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A GENERALIZED VERSION OF THE 

GALE-NIKAIDO-DEBREU THEOREM 

E. TARAFDAR, G. MEHTA 

Abstract. In this paper we use a fixed point theorem equivalent to the 
Fan-Knaster-Kuratowski-Mazurkiewicz theorem to prove a generalized version of 
the classical Gale-Nikaido-Debreu theorem. * 
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1. Introduction. In recent years, several infinite-dimensional genera

lizations of the classical Gale-Nikaido-Debreu theorem have been proved by 

Bojan [l], Florenzano [3], Mehta and Tarafdar [6J, Toussaint [8] and Yanne-

lis t9] . In these papers, the commodity space is either a Banach space or a 

locally convex linear topological space E and it is assumed that the positi

ve cone P has an interior point e. The role of this assumption is to ensure, 

via the Alaoglu-Bourbaki theorem that the "price simplex" A is a weak -com

pact an d convex subset of the dual cone P* of P relative to the dual sys

tem < E , E ) , where E' is the topological dual of E. The compactness of the 

"price simplex" is needed to apply the standard fixed-point theorems. 

It should be observed that the interior point assumption holds for the 

Banach space C(S) of continuous functions on a compact Hausdorff space. In 

particular, it holds for the space L ^ of essentially bounded measurable 

functions on a e'-finite positive measure space (see Toussaint 18]). Howe

ver, it is not satisfied for the Lebesgue spaces L , l&p <co and the space 

M(K) of finite signed Baire measures on a compact metric space (see Yannelis 

and Zam-e £10}). 

The object of this paper is to prove an infinite-dimensional version of 

the Gale-Nikaido-Debreu theorem without assuming that the positive cone of 

the commodity space has a non-empty i n t e r i o r . The proof of this result is 

based on a recent fixed-point theorem of Mehta {5J and Tarafdar [7j. This 

theorem is equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem 12} 
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on the coverings of simplexes (see Tarafdar 1?J for a proof).. 
Since we eto not assume that the positive cone P has an interior point, 

the domain of the "excess demand correspondence* cannot be guaranteed to he 

compact in the weak*-topology of the dual space. The advantage of our app

roach- is that we do ncrt have to assume that the domain of the "excess-dem-

and coirr esparTo^nc©"' is weal^-compact. 

2. The Gale--Mikaiath4tebreti theorem. The following theorem which has re

cently been proved by Mehta fS3 and Tarafdar 11} is equivalent to the Fan-
•<m5tef*~Kuratow5ki~fr^^ theorem |2„ Theorem. 4], 

Theorem 1. Let X toe a nonempty convex subset of a real Hausdorff topo

logical vector space. 

Let f :X~-* 2^ be a set-valued mapping such that 

Ci) for each xf.X„ f(x) is a nonempty convex subset of X; 

Cii) for each y % X % f~ Cy)= IxcXsy ef(x)l contains a relatively open 

subset 0 of X; 
Ciii> »Vx V** 
Civ) there exists a nonempty X c X such that X is contained in a com

pact convex subset X., of X and the set 0= A . ff* is compact. 
* * % & x 

Them there exists a point x % X such that x c f C O * 

As an application of this fixed point theorem we now prove an infinite-

dimensional version of the Gale-Nikaido-Oebreu theorem without an interior 

point assumption. Note that this can also be done by applying the Fan-Knas-

ter-Kuratowski^Mazurkiewicz theorem. 

Theorem 2* Let CX»t) be a real Hausdorff locally convex space* C a clo

sed convex cone of X such that the dual cone C*=«tpmX:p(x)ig o for all x* Cj# 

-Ktof. Let T;C*—* 2 be a correspondence such that 

Ci) for each pcC* with4q«C*:qCx)>o for a l l x«TCp)}4»f , there is 

a q*C*such that f U weak*-interior of {p*C* iq (x )> o for a l l xcT(p)J*0 , 

Cii) for each p*C*> T(p) is convex and t-compact; 

Ciii) for each pcC*» there exists x«T(p) such that p(x)4o, 

Civ) there exists a nonempty 0 cC*such that D Q is contained in a com

pact convex subset DT of C* and the set t \ 0^ is compact. 
* **••% P 

Then there exists p*cC* such that T(p*)n€*g. 

Proof. Suppose that the theorem is false. Then T(p)nC«0 for all ptC*. 

Then since T(p) is compact and C is convex* the Hahn-Banacb separation theorem 
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impiies that there exists a non-zero continuous iinear functionai r such that 

sup r(x)< b < infm r(x), where b is a reai number. Since C is a closed cone, 
X*C X£T<1*) „, 

b>0 and reC*. Now define a map F:C*-~* 2C by F(p)*{ qfcC*;q(x)>o for aiX 

xeKpJ, By the argument given above F(p)*f*0 for each p * C * . It is easily ve

rified that F(p) is a convex set for each ptC*. 

