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COMMENTATIONES MATHEMATICAE UNIVERSTTATIS CAROLINAE 

29,2 (1988) 

A RESONANCE PROBLEM FOR NONLINEAR DUFFING EQUATION 

Pavel DRABEK 

Abstract; The purpose of this paper is to study a semilinear periodic 
problem for the forced Duffing equation at resonance. Nonlinear perturbati
on is allowed to grow linearly. Also some nonuniform nonresonance conditi
ons concerning the nonlinear perturbation are discussed. 

Key words and phrases; Duffing equation, periodic solutions, nonlinear 
perturbations with linear growth, Leray-Schauder degree. 

Classification; 34C25, 34B15, 34C15 

1. Introduction. We consider the periodic boundary value problem BVP 

for an ordinary differential equation of Duffing type 

(1.1) u"+c a ' + f ( t , u ) = e ( t ) a.e. on r0,T3, 

(1.2) u(T)=u(0), u'(T)=u'(0). 

The right hand side e is an element of L (0,T;R), c e R is the damping 

and f is a nonlinear Caratheodory function. 

Our aim is to give sufficient conditions for the existence of periodic 

solutions of (1.1) - (1.2). We can formulate either nonresonance or resonan

ce conditions according to the lower and upper limits of s f(t,s) as 

s — P - oo . As for the nonresonance case our result is related to Dr^bek, In-

vernizzi £.73. The resonance conditions are related to the papers of Landes-

man, Lazer 181, Ward [93, Ahmad Cl,23 and DrsSbek L 3J. 

To prove our results we use essentially the structure of the set of all 

couples (a,b)%R for which the nonlinear Dirichlet BVP 

u"+a u+-b u~=0 on [0,T3, 

u(0)=u(T)=0 

has a nontrivial solution. The reader is referred to the Fucfk's monograph 

{6J in order to see the important role played by the set of such couples 

(a,b)*R2. 
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When resonance occurs, we obtain Landesman-Lazer type sufficient con

ditions for the solvability of (1.1) - (1.2) (see (3.6), (3.7) below). Simi

larly as in H],t2] and £33, some upper bounds for s f(t,s) are necessary 

if s —*• - oo . In case of the Duffing equation we have an explicit dependence 

of these bounds on the damping. Roughly speaking, the stronger the damping 

|o( is, the weaker assumptions laid on s~ f(t,s) (as s — • -oo ) are necessa

ry. 

The paper is organized as follows. In Section 2 we formulate some auxi

liary assertions. The main result of this paper is formulated in Section 3. 

The proof of the main result is contained in Section 4. Some remarks in Secti

on 5 conclude the paper. 

2. Preliminary assertions. In this section we shall summarize some re

sults on BVPs for second order ODE's. Let T>0 be given number, and let 

*c: = -n7T. Denote u-:=(|u|- u)/2. 

Lean 2.1. Let (a.bOcR2. The nonlinear BVP 

(2.1) u'+a u+-b u"=0 on tO,T], 

(2.2) u(0)=u(T)=0 

has a nontrivial solution if and only if 

(a.W.Cju t kU. C C ^ c p } , 

where 

Cj:= \(a,b)*R2;(a-0c
2)(b-oC2)=0i, 

C^:* i(a,b)6R2;a>k2oC2, b>0, b1/2=koca1/2/<(a1/2-k«t)J, 

C£:= *(a,b)*R2;a>k2oc2, t>>0, b1/2=(k-»-l)oca1/2/(a1/2-koc)J u 

ui(a,b)*R2;a>(k+l)2oc2, b^O, b1/2=koca1/2/(a1/2-(k+l)oc)}. 

Renerk 2.1. The proof of this lemma can be found in Fufiik C6, Lemma 

42.23. Let CQ:=-i(a,b)€R
2; ab=0i. 

Assuming *,=l/2 and plotting (a1/2,b1/2) for (a,b)eCk or C*, kSO, a£0, b*0, 

it is possible to get a picture of the sets C. and Cj* which can be found in 

Drdbek, Invernizzi U , p. 6453. 

The following assertion can be proved similarly as Lemma 2.1. 

L S M B 2.2. Let (a,b)eR2. The nonlinear periodic BVP 

(2.1) u"+a u*-b u"=0 on C0,T1, 

(2.3) u(T)=u(0), u'(T)=u'(0) 
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has a nontrivial solution if and only if 

(a,b)- kU 0C k. 

