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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4 (1987)

SQME COMBINATORIAL RESULTS ABOUT THE OPERATORS
WITH JUMPING NONLINEARITIES

Rudolf SVARC

Abstract: In this article various examples of the operators with jump-
ing nonlinearities are constructed by means of a combinatorial method, devel-
oped in [1). Among others, the following is proved: There exist operators

with jumping nonlinearities SA'p:Rn-—y R" such that the corresponding equati-
on

Sa '.,,(u)=f
n-1 s adi : ;
has at least ([(n-l)/Z]) distinct solutions for almost every feR" (in the
sense of the n-dimensional Lebesgue measure).

Key words: Jumping nonlinearity, Brouwer degree, multiplicity of solu-
tions, n-dimensional cube.

Classification: 47H15, 55M25, 52A25, 05A15, 90C33

Introduction. This article can be regarded as a second part of [1],hen-
ce we shall not give any bibliographical comments here. They can be found in
[1]. We shall also use the notation which was introduced in [1]. Nevertheless
for the convenience of the reader, both the notation and the main results of
[1) will be briefly repeated here. '

The brackets [...) are used in a double sense: [a,bl is a closed inter-
val of real numbers, [ c] is the integer part of the real number c.

= £1,2,3,...,n% '

card @) is the number of the elements of the set e .

For every vector u=(ui)'¢ﬁ.Rn we can define two vectors u+=(uf)

i i
- - n ¢
and u -(ui)i‘ﬁeR as follows:

n

icﬁ'R
u;=max -(ui,l)}, u;=max {-ui,U}

for every i&F. (Then u=u*-u".)

Definition 1. Let S:R"—> R" be a linear operator, let A and m be two

real numbers. Then the equation
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+ -
Sa‘“(u)suo ASu” - @aSu
defines the operator
SA.“:Rn—O- Rn,

Any operator of this type is ;uid to be an opsrator with jumping nonlinearity.
We are interested in the solvability of the equation

1) Sa'p(u)nt
for various fg R

Detinition 2. Let k(Sa “,I) be the number of the distinct solutions to
(1). Let !

k(Sa.“)e 1r;f‘e:§~k(5a'“,f)t %p‘%i?‘fwrﬁ(s“#.f),

where on is the system of all the subsets of R" which have zero n-dimensional
Lebasgue measure.

Using the positive homogeneity of Sa W we obtain easily from the gener-
4]
al Brouwer degree theory

Theorem 1. Let Be R” be an open ball containing the origin 0. Let the
Brouwer degree deg(sa ,0,8) of '.ia w.r.t. the point 0 and the ball B be
od N
defined. Then
k(Sa.»)zldeg(Sa.“,D,B)l
and
‘ k(Sa.p)-deu(SA'p,O.B) is even.
It dan(Sa'” ,0,B)%0, then (1) has at least one solution for every fe R".
Proof of this theorem can be found in [2).

For any @ T let us define the point C“-(c‘i’)““cR" by means of the
formulae
¢k -lirlew,

c;’s 11t e

The points C4y, @ e W are just all the vertices of the n-dimensional cube
", For every wc ™ we define the index of Cg,

TCRE S

(Then the indices of the vertices of C" define a colouring of C” in the sense
of the graph theory.) '
o 2n-l

For every iaf there are in one-dimensional edges parallel to
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the xl-coordinate axis in R". These edges are called i-edges in the sequel.

Convention. The word hyperplane will be used in é restricted sanse. Na-
mely, the word hyperplane without any additional specification will always
denote an (n-1)-dimensional hyperplane in R™ which does not contain any ver-
tex C,, of C". If pc R™ is such a hyperplane, then 9" is the open half-
space of R" w.r.t. @ which contains the points (a,a,e,...,a) for all sutfi-
ciently large positive values of a. 50' is the opposite open half-space.

Definition 3. For any hyperplane ec ™ (in the sense of Convention)
let .
d@)=| = icHl=| ZE _ 1g,)|.
[ Coeo* » Cude %
For ie T let ki(g&) be the number of the i-edges of C" which are intersected
by [ Let

k(p)=min {k (@)|1€ A},

Definition 4. An (n,d,k)-hyperplane is a hyperplane p < R" such that
6(9)=d and k(y )=k.

The main result of [1] is

Theorem 2. If there exists an (n,d,k)-hyperplane then there exists a
linear operator S:R"—+R" and two real numbers A and @ such that

Ideg(Sa.H ,0,8)|=d
and

k(Sam_)=k.

For n&3 and S symmetric, the converse implication is also true.

Remark 1. Let us recall that the proof of Theorem 1 is constructive.

Section 1. Three simple results

Example 1. Let n=1. Cl= [-1,1)¢c R, a-hyperplane is a point. The point
@ 1s either an interior point of c! in which case d(@ )=k(9 )=1 or is a
point outside {-1,1] in which case d(( )=k(®)=0. Thus for n=1 there exist
only (1,0, 0)- and (1,1,1)-hyperplanes.

