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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,4 (1987) 

SqME COMBINATORIAL RESULTS ABOUT THE OPERATORS 
WITH JUMPING NONLINEARITIES 

Rudolf ŠVARC 

Abstract; In this art ic le various examples of the operators with jump
ing nonlinearities are constructed by means of a combinatorial method, devel
oped in £ l3 . Among others, the following is proved: There exist operators 

with jumping nonlinearities S* :R°—• Rn such that the corresponding equati
on ^ ^ 

SA|||r(u)=f 

has at least [ rr^iiv?l) ^s*^nc* solutions for almost every f^R (in the 

sense of the n-dimensional Lebesgue measure). 

Key words: Jumping nonlinearity, Brouwer degree, multiplicity of solu
tions, n-dimensional cube. 

Classification: 47H15, 55M25, 52A25, 05A15, 90C33 

Introduction. This article can be regarded as a second part of [1],hen

ce we shall not give any bibliographical comments here. They can be found in 

[13- We shall also use the notation which was introduced in llj. Nevertheless 

for the convenience of the reader, both the notation and the main results of 

[13 will be briefly repeated here. 

The brackets [..."} are used in a double sense: Ia,b3 is a closed inter

val of real numbers, f c 3 is the integer part of the real number c. 

n= {1,2,3,. ..,nlr. 

card CJ is the number of the elements of the set OJ • 
For every vector u=(u.). -**Rn we can define two vectors u+=(ut). - «R n 

and u~=(u7). -_€Rn as follows: 

u.=max-(u. ,0}, u7=max-f-u.,0} 

for every i«rT. (Then u=u -u"*.) 

Definition 1. Let S:R n—^R 0 be a linear operator, let & and (u, be two 

real numbers. Then the equation 
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S9Li* < u ^ u * *Su+-£fcSu" 

defines the operator 

Any operator of this type is said to be an operator with jumping nonlinearity. 

Me are interested in the solvability of the equation 

(1> V ( u M 

for various ft flf\ 

Definition 2. Let k(S , f ) be the number of the distinct solutions to 
a>. ut l#* 

k(S. >• inf ess k(S ,f)* ̂  i"-L*J<<S* ,f), 

where 0 is the system of all the subsets of Rn which have zero n-dimensional 
Lebesgue measure. 

Using the positive homogeneity of S- „ , we obtain easily from the gener-
al Brouwer degree theory 

Theorem 1. Let Be Rn be an open ball containing the origin 0. Let the 

Brouwer degree deg(S^ ^>0>B) of S^ ̂  w.r.t. the point 0 and the ball B be 

defined. Then 

k (SA^)| t |deg (S^^,0,B ) | 

and 

k^ s^ik^ d 0 8^ SA l«*»°'
B ) ls even, 

If deg(S~^ ,0,8)4-0, then (1) has at least one solution for every f*R n. 

Proof of this theorem can be found in t2J. 

For any 4> c IT let us define the point C ^ - K c ^ ^ t R 1 1 by means of the 
formulae 

e^« -1 if i « ca> 

e * 1 if iiTVa*. 

The points C ^ » 6J e TT are just all the vertices of the n-dimensional cube 
Cn» For every G>e1T we define the index of C w 

i<C^*<~l) c a r d c , >. 

(Then the indices of the vertices of Cn define a colouring of Cn in the sense 
of the graph theory.) 

For every i * n* there are in Cn 2n~l one-dimensional edges parallel to 
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the x,-coordinate axis in ff* These edges are called i-edges in the sequel. 

Convention. The word hyperplane will be used in a restricted sense. Na

mely, the word hyperplane without any additional specification will always 

denote an (n-l)-dimensional hyperplane in R n which does not contain any ver

tex C ^ of C n. If f> c R n is such a hyperplane, then p * is the open half-
space of R n w.r.t. f> which contains the points (a,a,a,...,a) for all suffi
ciently large positive values of a. J0~ is the opposite open half-space. 

Definition 3. For any hyperplane f> c > n (in the sense of Convention) 

let 

«f>-ic:J<1(v|-|ç5ř-"vl-
For it n let k.(cp) be the number of the i-edges of C which are intersected 

by m . Let 

k(s&)=min{ki(ji)|iCnK 

Definition 4. An (n,d,k)-hyperplane is a hyperplane » C R° such that 

d({>)=d and k(j> )*k. 

The main result of t1] is 

Theorem 2. If there exists an (n,d,k)-hyperplane then there exists a 

linear operator S ^ — * » f f and two real numbers ^ and (U. such that 

|deg(SAf|i>0,B)|-.d 

and 

For n*3 and S symmetric, the converse implication is also true. 

Rework 1. Let us recall that the proof of Theorem 1 is constructive. 

Section 1. Three simple results 

Example I. Let n*l. C*= [*l,UcR, a hyperplane is a point. The point 

J> is either an interior point of C in which case d(p)-k(m )=1 or is a 

point outside C-l,lJ in which case d(p )=k(j&)sQ. Thus for n=l there exist 

only (1,0, 0)- and (l,l,l)-hyperplartes. 

Example 2. Let n=2. Then m is a straight line and there are only three 

substantially different possibilities for the position of p w.r.t. C2.(See 

Fig. 1.) In the cases A and C in Fig. 1 d(j&)«k(fl.>)=Q. In the case B 
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obviously d(n> )=k(<j>)=l. Thus for n=2 there exist only (2,0,0)- and (2,1,1)-

hyperplanes. 