Condition (i) implies that conditions (ii) and (iii) of Theorem 1 are 

satisfied. Hence Theorem 1 impiies that there exists a point p e C* such that 

p 4 F(p ) and this contradicts condition (iii). The contradiction proves the 

theorem. 

q.e.d. 

Corollary 1. Let (X.t) be a real Hausdorff XocaXXy convex space, C a 

closed convex cone of X such that the dual cone C*={p«x':p(x)|o for aXX 

xcCj^ioJ, Let T:C*~-*2 be a correspondence such that 

(i) for each pec* with ̂ 4 C*:^(x)> 0 for all x4T(p)J*0 there is a 

qcC* such that 154 weak*-interior of «CpcC*:q(x)>o for aXX x4T(p)J=Q ; 

(ii) for each ptC*, T(p) is convex and t-compact; 

(iii) for each p« C*, there exists x4T(p) such that p(x)^o; 

(iv) for each peC*\D, there exists q e D Q such that pen > where 

D c D,c C*» D 4 0 and 0, is compact and convex. 

Then there exists p*4 C* such that T(p*)nC4»0. 

Proof- It only needs to be proved that condition (iv) of Theorem 2 is 

satisfied. Now condition (iv) of the corollary implies that for each p4C*\D1 

there exists q4 0 Q such that p+0^. 

Consequently, f \ o!?c D,. Each set oj* is closed by hypothesis and 0-
f* c y0 p i p Jl 

is compact. Hence, C\ 0^ is compact and the proof of the corollary is fi-

nished. q.e.d. 

Suppose now that the cone C has an interior point. Then under the condi

tion of Theorem 2 it is well-known (Jameson I 4 , p. 1233 and FXorenzano [3JD 
that the set il *{ pfeC*:p(e)- -1, e an interior point of C{ is weak*~comp-

act and convex. We now prove the following result about XocaXXy convex spa

ces ordered by a cone having an interior point. 

Corollary 2, Let (X,t) be a real Hausdorff XocaXXy convex linear topo

logical space, C a closed convex cone of X having an interior point e, 

C**$P*X*:p(x)*o for all x4Cj4»iol the dual cone of C, and 

A • tp* C*jp(e}» -lK Let T: A ~ * 2 X be a correspondence such that: 
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(i)' for each "p e A with iq e A :tf(x)^ o for all xeT(p)J4:0 there is a 
q e A such that pc weak*-interior of {p e A :q(x)> o for all xeT(p)$ =0 

(relative to C*); 

(ii)' T(p) is convex and t-compact for all p e A ; 

(iii)' for all p e A , there exists xeT(p) such that p(x)£o. 

Then there exists F e A such that T(p)nC-l»0. 

Proof. We first extend the map T: A ~> 2X to a map T*:C*—* 2X. To do 

this, one observes that C* is equal to the cone generated by A , i.e. 

C*= U Q ^ A SO that each element p of C* has a unique expression of the 

form p=Ap for p e A (Jameson 14, p. 1233 and Florenzano L3-1). 

Define T*:C*-~» 2X by 

т*(
P
)= T 

T(p) i f p e A 

*> -AT(q) i f peC*\A , and p=^q for q c A with A > o . 

In view of conditions (ii)' and (iii)' it is clear that conditions (ii) 

and (iii) of Theorem 2 are satisfied for the map T*, since in any topologic

al vector space the function which takes x to A y , where A is a non-zero 

scalar, is a homeomorphism. 

To prove that condition (i) of Theorem 2 is satisfied, let $ belong to 

C*. Then p= A p for some p e A .By condition (i)' there exists q e A such 

that "p e weak*-interior of the set -Jp e A :q(x)> o for all xeT(p) }=0 . 

Observe that weak*-interior of { p e A :q(x)>o for all xeT(p)f = 

= weak*-interior of p e A :q(x):>o for all xeAT(p)}, since a > o. 

Hence j3->£peweak*-interior of -fA pe C*:q(x)> o for all x e AT(p)} = 

= weak*-interior of-MpeC*:q(x)>o for all xeT*(Ap)l. 

This proves that condition (i) of Theorem 2 holds. 

Finally, to prove that condition (iv) of Theorem 2 is satisfied, let 

D =D,= A . Now for each p e A , there is by condition (iii)' a q e A such 

that P + 0 Q where the complement is taken in A . Since 0C is a closed subset 

of A by hypothesis, it follows that f \ 0C is compact. 

Consequently, Theorem 2 implies that there exists a point pe C*such 

that T(p)nC + 0. It remains to be proved that p e A . To this end, let 

ztT(p)nC. Then for any qeC*, q(z)£o, since zeC and q is a positive li

near functional. This implies that p${peC*:q(x)> o for all x&V * (p )? . 
A fortiori, peO . Consequently, 
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Renark. For other applications of Theorem 1 and the equivalent Fan-

Knaster-Kuratowski-Mazurkiewicz theorem the reader is referred to Mehta C5]. 
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