Example 2. Let n=2. Then [ is a stra;wt line and there are only three
substantially different possibilities for the position of e w.r.t. 02.(599
Fig. 1.) In the cases A and C in Fig. 1  d(g@ )=k(? )=0. In the case B
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FIG. { ‘

obviously d(@ )=k(@ )=1. Thus for n=2 there exist only (2,0,0)- and (2,1,1)-
hyperplanes.

Lemma 1. If there exists an (n,d,k)-hyperplane, then (m,d,k)-hyperpla-
nes exist for every m>n.

Proof. It is sufficient to show that the existence of an (n,d,k)-hyper-
plane implies the existence of an (n+l,d,k)-hyperplane. The proof of this as-

sertion is illustrated in Fig. 2.
Let

1 1
(32=(.‘.n+ n{xeR™ |xn+1=1},

cle™ nixeR™x = -1t

(2)

Both Cr: and Cr_‘ are n-dimensional cubes.
Let E:R"—M!r""1 be the mapping

E((xl,xz,...,xn))=(x1,x2,...,xn,l).
Then

(3 ERM= fxeR™|x  -1t,
£(c™=c]

and the index of any vertex Co ‘fn’ @ CT is equal to the index of the cor-

responding vertex E(C ‘J) 6 C?c Cn+1.
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FIG.2.

Let pc R” be an (n,d,k)-hyperplane, let

2 3Za NP
be its equation. Then p'=E(p) is an (n,d,k)-hyperplane w.r.t. Cr::E(Cn) and
the hyperplane (3), dim @' =n-1. The equations of @' are (4) and

X_ . ,=1.

n+1
We can define for every o & R a hyperplane ;b& by the equation

-(5) w( Fp apxg-b)=x -1,
Then
6 @ NER-p’,

whenever ot 0. But we shall investigate only those so‘ for which

(¢)) O<lec|<2/( X |a;]+b).
~ veR

If xeCl, then |x;|<1 for all i€ and x_,,= -1, hence

|°‘(4,?haixi'b)l< 2,

Ixn+1-ll=2
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and (5) cannot be fulfilled. Thus
(8 Qo N C7=p.
The last relation together with () implies that for ieT (and e¢ as in (7))
R intersects only those i-edges of C"” ! which are intersected by @' in
c. But @'=E(@) and C7=E(C™), hence
» k; (g )=%;(@) for all i€ T.

The value of the term

(10) z‘f-'). a;x;-b

is constant on every (n+1)-edge in c™! and it is on every such edge nenzero,
because it is simultanecusly the value of the same term in a vertex of ", [
is given by (4) and must not contain any vertex of C'. Now, we can see that
the (m+1)-edges, for which (10) is positive, are intersected by M for

o« <0, the (n+1)-edges, for which (10) is negative, are intersected by fse
for o >0, because in both cases according to (7) and Ix.llicl for xeC™l)

-2<¢(%:£‘aixi—b)<9.
Now (5) implies x.,,€3-1,1[. Hence we can chocse o so that @ intersects
at least one half of all the (n+1)-edges, that means
(11) ke (g ) 227722271,
On the other hand, there are only 2"} i-edges in C" for every ieT, thus
a2 k;(@)£2™! for all ieR.
The relations (9), (11) and (12) imply that
(13 k(e )=k(@).

for a suitable ot -

In one of the half-spaces of ™! u.r.t. R there are just the vertices
of C™! which are in one of the n-dimensional helf-spaces of (3) w.r.t. et
To see it, one only needs to recall (8). Taking into account that the indices .
in C’: are as in C”, we obtain immediately

(18) A, )=d(@).
According to (13) and (14) ¢ is an (n+1,d,k)-hyperplane.

Remark 2. A similar result fOT the operators with jumping monlimesrities
is trivial. Given an operator Sy g :R'—> K, ane only needs to join to the
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matrix S=(s;.); g the entries s; . ;=5,., 7Sne),ne ™0 for 1,367 in order

to obtain a matrix ":i' . Then

U

. l 1 e »n
s.‘\‘“.n"’ —> g, d(sa(‘_):u(sa.“). k(Si.“)ak(S‘.M).

Lemma 2. If there exists an {n+l,d,k)-hyperplane which does not inter-
sect at least one of the n-disensional faces of C“d, then there exists an
(n,d,k)-hyperplane, too.

Proof. ¥e cen assume that the (nel ,d,k)-hyperplare Fﬂnes not inter-
sect C7,

as) c"nEg,
because of the symmetry of C™*1. We can also assume that § is rot parallel
to (3). Otherwise it would be an (n+1,0,0)-hyperplare and (n,0,0)-hyperplane

exists according to Example 1 and Lewma 1.
We can define the (n-1)-dimensional hyperplane

¢ =Fne@)ce™!
and the hyperplane
pcl(p e
¥We shall prove that @ is an (n,d,k)-hyperplane.