Lenna 1. If there exists an (n,d,k)-hyperplane, then (m,d,k)-hyperpla-

nes exist for every m>n. 

Proof. It is sufficient to show that the existence of an (n,d,k)-hyper-

plane implies the existence of an (n+l,d,k)-hyperplane. The proof of this as

sertion is illustrated in Fig. 2. 

Let 

(2) 
C > C n ł l л ( x - . R n + 1 | x П ł i = l h 

Cn=Cn+1 - . { x в R ^ l x ^ - l b 

Let E:Rn—+ff+ l be the mapping 

E((x 1 ,x 2 ,...,x n ))=(x 1 ,x 2 ,...,x n ,l). 

Then 

(3) EOťV-fxeR^U .=1}, h+1 
E(Cn)=Cn 

and the index of any vertex C w * u
n , O C TT is equal to the index of the 

responding vertex E(C 6 |)«C +cC
n + 1« 
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Let <pc Rn be an (n,d,k)-hyperplane, le t 

(4) 
* ^ a i x i = b 

be its equation. Then p#=E(j£>) is an (n,d,k)-hyperplane w.r.t. C+=E(C
n) and 

the hyperplane (3), dim p =n-l. The equations of p are (4) and 

vr1-
We can define for every cC £ R a hyperplane ft^ by the equation 

(5) *(*ffcaixrb)=vr1. 
Then 

(6) Jt»cnE(R
n)=j&', 

whenever 06 + 0 . But we shall investigate only those rt^ for which 

0<|*C|<2/( #X. |a.|+b). 

If xeC n, then |xil<l for all i€r? and xR+1= -1, hence 

i * ( * ^ a i x r b ) i < 2 ' 

(7) 

ІVГ
1
!*

2 
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and (5) cannot be fulfilled. Thus 

(8) $* A f/>*. 

The last relation together with (6) implies that for i*n (and ot as in (7)) 

f^ intersects only those i-edges of f/**1 which are intersected by p * in 
Cjj. But f #*£(f) and C^ECC"), hence 

W ki(fk)srki(f} f0T a11 icH* 
The value of the term 

(10) ^ a^-b 

is constant on every (w-l)-edge in tF** and it is on every such edge nonzero, 
because it is simultaneously the value of the same term in a vertex of IT, jb 
is given by (4) and must not contain any vertex of f/\ Now, we can see that 
the (ml)-edges, for which (10) is positive, are intersected by fa for 
«C<0, the (rHl)-edges, for which (10) is negative, are intersected by fa 
for cc >0» because in both cases according to (7) and |x. |><1 for xtf/1 ) 

-2-ceC(.2E^a.x.-b)<0. 

Now (5) implies x^.,« 3~l>lf. Hence we can choose «c so. that fa intersects 
at least one half of all the (rHl)-edges, that weans 

(11) k n + 1(y W)>2
n/2=2 f >' 1. 

On the other hand, there are only 2 i-ecfees in C11 for every i€"n„ thus 

(12) ki(j>),i2f>"1 for all i € n . 

The relations (9), (11) and (12) imply that 

(13) k((^)=k(ji). 

for a suitable ot . 

In one of the half-spaces of tf1*1 w.r-t. f^ there are just the vertices 

of C0* which are in one of the n-dmemional half-spaces of (3) w.ir.t. jfr** 

To see it, one only needs to recall (8)„ Taking; into account that ihe indiices s 
in cfj are as in 0°, we obtain immediately 

(14) d(j^)=d(f). 

According to (13) and (14) f^ is an (n+l,d,k)-hyperpJLane.-

Renerk 2. A similar result for the operators with jumping noniiFieairities 
is trivial. Given an operator S^^RP—"•* if*, one only needs to join to the 
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•atrix S=(sij)i ^ the entries • l ^ l - « I H l , j"Vl,n«y
0 -* *'$** in « * * 

to obtain a Matrix S . Then 

Sk.^ 1-*^ 1. «\^*.^- k^^>*<\|-.>-

2. If there exists an (n+l,d,k)-hyperplane which does not inter
sect at least one of the n-diannsional faces of C , then there exists an 
(n,d,k)-hyperplane, too. 

Proof. He can assume that the (ml ,d,k)-hyperplane f does not inter
sect C^, 

(15) r/>jS-#, 
because of the symmetry of C . He can also assume that ft is not parallel 
to (3). Otherwise it Mould be an (n->l,0,0)-hyperplane and (n,0,IJ)*tiyperpl«ne 
exists according to Example 1 and Lemma 1. 

We can define the (n-l)-diisensionai hyperplane 

f - f n E ( l f ) C * m l 

and the hyperplane 

fE"Hf9)CtP, 

Me shall prove that f is an (n,d,k)-hyperplane. 

In the proof of Lemma 1 we have deduced (14) from (8). The same argument 

applied to (15) gives 

d(fT)=d(f ). 
Also, MB obtain the equations 

\tif M^C f ) f®r i s n 

which correspond to (9). Hence Me only need to show that 

(16) *Vl(f >**!<?> fw ****** i€^ 
Let us choose an is n and an i-edge of tf*" which is intersected by f » 

H.r.t. (15), it must be in cT, Let A and 8 be its end-points. Each of them is 
also an end-point of an (n+D-edge, let these edges be AA* and fi8\ A'8' is 
also an i-edge of (f**l

4 

(17) AVcC*. 