The set of nontrivial solutions of nonlinear periodic BVP is reduced 

only to constants if we consider a nonzero damping term (c .#0) in the equ
ation (2.1). 

Lean 2.3. Let (a.b)iR2, ceR, c*Q. The nonlinear periodic BVP 

(2.4) u"+c u'+a u+-b u"=0 on £0,TJ, 

(2.3) u(T)=u(Q), u'(T)=u'(0) 

has a nontrivial solution if and only if 

(a,b)eCQ. 

Proof. Multiplying both parts of (2.4) by u' and integrating on 10,T] 

we get (with respect to (2.3)) that u m const. Let us suppose that (a,b) + 

4 C . Then the continuous function R—-*-R defined by s t~#-a s -b s~ vanishes 

only at s=0. In this case u i O o n tO,TJ. On the other hand, u * 1 and u « -1 

is a nontrivial solution of (2.4) - (2.3) if a=0 and b=0, respectively. 

Substituting a, b by t-dependent mappings, we obtain the following re

sult. 

Lean 2.4. Let 9* be two mappings in L°*(Q,T;R). 

Let us assume one of the following hypotheses is valid: 

(HI) there exist an integer 121, two points (ai>Di)*Ci> ^ai+i»ni+i^€Ci+l 

such that 

ai*0+(t)#al+l> b ^ g j t ) * ^ ^ 

holds a.e. in £Q,TJ, with strict inequality signs on the set of positi

ve measure in £0,TJ; 

(H2> there is (apb-^c Cj such that 

g^(t)<lalf g.(t)*bj, 

holds a.e. in £0,TJ, with strict inequality signs on the set of positi

ve measure in £0,TJ. 

Then the nonlinear Dirichlet BVP 

(2.5) u"+g^(t) u*-g_(t) u"*=0 on £0,TJ, 

(2.2) u(0)=u(T)=0 
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has no nontrivial solutions verifying also 
"' >'ipn|-H * » 

(2.6) sign u'(0)=sign u'(T). 

Reaark 2.2- The proof of Lemma 2.4 can be found in Invernizzi [7, Lem

ma 1.2]. Under more restrictive assumptions than (HI), (H2) laid on g^(t), 

the assertion of Lemma 2.4 is proved in Dr^bek, Invernizzi 14, Lemma 2.21. 

3. Main result. In this section we shall consider the solvability of 

the nonlinear periodic BVP 

(3.1) u"+c u'+f(t,u)=e(t) a.e. on 10,T], 

(3.2) u(T)=u(0), u'(T)=u'(0). 

We shall suppose that e is a fixed element in the Banach space 

X:=L (0,T;R), with usual norm 1 • H , cc R, and f is a Caratheodory function 

(i.e. f(»,s) is measurable for all s, and f(t,») is continuous for a.e. 

tel0,T3), satisfying the growth restriction 

(3.3) |f(t,s)|=p1(t)4-p2|s| 

for a.e. t€l0,T3 and for all s€R, with p ^ X , p2cR, p 2&0. 

Suppose that there are numbers r+ £ s+ such that 

(3.4) r«. i lim inf s""1f(t,s), 

(3.5) lim sup s*"1f(t,s)^sH. 
S—»t o° ~* 

a.e. in [0,TJ. 

The solution u of (3.1) - (3.2) is a continuously differentiable map

ping u:[0,T]—• R, such that u' is absolutely continuous and (3.1) - (3.2) 

held. 

Let us denete by A^ the d-th closed quadrant of R . 

Theoren 3.1 (Nonuniform nonresonance case). Let tr+,s+1x lr_,s} c 

C A J U A J and let either (r+-c
2/4,r_-c2/4)6Ci, (s+-c

2/4,s_-c2/4)«Ci+1 

for some fixed ifcl, or (s+-c /4,s_-c
2/4)*Cp or s+-c /4<0,s_-c /4#0. 

Moreover, let us suppose that (3.4) and (3.5) hold with strict inequality 

signs for t in a subset of positive measure in £0,T3. 

Then the BVP (3.1) - (3.2) has a solution for arbitrary e«X. 