In the proof of Lewma | we have deduced (14) from (8). The same argument
applied to (15) gives

o )=d(p).
Also, we obtain the equations
k(@ )% (@) for ia®
which correspond to (9). Hence we only need to show that
(16) Kot (P25 () for every ief.
Let us choose an 1@ T and an i-edge of C™! which is intersected by @ -
W.r.t. (15), it sust be in C’: Let A and 8 be its end-points. Each of them is

also an end-point of an {n+1)-edge, let these edges be AA” and B8, A8’ is
also an i-edge of C'"l,

an ABeC".

The codimension of @ is 1, @ intersects AB, thus it must intersect snother
edge of the square ABB'A". (15) and (17) imply that @ imtersects either A~
or B8°. So we can define a mapping from the set of all the intersected i-ed-
ges into the set of all the intersectﬁd’ (n+l)-edges. If two intersectsd



i-edges AB and CD are different, then the corresponding (n+l)-edges are also
different, because every vertex of C""'1 is an end-point of just one i-edge.
Thus we have (16).

Remark 3. From this proof, a modification of the proof of Lemma 1 ob-
viously follows. In fact, it is not important, whether we choose P with
o > 0 or with o¢ <0, only (7) is important.

Remark 4. One can prove an analogous "reduction lemma" for the opera-
tors with jumping nonlinearities. But the proof of the "reduction lemma" in
the case of general operators with jumping nonlinearities is rather compli-
cated. It will be published elsewhere. Let us only mention that for the spe-
cial operators which are investigated in [1] (see also (25), (26), (27)), the
assumption (15) corresponds, roughly speaking, to the assumption that the
values a_ ,+ & and a_ - € are positive, but | €| is big enough w.r.t.a .
(Cf. also Remark 2.)

n+l

Definition 5. Two vertices C,, & C" and C» € Cn, wl,wzc 7 are said to
be neighbours, if there exists an edge in c" which joins them.

Lemma 3. Let [ cR bea hyperplane. The following conditions are equ-
ivalent:

(1) There exist two opposite vertices C,, and Cp , in c" such that Cey
and all its neighbours are in so+ and Cﬁ-w and all its neighbours are in R~.
(ii) @ intersects all (n-1)-dimensional faces of c".

Proof. Let (4) be the equation of [\J Because of the symmeiry of c" we
can assume that :

(18) a;Z 0 for all ief.

Let '
9’(")=;¢zh,aixi'b’
then the equation of @ cap be rewritten in the form
a9 @(x)=0.
max {@(C,)|we = @Cy=q((1,1,1,...,1)),
min {@(Cg)lwe T} =g(Ch)=g((-1,-1,-1,...,-1))

and
¢Cy>0, @(Cx<0,

if @ intersects c".
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Let, e.g., 9(C{M)=?((1,1,1,...,1,-1))< 0. (Cgpy 1S @ neighbour of Cﬂ')
Then
(20) ¢ (Cqy )< 0 whenever ne @

according to (18). But the convex hull of these points is just the (n-1)-di-
mensional face Cf'l (see (2)) and @ does not intersect it according to (19)
and (20).

Hence (the special case (18) of) (ii) implies (i) (with =@ ).
Now we shall assume (i) (but not necessarily (18)). Let, e.g.,

(21) (x>0,

(22) 9(Ca)>0, whenever card @ =1,

(23) F(Cz)<0,

(24) ?(C“)t 0, whenever card @ =n-1. i

A1l (n-1)-dimensional féces of C" are contained in the hyperplanes

+_ N
Svi—{xeR |xi—1f,
e;- {xcRnlxi= -1%, ieT.

The face contained in 9; contains Cg and Cﬁ—{ﬁ and according to (19), (21),

(24) @ intersects it. The face contained in (@ contains Cg and Cg;y and is
intersected by @ , according to (19), (22), (23).
Hence, (i) implies (ii).

Example 3. Let n=2. Any two opposite vertices of C2 have common neigh-
bours, hence according to Lemma 3 and Lemma 2, a (2,d,k)-hyperplane exists on-
ly if (1,d,k)-hyperplane exists. On the other hand, according to Lemma 1, if
a (1,d,k)-hyperplane exists, a (2,d,k)-hyperplane exists, too. (Cf. Example 1
and 2.) .

Example 4. Let n=3. ,Let @ intersect all faces of C’. Then there are
two opposite vertices A and B in 83 which satisfy (i) of Lemma 3. Thus A to-
gether with all its neighbours Al’ A2, A} is in p+, B together with its
neighbours Bl’ BZ’ BB is in p_; and 92 must be as in Fig. 3. (In Fig. 3 we
have a parallel projection of C” into R®. The direction of the projection is
parallel to @ .) Then d(p )=k(p )=2 and this is the only case which can ta:
ke place in R3, but not in Rz. (c £. Lemma 2.) Hence, for n=3 there exist
just 3 types of hypérplanes, namely (3,0,0)-, (3,1,1)- and (3,2,2)-hyperpla-
nes. Of course, the last type is the most interesting one.
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Remark 5. Theorem 1 implies the following result: If S:R° —> R is a

linear symmetric operator, then d(S - )=k(5$' “) and the common value of

d(Sa.p) and k(S o) is either 0 or 1 or 2. Nevertheless, the last assertion

is true not only for Sa' -~ with a symmetric S, but also for general operators
with jumping nonlinearities in

Section 2. The hyperplanes in RA.