The codimension of f is I, f intersects AB, thus it must intersect another 
edge of the square A B 8 V , (15) and (17) imply that f irftersects «i*her AA* 
or 88*. So MB can define a mapping from the set of all tfoe intersected i-ed-
ges into the set of all t*he intersected (n+D-edges. If tMO intersected 

- 713 -



i-edges AB and CD are different, then the corresponding (n+l)-edges are also 

rent, because evei 

Thus we have (16). 

n+1 different, because every vertex of C is an end-point of just one i-edge 

Remark 3. From this proof, a modification of the proof of Lemma 1 ob

viously follows. In fact, it is not important, whether we choose p^ with 

oC > 0 or with o 6 < 0 , only (7) is important. 

Remark 4. One can prove an analogous "reduction lemma" for the opera

tors with jumping nonlinearities. But the proof of the "reduction lemma" in 

the case of general operators with jumping nonlinearities is rather compli

cated. It will be published elsewhere. Let us only mention that for the spe

cial operators which are investigated in til (see also (25), (26), (27)), the 

assumption (15) corresponds, roughly speaking, to the assumption that the 

values a ,+ ft and a ,- ft are positive, but | e| is big enough w.r.t.a ,. 

(Cf. also Remark 2.) 

Definition 5. Two vertices C,. e Cn and CM 6 C
n, u>, ,6>0C h" are said to 

*k ft>2 1 2 
be neighbours, if there exists an edge in Cn which joins them. 

Lemma 3. Let p C Rn be a hyperplane. The following conditions are equ

ivalent: 

(i) There exist two opposite vertices C^, and C- in Cn such that C w 

and all its neighbours are in JD+ and C-. and all its neighbours are in Jfc-. 

(ii) £> intersects all (n-l)-dimensional faces of Cn. 

Proof. Let (4) be the equation of A . Because of the symmetry of Cn We 

can assume that 

(18) a^TO for all i*n. 

Let 

SP(x)=i^taixi-b» 

then the equation of ft cap be rewritten in the form 

(19) y(x)=0. 

max •fy(C^)|a>crTl = 9(C0)=<?((l,l,l,...,D), 

min {9(Cw)|«jcTf> = 9(C-.)=9((-l,-l,-l,...,-l)) 

and1 

<f(C0)>O, 9(C-)<0, 

if tp intersects Cn. 
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Let, e.g., 3f>(C^^)=9p((l,l,l,.. .,1,-1))< 0. (C | n^ is a neighbour of Cg.> 

Then 

(20) y(C A I)<0 whenever n c ej 

according to (18). But the convex hull of these points is just the (n-l)-di-

mensional face C_ (see (2)) and « does not intersect it according to (19) 

and (20). 

Hence (the special case (18) of) (ii) implies (i) (with o>=0 ). 

Now we shall assume (i) (but not necessarily (18)). Let, e.g., 

(21) y(c0)>o, 

(22) y(C^)>0, whenever card d>=l, 

(23) 9(C-)«0, 

(24) 9>(c
a)<

n» whenever card 6>-n-l. 

All (n-1)-dimensional faces of Cn are contained in the hyperplanes 

?i={x€Rn|x.-li, 

p:={x«R n|x i= -1}, icn. 

The face contained in j». contains C* and C-. £., and according to (19), (21), 

(24) p intersects it. The face contained in j>T contains C^ and C^j and i-5 

intersected by JD , according to (19), (22), (23). 

Hence, (i) implies (ii). 

o 

Example 3. Let n=2. Any two opposite vertices of C have common neigh
bours, hence according to Lemma 3 and Lemma 2, a (2,d,k)-hyperplane exists on
ly if (l,d,k)-hyperplane exists. On the other hand, according to Lemma 1, if 
a (l,d,k)-hyperplane exists, a (2,d,k)-hyperplane exists, too. (Cf. Example 1 
and 2.) 

Example 4. Let n=3.4Let j> intersect all faces of C . Then there are 

two opposite vertices A and B in C which satisfy (i) of Lemma 3. Thus A to

gether with all its neighbours A,, A2, A, is in p + , B together with its 

neighbours B,, B2, B, is in p ~ and f must be as in Fig. 3. (In Fig. 3 we 

have a parallel projection of C into R . The direction of the projection is 

parallel to f> .) Then d(f> )=k(ft )=2 and this is the only case which can ta* 

ke place in R , but not in R . (C f. Lemma 2.) Hence, for n=3 there exist 

just 3 types of hyperplanes, namely (3,0,0)-, (3,1,1)- and (3,2,2)-hyperpla

nes. Of course, the last type is the most interesting one. 
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Rework 5. Theorem 1 implies the following result: If S:R — * R is a 

linear symmetric operator, then d(S* ^
= k
^

s
^ ** -*

 ant
*

 t n e c o m m o n
 value of 

d ^ - ^ ) and k(S^ ^ ) is either 0 or 1 or 2. Nevertheless, the last assertion 

is true not only for S* with a symmetric S, but also for general operators 

with jumping nonlinearities in Ir. 

Section 2. The hyperplanes in R . 

