) Let cl(4f(x):f € <^f>})4M. Then U=M-cl«f(x):f *<<*f>?) is o-
pen, but {f €. <Sf>:f(x)€U| is syndetic, that means non-empty. 

§ 2. The awin result. We shall use the following combinatorial fact o-

riginally published in CRa] (also see CGRS3, pp. 38-39). 

2.1. Lama. (Gallai's theorem) Suppose that kcN and suppose if* is a 

finite partition of o>k. If E-*o>k is finite, then 3? * <P , 3 r 6<uk, 

3n€.N, such that VsfeE, r+n«sftP. 

2.2. Theorep. Suppose that tXt*f} is a minimal system, X is ieparable, 

w(x)*£, and suppose *f is commuting and |̂ f |<p. Then the set of all multi

ple recurrent points is a dense subset of X. 

Proof: Let & denote the family of all non-empty open sets of X. Fix 

G* { g1f...,gkl & H .For every B * Si define 

D(B,G)=4V#%^A g^
nCV3:n*N,VcS and either . 

VfiB or Vr»B=0}. 

- 609 -



To prove the following claim, we need only the assumption that r x , * . / } is min
imal and V is commuting. 

Claim: D(B,G) is a 3r-base of X for each B a & . To see this, fix Be ft 

and suppose U c ifc is arbitrary. 

Define V=BOU if BnU4-0, otherwise define V=U if B*iU=0. Pick up xeX. 

Since ex,*/} is minimal, we can apply l.Kii) and 1.2(111). Hence the set S= 

= -\g « <*f>:g(x)« Vl is syndetic in the abelian semigroup <<f > . Let F -» < *f > 

be the associated finite set. For each f€ F define 

k V1 vk 
Pf= -fv= <vr...,vk> co> :f * g - V . . og^** Si. 

Then f P*:f* Fl is a finite covering of co , because S is syndetic in <*£>. 
Now we apply Gallai's theorem for the finite set E=-£0,lJ and therefore for 

k y * 

some fcF there i s a v i o and n%N so that for each e= <e, , . . . ,ek>6 E, 
f - n V n e l n V n e k q 
f « g j o . . . og k % S. 

Denote h=f • g 1
1 © ... «g k

k, then for each i, g n « h * S . It means that 

h(x)cV and also g?(h(x))cV for each i=l,...,k. So h(x)« V r v r Y g7ntV.l 

and then V n . r Y g 7 n C V 3 is a non-empty open subset of U ana the claim is 

proved. 

To prove 2.2 let A c 3 be a base for the topology of X such that \A |< 

< p. For each A •A-10} and finite Gfi</ put N(A,G)=X-UD(A,G). Accord

ing to the claim, N(A,G) is nowhere dense. As X is separable and |y|*fi, we 

may apply Bell's Theorem to find an x%X- U-{N(A,G):A* A ,G&<fis finite}. 

So for each A & A , A a neighbourhood of x and finite G s *f there exists 

VftO(A,G) such that x«V and V.&A. This implies that there exists nsN such 
that gn(x)cA for each gcG. 

2.3. Corollary. Suppose that X is a compact Hausdorff space with w(x)< 

< ^. If SfsC(X,X) is countable and commuting, then the system CX, OT has a 
multiple recurrent point. 

Proof: From 1.1(1) take a minimal set M of CX,«f3 . Then w(M)<fi and 

by 1.2(ii), M is separable. So 2.2 applies. 

2.4. Corollary. (The Multiple Birkhoff Recurrence Theorem) Suppose X is 

a compact metrlzable space and <£& C(X,X) is countable and commuting. Then 
tX,^3 has a multiple recurrent point. 

Proof: Since g is an uncountable cardinal and w(X)A eo , then 2.3 

applies. 
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Let us agree to call x*X multiple non-wandering in the system rx,«fj 

provided that for each neighbourhood U of x and for each finite 6 & *£, 
3 ueU, 3 n c N , Vf€G", fn(u)eU. This is a slight generalization of Birk

hoff's notion of non-wandering point iBil. From the claim of the proof 2.2 

we obtain immediately 

2.5. Theorem. Suppose that CX,5f3 is a minimal system, and t/ is commu

ting. Then each point of X is a multiple non-wandering in CX, *fj . 

There is a much longer purely topological proof of 2.2 and 2.3 which ma

kes no use of Gallai's Theorem. In fact, Gallai's Theorem can be obtained 

(see tFu}) as a corollary of the Multiple Birkhoff Recurrence Theorem. 

§3. Example. Since the Birkhoff Recurrence Theorem, originally proved 

for compact metric spaces, is true for each discrete system, one might con

jecture that the same is the case for the Multiple Birkhoff Theorem. Howev

er, we have the following counter-example. 

3.1. Example. There is a compact connected first countable space X with 

a homeomorphism h:X—-*X such that CX,-£h,h ]3 has no multiple recurrent 

points. 

Proof: Let X be the annulus { r e ^ :l£r-£2, © i s a real? in the plane. 

If K r < 2 , a basic neighbourhood of re2wi9will have the form 

•Cse2*11^ :0<|s-r|<fc$ where z< min -£r-l,2-r} . 

A basic neighbourhood of B
2*i9

 w n i have the form, for S , 0 < e < l , 

L6yeufee
25ri0:l16s<lf e\ 

where Lfe e = -{re
2*1^ :1* r.62, 0<© -f < c ? • 

A basic neighbourhood of 2e 2 w i e w i l l have the form, for €,, 0 < £ < 1 , 

R%>ev$se2*iQ :2-s<s&2l where R 6 > e = 4 r e 2 ^ : l - 6 r * 2 , 0 < f - 6 > - c £ ? . 

Obviously X is first countable. It is easy to show that X is compact and 

connected. Now arbitrarily choose an irrational cc, 0<«&<1 and define a ro

tation h:X—*X by 

Kre^hre2*®^. 
Clearly, h is a homeomorphism. On the other hand if %,< -|, then V 0 , p V n € 

CN, Vr, 1 4 r * 2 hn(re2,tld)6 L^ f, if h~
n(re 2* i 0)c \ ^ . 

Since for all real B and V n * N , ©+n«& ̂ 0#a-rtc<(mod the integers) no 
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point of X is multiple recurrent in £x»{h,h J} . 

Our example is the simplest of several exhibiting the failure, in gene

ral, of the Multiple Birkhoff Recurrence Theorem. The first two authors of 

this paper have a compact X, w(X)=2(W with a homeomorphism h such that 

tX,^h,h 13 has no multiple recurrent point - this is especially interesting 

in the light of the result CESJ: 

If x is recurrent in a discrete system CX,fJ, then, VneN, x is recurrent in 

the system [X,fnJ. The third author jointly with 3. Pelant have found a sys

tem [X, $f,gl3 with f and g commuting homeomorphism such that CX,f} and CX,g3 

have no recurrent point in common. All of these examples will appear elsewhe

re. 

Question 1: Is it provable in ZFC that there is a system CX, 9>J , ̂ f i 

nite and commuting and w(X)=£ such that there is no multiple recurrent point 

inCX,<f] ? 

Question 2: Suppose X is the Cantor set. Is there a commuting SfeC(X,X 

such that CX,^P3 has no multiple recurrent point? 

S.W.W. wishes to thank Charles University (Prague) for its hospitality 

during the completion of this manusript. 
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