Definition 6. Let j be an inte

; 1&3j&n. Fhe j-th level of C” cons-’
ists of all the vertices C,, of c"

, for which card w =j. (Cf. Fig. 4, where
a two-dimensional parallel projection of CA has been constructed.)

According to Example 4 and Lemma 1, (4,0,0)-, (4,1,1)- and (4,2,2)-hyper-
phenes exist. Any other hyperplane must satisfy (1) of Lemma 3 according to

Example A and Lemma 2. W.r.t. the symmetries of C we can assume that the two
opposite vertmes of Lema 3(i) are C_ and Cz. Thus the O- th and the first

level of C are in 9 the third and the foutth level of C are in p‘
- 76 -
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@ can split only the second level. Because of the central symmetry of C4
w.r.t. the origin 0, we can further assume that P contains at most as many

vertices of CA as ;v“. Hence from the six points of the second level at most
three are in SD+

If ‘D+ does not contain any point of the second level, then ® splits
C4 between the first and the second level intersecting just all the edges jo-
ining these two levels. We can easily calculate the numbers d(® ) and k(@)
and we obtain the existence of (4,3,3)-hyperplanes.

If §D+ contains three points of the second level, then obviously d(gb)=
=0. Because of the symmetry of Ca there are only three possibilities, how to
divide six vertices of the second level into two triples. There are namely
only three possibilities, how three vertices of the second level can be con-
nected with the first level. These three cases are drawn in Fig. 5 and one
can easily see that the other three points of the second level of C4 which
belong to gb', are always connected with the third level in a way which is
completely symmetric to the connection between the first three points and the
first level.
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A‘ -+ : j + + B
/\/\/\ ¢
1 ] T |l
F\G.S

An easy examination of the case C shows that this case is impossible.
Namely, a partition of C4 which corresponds to C in Fig. 5, can be carried
through by means of some hypersurface, but not by a hyperplane.

In Fig. 6A, resp. 6B we can see one half of the edges which are not in-
tersected by I These figures correspond to Fig. 5A, resp. SB.

ANEO

A B

FIG.6

N - 718 -



In Fig. 6A there are four edges of the direction PQ. Hence P does not
intersect 8 edges of this direction. But there are only 8 edges of this direc-
tion in the whole Ca, thus k(sD )=0 in this case and © is a (4,0,0)-hyperpla-
ne.

Let us count the edges of different directions in Fig. 6B. We get the
numbers 3,3,3,1. Multiplying by two gives 6,6,6,2, hence the number of the ed-
ges of different directions which are intersected by f , are 2,2,2,6 and
k(p)=2. So we have found a way, how to construct (4,0,2)-hyperplanes.

The case, in which p* contains either two or one vertex of the second
level, can be investigated similarly, but we shall not obtain any other type
of hyperplanes. Hence for n=4 there exist just 5 types of hyperplanes, name-
ly (4,0,0)-, (4,1,1)-, (4,2,2)-, (4,3,3)- and (4,0,2)-hyperplanes.

According to Theorem 1 we can construct an operator Sa' :Ra—)'Ra such
that d(Sﬁ'~)=0 and k(Sa.”)=2. The construction given in Section 5 of {1) is
inductive and leads to an operator of the type

(25) gu+Sut+Su”,
where
-1+al, -1, -1, -1
(26) S - -1, -1+az, -1, -1
-1, -1, —1+a3, -1
a1, s, -l -l
and
27 ai+s>0, ai-s<0 for every ie7.

The points P, Q, R in Fig. 6B are completely equivalent, hence we can seek
for a matrix (26) with a =ay=as=a, 34=b-

Example 5. If o is as in Fig. 7, then qertain inequalities for all the
terms 4, , @ € ¥ must take place (for the definition of 8, see (38) in
[11). Each ‘0“ corresponds to C,, and must be either positive, if Cvs p*,
or negative, if C, & @,

If we decide to seek for

(28) €>0,
then according to (27) we obtain
(29) a>e ,b>6.

Hence, all the inequalities for ¥, , @ c T, which must be fulfilled, can
be reduced to the following four of them:
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(30) .N F‘> o,

1
-3¢ "bs <0
2.1 _ 1 g

All the other inequalities for ¥, are consequences of (28), (29) and (30).
The inequalities (30) are fulfilled, if, e.g., a= -“;—, b= -;—, & =1. This choi-
ce of a, b and ¢ gives the example of the section 6 of [2].

" On the other hand, by the method, developed in [1}, one can construct
to these values of a, b and ¢ the corresponding (4,0,2)-hyperplane e in RY,
The equation of @ can be calculated to be

-~ 720 -



180(x1+x2*x3)+308xA= -43
and one can show that 9 really intersects C‘ as in Fig. 7.
Example 6. We can also construct an analogous example following exactly

Section 5 of [1]. We can choose @ as in Fig. 7. Let us notice the partition
of C‘ into Cz and Cf. For @ we can choose, e.g., the hyperplane

xl*x2+x3*2x4=0.
This hyperplane intersects Cz so that it divides the vertex (-1,-1,-1,1) from
all the other vertices of Cf. Further, this hyperplane passes through the cen-
tres of all the edges which join the vertex (-1,-1,-1,1) to the other vertices

of Cz. With respect to the symmetry we see that a)=a,=ay, hence we shall begin
the inductive construction, described in Section 5 of [1], in the dimension 3.