Definition 6. Let j be an intet ,- } . * j - . » n v I b e j-th level of C n
 cons-* 

ists of all the vertices C ^ of C
n
, for which card <J =j. (Cf. Fig. 4, where 

a two-dimensional parallel projection of C has been constructed.) 

According to Example 4 and Lemma 1, (4,0,0)-, (4,1,1)- and (4,2,2)-hyper-

pfcnes exist. Any other hyperplane must satisfy (i) of Lemma 3 according to 

Example 4 and Lemma 2. W.r.t. the symmetries of C we can assume that the two 

Thus the 0-th and the first 

p ~ and 
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opposite vertices of Lemma 3(i) are C and CT 

level of C are in $>*, the third and the fourth level of C* are in 



F.G.-v 

p can split only the second level. Because of the central symmetry of C 
w.r.t. the origin 0, we can further assume that to contains at most as many 

4 •* 

vertices of C as JP . Hence from the six points of the second level at most 

three are in £& . 

If p does not contain any point of the second level, then j& splits 

C between the first and the second level intersecting just all the edges jo

ining these two levels. We can easily calculate the numbers d(p ) and k(jfr) 

and we obtain the existence of (4,3,3)-hyperplanes. 

If {D+ contains three points of the second level, then obviously d(jD )= 

=0. Because of the symmetry of C there are only three possibilities, how to 

divide six vertices of the second level into two triples. There are namely 

only three possibilities, how three vertices of the second level can be con

nected with the first level. These three cases are drawn in Fig. 5 and one 

can easily see that the other three points of the second level of C which 

belong to {p~, are always connected with the third level in a way which is 

completely symmetric to the connection between the first three points and the 

first level. 
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ПG.5 

An easy examination of the case C shows that this case is impossible. 

Namely, a partition of C which corresponds to C in Fig. 5, can be carried 

through by means of some hypersurface, but not by a hyperplane. 

In Fig. 6A, resp. 6B we can see one half of the edges which are not in

tersected by p . These figures correspond to Fig. 5A, resp. 5B. 

& 

FIG.6 
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In Fig. 6A there are four edges of the direction PQ. Hence m does not 
intersect 8 edges of this direction. But there are only 8 edges of this direc
tion in the whole C , thus k(p )=0 in this case and jo is a (4,0,0)~hyperpla-
ne. 

Let us count the edges of different directions in Fig. 6B. We get the 
numbers 3,3,3,1. Multiplying by two gives 6,6,6,2, hence the number of the ed
ges of different directions which are intersected by p , are 2,2,2,6 and 
k(p)=2. So we have found a way, how to construct (4,0,2)-hyperplanes. 

The case, in which jo contains either two or one vertex of the second 
level, can be investigated similarly, but we shall not obtain any other type 
of hyperplanes. Hence for n=4 there exist just 5 types of hyperplanes, name
ly (4,0,0)-, (4,1,1)-. (4,2,2)-, (4,3,3)- and (4,0,2)-hyperplanes. 

4 • 4 According to Theorem 1 we can construct an operator S* :R —*• R such 
that d(S* ̂ )=0 and k(SA ̂ )=2. The construction given in Section 5 of 11} is 
inductive and leads to an operator of the type 

(25) 
where 

(26) S = 

and 

(27) a.+ e > 0 , a.-S<0 for every ieT. 

The points P, Q, R in Fig. 6B are completely equivalent, hence we can seek 

for a matrix (26) with a-̂ -â -a-j-a, a^=b. 

Example 5. If p is as in Fig. 7, then certain inequalities for all the 
terms -d^ , o c T must take place (for the definition of * 0 W see (38) in 
C1J). Each iS^ corresponds to C^ and must be either positive, if Ctf i f , 
or negative, if C t o* f~. 

If we decide to seek for 

(28) £>0, 

then according to (27) we obtain 

(29) a > e , b > 6.. 

Hence, all the inequalities for ^ , 6 ) c T , which must be fulfilled, can 
be reduced to the following four of them: 
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/ -1+ar -1, - 1 , -1 

í -' ' -l+a2, -1 , -1 

- 1 , -1+a-, -1 

\ -i . - 1 , -1 > -l*a, 



(30) 
i-

1-

1-

FIG.? 

2 1 

a-fc * a+*" 

3 

a** "Tиt 
3 
a-s 
2 

a*t 

T£*: 

>o, 

>o, 

^r<°. 
i 
a-c ь-c 

< 0. 

All the other inequalities for <0U are consequences of (28), (29) and (30). 
9 7 

The inequalities (30) are fulfilled, if, e.g., a= «-„ b= -*-» fc=l. This choi
ce of a, b and c gives the example of the section 6 of £21. 

On the other hand, by the Method, developed in C U , one can construct 

to these values of a, b and % the corresponding (4,0,2)-hyperplane m in R . 

The equation of f> can be calculated to be 
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18G(x1+x2+x3)+308x4= -*3 

and one can show that m really intersects C as in Fig. 7. 

Example 6. we can also construct an analogous example following exactly 

Section 5 of tlj. Me can choose (& as in Fig. 7. Let us notice the partition 
4 3 3 

of C into C+ and C_. For p we can choose, e.g., the hyperplane 

xl+x2+x3"f^x4:::^* 

This hyperplane intersects C^ so that it divides the vertex (-1,-1,-1,1) from 
3 

all the other vertices of C+. Further, this hyperplane passes through the cen
tres of all the edges which join the vertex (-1,-1,-1,1) to the other vertices 
of cj. With respect to the symmetry we see that a,=a2=a-., hence we shall begin 
the inductive construction, described in Section 5 of Cl3, in the dimension 3. 