In the resonance case we shall suppose that the following hypothesis is 

fulfilled: 
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(f) f*a>(t)= lim sup f( t ,s) and f _ ( t ) = lim inf f ( t ,s) 
S--.--00 + 0° £-++00 

are bounded from above and from below, respectively, for a.e. tc£0,Tl. 

Reaark 3.1. Note that hypothesis ( f ) implies that r+ from (3.4) satis

fy r* S O . 

2 2 
Theorem 3.2 (Resonance case). Let us suppose (f), (s+-c /4,s_ -c /4) ft 

«.C, and (3.5) hold with strict inequality signs for t in a subset of positi

ve measure in CO,VI. 

Then the BVP (3.D - (3.2) has a solution provided that 

(3.6) / V w(t)dt < Ĵ Te(t)dt < ̂ Tf+a>(t)dt. 

Consider, instead of (f), the following hypothesis: 

(f*) f + a > ( t ) = lim sup f ( t , s ) and *f _ ( t ) = lim inf f(t,s) 
S-H-OO -0° 6-»-00 

are bounded from above and from below, respectively, for a.e. t€ .L0 ,T3 . 

Remark 3.2. The hypothesis ( f ) implies that S+ from (3.5) satisfy 

Theorem 3.3 (Resonance case). Let us suppose (f') is valid. Then the 

BVP (3.D - (3.2) has a solution provided that 

(3.7) j;V"(t)dt< j[Te(t)dt < jkTf_„(t)dt. 

4. Proof of the wain result. The proofs of Theorems 3.1 - 3.3 will be 

performed in several steps. The main tool we shall use is the homotopy in-

variance property of the Leray-Schauder degree, 
o 

Fix A €30,(2ar/T) £, Consider the linear operator K:X—* X defined by 

Kw:= the unique solution u of the linear periodic BVP: u"+c u'+Au=w, u(T)= 

=u(0), u'(T)=u'(0). A straightforward argument shows that K is completely 

continuous. Moreover, the standard regularity argument for ODE's proves that 

K maps bounded sets in L (0,T;R) into relatively compact sets in C(£0,TJ). 

The Nemytskii operator induced by f and the mappings U H * U - are all conti

nuous X—*• X and map bounded sets into bounded sets. 

Step 1. Let e e K be given and c4»0. Let us consider the continuous 

path 

(4.1) ** C0,U*-*(^,>V ) € ( Äi uAз> ч c
, o 
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with endpoints (|40, v0> aQd (<*p »{)* with ^ = y^ Then there is R>0 
sufficiently large such that the mapping X—i*X defined by 

(4.2) ut—•u-K(-jM^u+ + % u ~ + Au+(l-«r)e) 

has the Leray-Schauder degree at 0 relative to the ball f xc X; |xH<R$ 

equal to a fixed odd number. 

Proof. The mapping (4.2) is odd for «f=l (we have (U.,= *>,). Hence by 

the Leray-Schauder continuation theorem it is sufficient to show the existen

ce of such R>0 that 

H([er,u).= u-K(-(i^u+ + ^ u " +au+(l-tf)e)=0 , 

for («f ,u)« [0,1 .3xX, implies 8u|«R. Let us suppose the contrary. Then the

re are «nCtO,lU and un« X, Iunft—*co and 

(4.3) Tf(«n,un)=0, 

for all ne H. The equation (4.3) is equivalent to the periodic BVP 

(4.4) u n' +c un * f ^ - % u n =(1- ern)e, 

(4.5) un(T)=un(0), un(T)=un(0). 

Put v =u /Ilu il. Then passing to a subsequence, if necessary, we obtain 

from (4.4) - (4.5) v n — * v in X, ^ - ^ ^ € [ 0 , 1 1 and 

v"+c v'+<Ufc, v* - % v"* =0, 
*o o. 

v(T)=v(0), v'(T)= v'(0). 

This, with respect to the assumption (4.1), contradicts the assertion of Lem

ma 2.3. 

Step 2. Let eftX be given and c=0. Let us consider the continuous path 

(4.6) €Te tO,ll^^( (« f e,y 0)c(A 1uA3)\ kU oC k 

with endpoints ((JLQ$ V Q ) and (fc^, V , ) , with ft,= V^. Then the assertion from 

Step 1 remains true. 

Proof. By the same way as in the proof of Step 1 we get v#X, I v t =1, 
0 o 4tO, l ] and 

v " + f i ~ v* -»£. v** =0, 
o o 

v(T)=v(0), v'(T)=v'(0). 