3_n4 &) _ '
C,=C nixeR le-O},
PPN ix€ R‘Ixfo},
hence the equations of @, are
(31) xl+x2§x3=0, x,=0.
After a transformation of the form
}d§i=xi#d, ie3,
3d§ A=2x‘,
we will get the new coordinates of the vertices of Cg

(32)

-1l _ LT -
ii- 73’ ie3; f‘-u,
where 2
] 3d

The relations corresponding to (27) should be satisfied, thus
d>»1

f we want to get T> 0.
Let us choose, e.g. d=2. Now, we can make the "induction step" as in
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Section 5 of [1]. We obtain the values

a=4+2 ¥i0/3,

b=5/3+ V10,

8 =2+ VI0/3.

Hence, the matrix
3+2V10/3 -1 -1 -1 .

-1 3+2 VI0/3 -1 -1
-1 -1 3+2VIO/3 -1
-1 -1 -1 2/3+V10

and ©=2+V10/3 give another example of an operator with jumping nonlineari-
ty of the form (25), for which d(SA'f‘ )=0 and k(Sa'F)=2.
For d=7 we obtain the rational values

227 155 =31
=578 *° 7

which also give an example of Sa'“ with d(Sa'“)=0, k(SA"“ )=2. Other ratio-
nal values a, b, & can be obtained for d=41 and d=239. For d=9/2 we obtain
values which are very near to the values of Example 5.

Section 3. The hyperplanes in R"
Lemma 4. There exist (n, ( n;l), ( n;l) )-hyperplanes for every né€N and
every integer p20. The equation of such a hyperplane ©n p is
’

(33) i;zﬁ x;=n-2p-1.

Proof . ®n p intersects C” between the p-th and the (p+1)-th level,
9
because :
(38) &?‘R« x;=n-2p

for the vertices of the p-th level and

Vaw X;T2p-2

for the vertices of the (p+l)-th level. Hence, the levels from 0 to p are con-

tained in p; p* In the j-th level of C" there are (g) vertices with the in-
s ’

dex (-1)J, so we have

.

Ap, - a..’io(-l)j(g)

Foe? (3P (). ’

- 722 -
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thus
(3%) a(pn = () -

Every Cgy, @c T, is connected by edges with all its neighbours and
each neighbour of C,y differs from Cg, in just one coordinate. So if Ca) is
in the p-th level, then its neighbours are in the (p-1)-th and the (p+1)-th
level. If C&. from the (p-1)-th level is a neighbour of Cg, from the p-th le-
vel, then card @ =p, card & =p-1 and we see that CS can be obtained from Cw
by changing the sign of one of the negative coordinates of Cw. Hence Cqy is
connected with the (p-1)-th level by one i-edge for every i € @ . Similarly
one can show that Co is connected with the (p+1)-th level by one i-edge for
every igT-w.

Let ig™ be fixed. By i-edges, those C,, in the p-th level are connected
with the (p+1)-th level, for which igT-& . There are (";l)vertices Cep with
w cN-4i}, card w=p, hence there are just n-1 i-edges connecting the p-th
and the (p+l1)-th level of c". But just these i-edges are intersected by 9n p?

’

thus
ki(@n,0= (") -

" According to the definition of k(Pn p) this implies
’

_(n-1
(36) k(fn,D)'( P )"
and the equations (35) and (36) prove the lemma.

max {(ngl)lpzti}:(h_;’;}u , hence a special case of Lemma 4 and (33) is

Lemma 5. There exist ("’([n-].%g) (Cn-?;%l) )-hyperplanes for every nE&N.
The equation of such a hyperplane fn is

37 1.“Z‘xfn—Z [(n-1)/23 -1.
Now we are able to prove

Theorem 3. Let ngN be fixed. There exist (n,d,d)-hyperplanes for every
integer d such that

n-1 1\,
0édé ([(n-l)/ZJ

Proof.  P.= @, (n1)/2) intersects C" between the [(n-1)/21-th and
1
the ([(n-1)/2) #1)-th level. Similarly (see (33)) the hyperplane
6P, [(n-1)/2]-1 "ith the equation

(38) &% x;=n-2 £(n-1)/2] +1
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intersects C" between the [(n-1)/2]-th and the ([(n-1)/2]-1)-th level. If the
coefficients on the left-hand sides of (37) and (38) are subjected to an ar-
bitrary sufficiently small change, the resulting hyperplanes ?’ n» resp. ?n
obviously have all the properties of the hyperplanes £ resp. 6 n: This
means not only that the relative numbers k and d remain unchanged, but ?n’

resp. en intersect just those edges which are intersected by ©» resp.