C^=C4A<x€R4|x4=0}, 

po=f>Mx€R4|x4=0h 

hence the equations of pQ are 

(31) Xj+X2«ou=0, x4=0. 

After a transformation of the form 

(32) 3df-x i +d, i4 3, 

we will get the new coordinates of the vertices of C£ 

V-rbr. ia'i rV°> 
a -s 

where , 

-* *r 
' d2-i ' 6 Зd 

According to (31) and (32), the new equations of f will be 

f
4
=0. 

The relations corresponding to (27) should be satisfied, thus 

d>l 

f we want to get 2 > 0. 

Let us choose, e.g. d=2. Now, we can make the "induction step" as in 

- 721 -



Section 5 of C U . We obtain the values 

a=4+2-^p/3, 

b=5/3+Vlu*, 

*=2+V!B/3. 

Hence, the matrix 

3+2Vl0V3 

-1 

-1 

-1 

and S=2+Vl0/3 give another example of an operator with jumping nonlineari-

ty of the form (25), for which d(S^^)=0 and k(SA -)=2. 

For d=7 we obtain the rational values 

. 217 . 155 » _ 31 
a" 48 * D* 48 » *~ 48 

which also give an example of S^ M with d(SA <tt,)=0, k(S^ ̂  )=2. Other ratio

nal values a, b, 6 can be obtained for d=41 and d=239. For d=9/2 we obtain 

values which are very near to the values of Example 5. 

Section 3. The hyperplanes in R° 

Leva 4. There exist (n, (n~ ) , ( n~ J)-hyperplanes for every n€N and 

every integer p£0. The equation of such a hyperplane p is 
> n,p 

(33) ^ x.=n-2p-l. 

Proof. (° r. 1-. intersects Cn between the p-th and the (p+l)-th level, 
* n,p 

because 
(34) *?--,xi=n"2P 

for the vertices of the p-th level and 

*?*xrn-2P-2 

for the vertices of the (p+l)-th level. Hence, the levels from 0 to p are con

tained in p * -. In the j-th level of Cn there are (?) vertices with the in

dex (-lP, so we have 

rtrn-pH-jfu'-D-fni. 

&(-->* (SVc-i^V). 
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thus 
(ï5) d(

Pn,pЧ
П
p

1
) 

Every C ^ , «0 c TT, is connected by edges with all its neighbours and 

each neighbour of C ^ differs from C ^ in just one coordinate. So if C ^ is 

in the p-th level, then its neighbours are in the (p-D-th and the (p+D-th 

level. If CL* from the (p-D-th level is a neighbour of C
w
 from the p-th le

vel, then card ft)=p, card CS=p-l and we see that CW can be obtained from C ^ 

by changing the sign of one of the negative coordinates of C^. Hence C ^ is 

connected with the (p-D-th level by one i-edge for every i c G> . Similarly 

one can show that C ^ is connected with the (p+D-th level by one* i-edge for 

every i£TT-G». 

Let ic*FT be fixed. By i-edges, those C ^ in the p-th level are connected 

with the (p+D-th level, for which i«TT-6) . There are (n~ J vertices C ^ with 

cOCrt-Ci}, card <*>=p, hence there are just (n~J i-edges connecting the p-th 

and the (p+D-th level of Cn. But just these i-edges are intersected by A . 
* n,p' 

thus 

Vfn.pKV)-
According to the definition of k(jt> ) this implies 

(56) «?n,pH¥)> 
and the equations (35) and (36) prove the lemma. 

max (fn~ )lP^ni=(g,n_i)/2i) » nence a special case of Lemma 4 and (33) is 

Learn 5. There exist ^ n > [ f n . i / 2 i ) ( r n . . i / 2 l ) )~hyperplanes for every nsN. 
The equation of such a hyperplane $ is 

(37) i l^x i*n-2Kn-l)/23 -1. 

Now we are able to prove 

Theorea 3. Let n c N be fixed. There exist (n,d,d)-hyperplanes for every 

integer d such that 

oéáéL- n-l V 
-D/2lJ 

Proof. fn"Pn t (n- l ) /2l in*6 1 , 8 6 0*3 c n between the [ (n- l ) /23 - th and 
the (C(n-l)/2] +l)-th level. Similarly (see (33)) the hyperplane 

r n " f n fKn-l) /2J-l w i t h t h e e £ * a t i o n 

(38) 4 | ^ x^n-2 t (n- l ) / 2 ] +1 
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intersects Cn between the t(n-l)/2j-th and the (I(n-l)/2j-l)-th level. If the 

coefficients on the left-hand sides of (37) and (38) are subjected to an ar

bitrary sufficiently small change, the resulting hyperplanes 2> , resp. C 

obviously have all the properties of the hyperplanes f , resp. €T . This 

means not only that the relative numbers k and d remain unchanged, but 8> , 
resp. ?f intersect just those edges which are intersected by a , resp. 