€. Let

39 ;%‘ a, ’ixi=n-2[(n-1)/2] -1
and

(40) ‘& an’ixi=n—2[(n-1)/2] +1,
where

(a1) ) |an,i-1[< e

and € > 0 is sufficiently small, be equations of ?n’ and a’n’ resp.
All pairs of vertices Cw , Cw e C" define finitely many directions and
1 2

we can choose a, i’ satisfying (41) so that neither of the hyperplanes pn(t)
Hl

(42) - =n-2[(n-1)/21+t, te[-1,1]

=% on,i%
is parallel to any of these directions. (Cf. (39), 40).) Hence, any gon(t)
can contain at most 1 of the vertices of C". P, (-1)=@ and &  contains
the levels from 0 to {(n-1)/2). If t increases from -1 to +1, the vertices of
the [(n-1)/2)-th level pass one after another through son(t) from the plus
into the minus half-space of R w.r.t. pn(t), because pn(1)= '&'n and 3";
contains only the levels from 0 to [(n-1)/23-1. Let

(43) ‘ t1< t2<t3<...<t9 s
where !

v= ([(n-l)r/‘2]) ’

be all the values of t € [-1,1], for which pn(t) contains a vertex of the
[(n-1)/2])-th level. The sum of the indices of the vertices in ‘bn(t)+ is

5 (-1 Kn-1)/2-1 ( D) » if t1

and it changes by 1 or -1, whenever t growing from -1 to +1 passes across one
of the values (43). Hence the sum of the indices of the vertices in Son(t)+
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attains all the integer values between (44) and (45), when t varies over
[-1,1). The values (44) and (45) have oppos1te signs, thus d(f (t)) attains
all integer values between 0 and {[(n 1)/2 ]) (some of them even twice!).

It remains to show that d(s"n(t))'k(f’n(t)) for all t€l-1,1] except
(43). But this is not necessarily true unless we make an additional assumpti-
on about Pn(t). So let

(46) ay nl< " Z__|an'i—1|.

en-1
Let C,, be in the 1(n-1)/2)-th level of ' According to (34) its coor-
dinates fulfil the equation

ygﬁx =n-2[(n-1)/21],

hence

&?R a 1% &%(an i~1x +&‘n i ,‘Zh(an i~ +n-2[(n-1)/23

and
Cor @ @n(-\,zcn(an,i'l)xi)
according to (42). So the values tr, rey in (43) are the values of

3 %R, i 1%;

in the vertices CQ of [(n-1)/2]-th level. If n € @ , then in Car

2 omCn, 17 10% =5 Ty Bn, 171X 12 -, J lag y-1-Ca 1) >0,

because Ixi|=1 for ien-1, x,= -1 and we assume (46). If n ¢ @ , then we ob-

tain similarly
{.%ﬁ(an,i'l)x:'f 0.

Hence we have (see (43))

(47) '1<t1<t2<"'<tv1<°<tv1+1<""tv"‘l’
where
(1 2)
I(n-l)/Z]

and we have just shown that the values tr<0 in (47) correspond to the points
Ce with n #w and the values tr> 0 correspond to the points Cg, with n € W.
Let t = -1 and let us chuose some r & '\3'1. In the interval (tr—l’tt)’
ki( y(t)) is constant for every i€W. Let us look, what happens, when t pas-
ses through the value to
If c@(r) is the vertex contained in en(tr), then for t< tr Co(r)‘Pn(tY
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and fn(t) intersects the edges connecting Cq(r) with the ([(n-1)/2)+1)-1le-
vel, for t>t, Co(r)‘ ?n(t)— and pn(t) intersects the edges connecting
Cm(r) with the ([(n-1)/2)-1)-th level. Hence for any two values T 1’2 €

[ (tr—l’tr+1) such that T < tr < T, all the eddges which do not contain
Cf.)(r) are intersected by @n('cl) if and only if they are intersected by
Pn( 4:2). The edges which contain Cco(r) are intersected by Pn( 1.'1) if and
only if they are not intersected by son( ‘l:z). Thus passing from 7, to T,,
some of the values ki(p(t)), i€ T increase, the other decrease by 1. But
n & «Xr), hence the n-edge goes from Cw(r) to the ([(n+1)/2]+1)-th level and
kn(gbn(t)) decreases for each re "71. By induction w.r.t. r we can show that
for each

te(tr 1,'( ), re '91 »
k(@ n()=minfk; (@ (1)]i€Tid =k(@ (t)).

Thus, k( gon(t)) drops by 1, whenever t passes through any of the values tr,

r e')"'l. The same happens with d(go n(t)), as we have seen above. For t= -1

(48) dl@ (t))=k(@ (1)),

hence, the egquation (48) is true for any te[-1,0] different from the values
(43).

Now, it remains to show that our assumptions, concerning the coeffici-
ents an,i’ ieT, are consistent, but it is easy and is left to the reader.

In order to get a better insight into the relation between d(p) and
k(;b ), we shall investigate another type of hyperplanes in R".

Lemma 6. There exist (n,0 Z(n/z) )-hyperplanes for every even positive
integer n. The equation of such a hyperplane ®, is

(49) %?ﬁ'—"\ X3 +2%=0.