6f . Let 

C39) if»an^xi=n-2^l)/2l-l 

and 

(40) 4 f ^ an4x.=n-2t(n-l)/23 +1, 

where 

(41) 'Vr1!* e 

and e. > 0 is sufficiently small, be equations of j? , and & , resp. 

All pairs of vertices C,* , fl, e Cn define finitely many directions and 
*1 ^ 2 

we can choose a ,, satisfying (41) so that neither of the hyperplanes J»n(t) 

(42) vf» an,i ) ri s n" 2 K n" , 1 ) / 2 l + t» t€*r-1»13 

is parallel to any of these directions. (Cf. (39), 40).) Hence, any £>n(t) 

can contain at most 1 of the vertices of Cn. p (-l)-5^ and J % con*tains 

the levels from 0 to t(n-l)/2). If t increases from -1 to +1, the vertices of 

the f(n-l)/2}-th level pass one after another through J>n(t) from the plus 

into the minus half-space of fP w.r.t. J>n(t), because p (l)=2r and 6f + 

contains only the levels from 0 to t(n-l)/23-l. Let 

(43) t 1 < t 2 < t 3 < . . . < t ^ , 

where 

V=(t(n-1)/23)' 

be all the values of t € f-l,ll, for which f-n("t) contains a vertex of the 

t(n-l)/2]-th level. The sum of the indices of the vertices in (*,-,( t) + is 

(44) (-D^-^^lin-l)^) > " *• -1. 

(«) <-i>^»«-VSa-i) ' " W 
and it changes by 1 or -1, whenever t growing from -1 to +1 passes across one 

of the values (43). Hence the sum of the indices of the vertices in (&n(t)
+ 
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attains all the integer values between (44) and (45), when t varies over 

£-1,1]. The values (44) and (45) have opposite signs, thus d(«„(t)) attains 
/ n-1 \ 

all integer values between 0 and ir, iwoi] (some of them even twice!). 

It remains to show that d( fl>R(t))=k( pn(t)) for all tc£-l,l] except 

(43). But this is not necessarily true unless we make an additional assumpti

on about J°n(t) . So let 

(46) «S1,n--<%^
an,i--l-

Let Ĉ , be in the l(n-l)/2]-th level of Cr According to (34) its coor

dinates fulfil the equation 

^^x.=n-2Kn-l)/23, 

hence 

i f * an,ixi= V ^ n . i ^ V ^ V *S|(«n,1-l>'«i*n-2Kn-l)/2S 

and 

C««Pn(V^»(an>i-
1>xi> 

according to (42). So the values t , r c V in (43) are the values of 

%?*(an,i-->xi 

in the vertices C w of [(n-l)/21-th level. If n • U , then in C w 

^(an,i-l>-r-4^(an4-1)V(an)n-
1>2-ifel

an,i-1l-(an,n-1>>°. 

because |xj=l for i 6 n-1, x = -1 and we assume (46). If n ̂  A) , then we ob

tain similarly 

*T»(an,i-1))ci<0-

Hence we have (see (43)) 

(47) -1 < t 1 < t 2 < . . . < t < 0 < t y + 1 < . . . < t y < - 1 , 

where 

г(l(n-î)/2]) 

and we have just shown that the values t <0 in (47) correspond to the points 

C w with n %<*> and the values t > 0 correspond to the points C w with n € CJ. 

Let t = -1 and let us choose some r €. vT,. In the interval (t ,,t ), 

k-(f (t)) is constant for every icTT. Let us look, what happens, when t pas

ses through the value t . 

If C^r) is the vertex contained in pn("-r), then for t<t ^jCr)*^^^ 
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and *>n(t) intersects the edges connecting C^, x with the (£(n-l)/2]+l)-le-
vel, for t^t ^k%(r)^ ¥n^~ and fn^ intersects the edges connecting 
C y x with the ([(n-l)/2)-l)-th level. Hence for any two values t,, X~ € 

6 (t , ,t -) such that tf,< t < t 2» all the edges which do not contain 
C y s are intersected by n> ( t J if and only if they are intersected by 

p ( t ^ ) . The edges which contain C / * are intersected by (on(tT1) if and 
only if they are not intersected by JD-^to^' Tnus Passin9 *rom *i to ^i* 
some of the values k.(rf>(t)), icTT increase, the other decrease by 1. But 
n 4 <*Kr), hence the n-edge goes from CV, v to the ([(n+l)/2j+l)-th level and 
k (rt> (t)) decreases for each r s 7 , . By induction w.r.t. r we can show that 
for each 

t^t
r-l»

t
r)» r«^i> 

kn(^>n(t))=min4ki(pn(t))|i€ni=k(jDn(t)). 

Thus, k(© (t)) drops by 1, whenever t passes through any of the values t , 
r e l ^ . The same happens with d(*& (t)), as we have seen above. For t= -1 

(48) d(pn(t))=k(pn(t)), 

hence, the equation (48) is true for any tftT-1,0.1 different from the values 
(43). 

Now, it remains to show that our assumptions, concerning the coeffici
ents a ., i€TT, are consistent, but it is easy and is left to the reader . 

In order to get a better insight into the relation between 6(f) ) and 
k(jo), we shall investigate another type of hyperplanes in Rn. 

Lemma 6. There exist (n,0,2( ^T/n) )-hyperplanes for every even positive 
The equation of such a 

(49) Z L _ x.+2x=0. 

integer n. The equation of such a hyperplane 3f is 

Proof. Let n be even. The case n=2 is trivial, hence we can assume that 
n -?4. The equations 

•iЛІr-. "- " "
n - « - , . -2> x - = 1 

resp. 

*<=2> XrT* 

define two (n-2)-dimensional hyperplanes ifc_ ,, resp. gf
 0
 which intersect 

n-] » >* 

C" (cf. (2)). (See Fig. 8.) We can shift afc
n 2

 i n t n e
 direction of the n-

edges. In this way we obtain the (n-2)-dimensional hyperplane H>' „, the aqu

ations of K ' « being 
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FIG.8 

. 2* x.=2, x = -1. 

^ n , and ae' ~ are contained in & > see (490. The strip between #g_ ,, 
n,x n, — n i *• 

and «e 9 in Cn contains all the vertices of the ( n / 2 - l ) - t h and the n/2-th 

level of Cn_1. 

Let us calculate d ( < J . One of the half-spaces of R° w.r.t. it cont

ains the whole j-th levels of Cn for 0 Aj An/2-1 plus all the vertices of 

the n/2-th level which are in Cn_1, i.e., the n/2-th level of c"*1. Thus 

d(«n)=i;|;W(^)+(-D^(^) i= 

•K-D^t^-xl^-^ÍK)"-
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But 

(n/2-l) s(n/2)» 
hence 

(50) d(t^)«0. 

Let us calculate k(ac ) . According to the calculations in the proof of 

Lemma 4, ^ ± intersects (^2) edges of every °* the first n-i types in 
Ĉ ""1, hence 

(51) kl««hfi>-(KW
Ulpr-

Similarly 

(52) ki(--n,2>=ki(»<n,2)=(n72-2) ' ( ^ l ) f ° r " ^ 

But all the i-edges for i€n~I are contained either in c""1 or in c" , 

«-n"-?"l"«h,l. W?1'*^, r Hence» 

ki («n ) = ki ( <«n,l> + ki (<,2 ) for l«~l 

and (51), (52) imply that 

(53) V%«(S) t e U l 3-
It remains to calculate k ( K ) . An n-edge is intersected by «_ if 

and only if one of its end-points is between it , and ac 2
 in C° , i.e., 

if it belongs either to the n/2-th.or to the (n/2'-l)-th level of c""1. Hence 

<*> V^-JS-I) *(»)•* (a)-(.u)-
Because 

(!U)>*(S)' 
we get from (53) and (54) 

k («fn ) = 2(n/2)-

This equation together with (50) implies the lemma. 

Theorea 4. There exist (n,0,k)-hyperplanes for every even positive inte
ger n and for every even integer k such that 

»-
k
*«(Й)-
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Proof. The first n-1 coefficients in (49) can be subjected to an arbit

rary sufficiently small change. The resulting hyperplane tjf̂  will have all 

the properties of #e
n
» Let 

>*3*r*
 n
t л+2v0-

where 

(55) |b .-1|* e for all i*r*-l 
n,i 

and * > 0 is sufficiently snail, be the equation of ac
n
-

All pairs of vertices fj , C * c"~ define finitely many directions and 

the pairs C , C c C define just vie sane directions. The vectors of all 

these directions have the last coordinate equal to 0, hence Me can choose b
 i 

satisfying (55) so that none of the hyperplanes tC(t) 

(56) ,.&-, " n ^ i ^ - t-Í2.*--> 

is parallel to any of these directions. Thus (56) cannot be satisfied for any 

t by the coordinates of two or more vertices in c£~ , resp, tf^ . On ttie ot

her hand, if the coordinates of Zm satisfy (56), then the coordinates of the 

opposite vertex C-_^ satisfy it, too. So for some values 

(57) t 1-<t 2<t 3<...<t v, 

( V is a suitable integer) in the interval C2,+« ), the hyperplane t^Ct) 

contains just two opposite vertices in f/1, for all other values of t*£2,+«»)» 

there is no vertex of c" in If^Ct). 

If t increases from 2 to +00 , t.ben in the values (57) always one of ttie 

vertices of c" passes through fC^(t) from the plus into the minus half-space 

w.r.t. at^(t), the opposite vertex passes simultaneously from the minus into 

the plus half~space, because Mn(t) always contains the centre 0 of C° and 

opposite vertices must be contained in opposite half-spaces. But n is even, 

hence the indices of C ^ and C ^ are the same for every & c 7f and 

d(*en(t)) remains unchanged, when t passes through some of the values (57). 

Thus 

«K«n(t))»d< m^m^im^tK *Q*Q 

according to Lemma 6 for ail t*{2,+«9 ) different from the values (57), 

In order to be able to control the values ki, we will make an additional 

assumption concerning the coefficients b n A, namely 

(58) W-^-ifeKM-11-
Let us recall that It intersects P®t the edges of Cn which are irrtcr-n 
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sected by *n, ien intersects C ^
1 in n ^ and ^ x inteTsect5 cn-l ta_ 

tween the n/2-th and the (n/2+l)~th level. C ^ is in the (n/2+l)-th level of 

C ^ 1 if and only if card 6>=n/2+l and n * a> . Such a Cfi,is connected with the 

n/2-th level by an (n-l)-edge if and only if n-lcca and it is in ae (t) for 

*a "̂ fc-'i Dn ixi a c c o r d i n9 to ^ 5 6 ) - But for sucn a c^ 

-*?*-.bn,iXi= *&r» (bn,r1)xi-*5F-xi= 

= " 4,B^ ( bn,i- 1 ) xi- ( n / 2- 2 ) + ( n / 2 + 1 ) = - * ^ ( b n , i - 1 ) V b n , n - l - 1 + 3 ' -

- -- l-n.i-1'^.-.-!-1*5*3 

according to (58). 
On the other hand, if C ^ is in the (n/2+l)-th level of C*1"*1 and it is 

not connected with the n/2-th level by an (n-l)-edge, then it is in acn(t) for 
a value t>3. 