Proof. Let n be even. The case n=2 is trivial, hence we can assume that
nZ4. The equations

ic%l'—'l X;= -2, xn=1
q‘% x;=2, X =1

define two (n-2)-dimensional hyperplanes ‘& 10 resp. n 2 which intersect
Crl -1 (ct. (2)). (See Fig. B.) We can shift ae )2 in the direction of the n-
edges In this way we obtain the (n-2)- dlmensmnal hyperplane u, ,20 the equ-

resp.

ations of nn,2 being
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FI1G.8

45-—4xi=2’ x= -1.

*®, | and “n,2 are contained in 2, see (49). The strip between “n,v

and ’n,z in CT'I contains all the vertices of the (n/2-1)-th and the n/2-th

level of C:"l. .
Let us calculate d(zen). One of the half-spaces of R" w.r.t. %, cont-
ains the whole j-th levels of c" for 0&j%&n/2-1 plus all the vertices of

the n/2-th level which are in CE'l, i.e., the n/2-th level of C?‘l. Thus

om0 (3 () -

eay/2-1 [ n-1 n/2 [ n-1
=I-D (n/2-1 +(-1) (2/2)'-
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But

(n/Z-I) ()

(50) o( a¢n)=0.

Let us calculate k(t ). According to the calculations in the proof of

Lemma 4, “n,l intersects 2;%) edges of every of the first n-1 types in

t’:'"1 hence

(s1) ky oty )= (T2 for 1€,
Similarly
2) ky (ot ok (ot )= (77 ) =( g tor 16T,

But all the i-edges for ic'ﬁ:I are contained either in C" -1 or in C"‘l
"n“cn 1’*n 1° 'en’“:n s*n 2 Hence,

ki(“n)zki(*n,l)*i( '.n,z) for ien-1
and (51), (52) imply that
(53) ky(%)=2(M2) for 1e .
It remains to calculate kn( nn). An n-edge is intersected by %, if

and only if one of its end-points is between :n 1 and ®, 2 in D" 1, i.e.,
if it belongs either to the n/2-th_or to the (n/2—1) th lsvel of C" 1 Hence

(54) ' kn(oe)= (272-1) * (27;) (n_l) ‘(2/2)'

Because
(hr2)> 2(12)
we get from (53) and (54)
Kotz (772
This equation together with (50) implies the lemma.

Theorem 4. There exist (n,0,k)-hyperplanes for every even positive inte-
per n and for every even integer k such that

oakéz (773)-
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Proof. The first n-1 coefficients in (49) can be subjected to an arbit-
~

rary sufficiently small change. The resulting hyperplane *, will have all
the properties of o”€, . Let

Iy ‘Z“‘ bn, 1xi4>2x”=0,

(55) lbn j-ll< e forall ien-1

where

and &> 0 is sufficiently small, be the ematmn of g .
All pairs of vertices C , C cC defme fmltely many directions and

Tw
the pairs Ca} w, 3 C_' define just e same directions. The vectors of all
these directions have the last coordinate equal to 0, hence we can choose bn i
’
satisfying (55) so that none of the hyperplanes ﬁn(t)

(56) 05_1 by, %3 +tXn70, te(2,+003)

is parallel to any of these directions. Thus (56) cannot be satisfied for any
t by the coordinates of two or more vertices in €71, resp. Cl. gn the ot-
her hand, if the coordinates of Cgy satisfy (56), then the coordinates of the
opposite vertex Cﬁ'—a satisfy it, too. So for some values

(57) 1<t <tyc... <t

(9 is a suitable integer) in the interval {2,+@s ), the hyperplane q‘(t)
contains just two opposite vertices in C", for all other values of t&[2,+e2),
there is no vertex of C” in % (1).

If t increases from 2 to +@0@ , then in the values (57) always one of the
vertices of C" passes through 2e,(t) from the plus into the minus half-space
w.r.t. aen(t), the opposite vertex passes simultaneously from the minus into
the plus half-space, because #,(t) always contains the centre 0 of C" and
opposite vertices must be contained in opposite half-spaces. But n is ewven,
hence the indices of Cq and Cm . are the same for every & € T and
d(un(t)) remains unchanged, when t passes through some of the values (57).
Thus

d(ae, (1))=d( 8 (2)=0(&& )=d( 2, )=0
according to Lemma 6 for all t€[2,+e0 ) different from the values (57).

In order to be able to control the values k., we will make an additional
assumption concerning the coefficients bn,i' nanely

(58) by p171%"5 &! lbn’i—ll .

Let us recall that % intersects just the edges of C" which ere inter-
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~1

sected by ¢, 2 intersects C7-! in %10 % | intersects ¢! pe-
tween the n/2-th and the (n/2+1)-th level. Cgy is in the (n/2+1)-th level of
n-1 - X
€, if and only if card @=n/2+1 and n ¢ @ .Such a C,is comected with the
n/2-th level by an (n-1)-edge if and only if n-l1 &< and it is in a (1) for
ts 222y b, 1%y according to (56). But for such a Gy,

“s T %0, 047 e On, i % Ty

= - ‘."“_1(bn,i-l)xi-(n/2-2)+(n/2+1)= -&s%::l(bn,i'l)ximn,n-l_h}‘

-3 |bn’i-1|+bn’n_1-1+3<-3

according to (58).