As in the proof of Theorem 2 one can show that if C ^ is connected by an 
(n-l)-edge with the n/2-th level and it passes with the growing t through 
•en(t), then k ^ ten(t)) for every i|Ti either increases or decreases, but 

kn 1(ten(t)) always decreases. If we take into account that together with C ^ 
the opposite vertex C - ^ passes through te (t) too, we see that k . ( a e n ( t ) ) 
for every ic"n either increases or decreases by 2 and k ,(ac (t)) always 
decreases by 2. 

Let t increase from 2 to 3. We have seen that all the values of (57) 
which are contained in £2, 33, correspond to such pairs of vertices and vice-
versa. Hence kR 1(«eR(t)) drops by 2 in every such value tg. For t=2 

k
п - l

(
* n

( 2
» =

2
( n > 1 ) 

and is minimal among all the values k.(te (2)). W.r.t. the above written facts 

one can easily see that it remains minimal for all the values tc[2,3) except 

the values (57), for which k
i
(te

n
(t)) is not defined. Hence, 

k
n
.

1
(te

n
(t))=k(*

n
(t)) 

and we need to show that k(«e (t)) really reaches the value 0 for t=3. It fol

lows from the fact that there are in C
n
 (

n
/

2
) vertices C ^ such that n ̂  ca 

n-1 m co and card ft* =n/2+l. 

An attentive reader may object that among the values (57) which corres

pond to the vertices of the (n/2+l)-th level, there could be mixed some values 

which correspond to other vertices of C
n
. But an even more attentive reader 
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may have noticed that the values t which correspond to the vertices in the 

(n/2+l)-th level, are all contained in a small neighbourhood of the value 

3, if e in (55) is sufficiently small. It follows from the calculations in 

(59) and from (55). Similarly one can show that the values t which corresp

ond to the vertices in (n/2+2)-th level, are close to 5, the values of the 

(n/2+3)-th level are close to 7, etc. 

The proof of the consistency of our assumptions about b . is left to the 

reader. 

Theorem 4 and Lemma 1 imply the existence of the (n,0,k)-hyperplanes for 

every odd integer n£3 and every even integer k such that 

0 * k * 2 ( ( n - l ) / 2 ) -

Hence we have 

Theore* 5. There exist (n,0,k)-hyperplanes for every niN, n*2 and ev

ery even integer k such that 

°^2(2teu)-
Reaark 6. The (4,0,2)-hyperplane in Example 6 of Section 2 is obvious

ly a special case of (49), hence Lemma 6 generalizes this example. The exist

ence of (4,3,3)-hyperplanes, which is stated in Section 2, follows from Lemma 

5 as well. The existence of all the other hyperplanes with n*4, which is as

serted in Section 2, follows from Theorem 3 and Theorem 5. But in Section 2 

we also assert that no other hyperplanes for n a* 4 exist. Of course, this is 

not true for a general n. 

Reaark 7. If n is even, then 

Wn-l)/7a'tt*2ln/2r 

so the values of k in Lemma 5 and Lemma 6 are relatively very near for large 

n. 

8. According to Stirling formula 

(60> (Kn-l)/23)-2n"1^^^7 
and for n even 

(61) 2(^)^ 2
n* 1V^7n1r, 

too. 
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Section 4u Concludinpj reworks. It is not hard to prove the following 

results: 

IJBJHJB 7. Let S- ̂  :R°—-kR0 be any operator with -jumping nonl inear i ty . 

Then for alnost every f€K (in the sense of the n-dinensianal Lebesgue meas

ure) 

Proof can be found in P 3 . 

Iheore* 6. Let 5* ̂ i f - - * fif1 be any operator with jumping nonlinearity. 

Then k(S% ̂ M ^ 1 and dCS% )*2^*1
> if it is defined. 

Proof can be done in the spirit of the proof of Lemma 7, and will be pu

blished elsewhere. 

Now the main results of this article can be summarized in 

i ?. For any operator with juraping nonlinearity S- ^ rR^—* R^ and 
_n *tf* 

alaost every f*R" 

k ( sJ . .# . ) -5 2""1 

and 

whenever dCSj^^) is defined. Oh the other hand, for every positive integer n 

and every positive integer d such that 

Oéá* w£ł)/2j} 
there exists S^ :lf—*. if such that 

Also, for every positive integer nj?2 and every even integer k such that 

there exists an operator with juwping nonlinearity such that 

*s Ml, 
nevextheluss 

Th* asywptotics in (60) and (61) implies that the last theoreta cannot be 
substarttt^y improved. One can also prove that for any existing (n,d,k)-
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hyperplane the inequality 

k*(Cn^l)/2j) 

holds. This result was published in U 3 . 
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