On the other hand, if C, is in the (n/2+1)-th level of C:‘l and it is
not connected with the n/2-th level by an (n-1)-edge, then it is in xn(t) for
a value t>3.

As in the proof of Theorem 2 one can show that if Ceo is connected by an
(n-1)-edge with the n/2-th level and it passes with the growing t through
o (t), then ki( an(t)) for every i 6T either increases or decreases. but

kn_l(nn(t)) always decreases. If we take into account that together with Cgy
the opposite vertex C‘ﬁ-w passes through an(t) too, we see that ki(a%(t))
for every i €T either increases or decreases by 2 and kn-1( a¢ (1)) always
decreases by 2.

Let t increase from 2 to 3. We have seen that all the values of (57)
which are contained in [2, 31, correspond to such pairs of vertices and vice-
versa. Hence k__,(se (1)) drops by 2 in every such value t_. For t=2

k1 (2,202 (172

aﬁd is minimal among all the values ki(nn(Z)). W.r.t. the above written facts
one can easily see that it remains minimal for all the values t€[2,3) except
the values (57), for which ki("n(t)) is not defined. Hence,

Kooy (oe (£))=k(se (1))
and we need to show that k(un(t)) really reaches the value 0 for t=3. It fol-

lows from the fact that there are in c" (g;g) vertices CQ such that n ¢ w
n-l1 @ @ and card & =n/2+1.

An attentive reader may object that among the values (57) which corres-
pond to the vertices of the (n/2+1)-th level, there could be mixed some values
which correspond to other vertices of‘Cn. But an even more attentive reader
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may have noticed that the values ts which correspond to the vertices in the
(n/2+1)-th level, are all contained in a small neighbourhood of the value
3, if & in (55) is sufficiently small. It follows from the calculations in
(59) and from (55). Similarly one can show that the values ts which corresp-
omd to the vertices in (n/2+2)-th level, are close to 5, the values of the
(n/2+3)-th level are close to 7, etc.

The proof of the consistency of our assumptions about bn, i is left to the
reader.

" Theorem 4 and Lemma 1 imply the existence of the (n,0,k)-hyperplanes for
every odd integer n23 and every even integer k such that

n-3
oské2 (), /,)
Hence we have

Theorem 5. There exist (n,0,k)-hyperplanes for every n&N, nZ 2 and ev-
ery even integer k such that

osrer (559).

Remark 6. The (4,0,2)-hyperplane in Example 6 of Section 2 is obvious-

ly a special case of (49), hence Lemma 6 generalizes this example. The exist-

ence of (4,3,3)-hyperplanes, which is stated in Section 2, follows from Lemma

5 as well. The existence of all the other hyperplanes with n #4, which is as-

serted in Section 2, follows from Theorem 3 and Theorem 5. But in Section 2

we also assert that no other hyperplanes for n &4 exist. 0f course, this is
not true for a general n. ’

Remark 7. If n is even, then

n-1\_n-1 _,fn-1
([(n—l)/ ©n-2 2(n/Z !

so the values of k in Lemma 5 and Lemma 6 are relatively very near for large
n.

Remark 8. According to Stirling formula

0 (oS~ 2V
and for n even
(61) 2 (2;§)~2"'1 T

too.
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Saction 4. Concluding remesis. It is not hard to prove the following
results:

Lemps 7. Let S R"—>R" be any operator with jumping nonlinearity.
Then for almost every £&R" (in the sense of the n-dimensional Lebesgue meas-

ure)

k(a“,f)éf.
Proof can be found in [3}.

Thoores 6. Let S&“:R"—-) /" be any operator with jumping nonlinearity.
1 R .
Then k(S, . )& 2" end d(S, )&2"", if it is defined.
Ats « Mot :
Proof can be done in the spirit of the proof of Lemma 7, and will be pu-
blished elsewhere.
Now the main results of this article can be summarized in
) Thearem 7. For any aperator with jumping nonlinearity Sa #:R"—-a R" and
almost every (P4 '
k * »
(Sy, pur D 42"

ks, )&z}
3,
- -
dUS,y, o) 47",

whenever oS ) is defined. On the other hand, for every positive integer n
and every positive integer d such that

(139
0&4d ‘(C(n—l)/?))
there exists S, ’j‘-—o-u"' such that
'
65, ) MG ¢ )0
Also, for every positive integer n22 and every even integer k such that
oek a2 (25 z-n)
w23l j?
there exists an operator with jumping nonlinearity such that
d(s‘l"')ﬂ]’

k(Sa' - J=k.

The asymptotics in (60) and (61) implies that the last theorem cannot be
mfimy improved. One can also prove that for any existing (n,d,k)-
- 7132 -
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hyperplane the inequality
k& (ga)/2)
holds. This result was published in [41.
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