This, with respect to the assumption (4.6), contradicts the assertion of 
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Lemma 2.2. 

Step 3. Let us suppose that the hypotheses of Theorems 3.1 - 3.3 are 

fulfilled. Let either 

( c V V 0)e Cr+,s+]x[r ,sJ\C Q, for c*0, or 

( (a 0,p 0)etr +,s +3Ktr_,sJ\ lU oC | <, for c=0. 

Consider the homotopy H:[0,l}xX—* X defined by 

H(t,u):= u-K(-^f(.,u)-(l-r)C(Uou
+ -VQu""J + Au+e). 

Then there exists R>Q such that 

H(r,u)=0, 

for ( T , U ) C [ 0 , 1 ] * X implies ftuft<R. 

Proof. Let us suppose the contrary. Then there is a sequence ( ^ n , u n ) £ 

e [0,13 xX such that 

(4.7) un=K(- *„«••"-,>-<-- V ^ o V V n ^ V 5 ' 
and 11 u„ S--*• oo . The normalized sequence v := u„/llu„ll verifies n ^ n n n 

(4.8) vn=K(-1Tn ftunr
1f(.,un)-(l- r n) ltfn- * 0v n] +Av n + Hu^"

1 e). 

According to (3.3) the sequence f := tuj f(*,u ) is bounded in X. Therefo

re, passing if necessary to subsequence, we can assume that v •—#• v uniform

ly on [0,T]. In this case, (3.3) implies 

|fn(t)|.ip1(t)llu r |r
1

+p2|vn(t)|.ip(t), 

for all nfeN, with some peX. Hence 

_,t„ 
ft |fn(t)|dt-*0, for | t г

t
2
| - ^ 0 , 

uniformly with respect to n*N. Therefore the sequence i O
n =

i C X is weakly 

sequentially compact (see Dunford, Schwartz 15, Corollary 8.11.1), i.e. there 

is g e X such that some subsequence of tt-^^i converges weakly to g in X. We 

can suppose t — • X e [0,1], too. Since any bounded linear mapping X — * X is 

both continuous and weakly continuous, we can pass to the weak limit in (4.8) 

and we get 

(4.9) v=K(-rg+(l- X) L ^ v +
 - >>

0
v"J + Av). 

It is a direct consequence of Lebesgue's theorem, Fatou's lemma, (3.3), (3.4) 

and (3.5) that 
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(4.10) g(t)=h+(t)v
+(t)-h_(t)v~(t) a.e. on [0,T3, 

(4.11) r«.4 h (t)*s+ a.e. on E0,TJ 

The mappings ht :L0,T3—•* R are defined as follows: 

ht(t):= g(t)/v(t), for teV ± , h+(t):= <-i0,hJt): = »Q, 

for t6VQ, where VQ:= itc L0,T1; v(t)=0|, V± := 4teLO,T3; v(t) * 0*. The re

ader is referred to Dra"bek, Invernizzi L4, p. 6483 for details. 

Note that (4.9) - (4.11) imply that v, Iv| =1, is a solution of the pe

riodic BVP 

(4A2 )« v"+c v'+y+(t)v+ - y_(t)v~ =0 a.e. on L0,T3, 

(4.13) v(T)=v(0),V(T)=v'(0), 

where the coefficients Y+(t):=Zh+(t)+(l-Z) ftQ and ^_(t): = %hJt)+(1- v) i> 
verify 

(4.14) r t * jt(t)ii3t a.e. on L0,TJ. 

Our aim is to show that (4.12) - (4.14) yield to the contradiction under 

the assumptions of Theorems 3.1 - 3.3. 

Let us suppose that the assumptions of Theorem 3 A are satisfied. Then 

either T+(*-)»0 or Y+(t).£0 with strict inequality signs on the set of po

sitive measure in E0,T3. Then integrating (4.12) on L0,T3, we obtain (with 

respect to (4.13)) that there is neither v > 0 nor v<0 on L0,TJ. Hence v has 

at least two zero points in L0,T1, i.e. we can find t*e L0,T1 such that v(t*)= 

=0 and C:= l/v'(t*) >0. Let us extend v and f± °y T-periodicity on the whole 

real line and define v, y..:L0,T3—»- R by the relations V(t):= Cv(t+t*), 

Tp.»(t):= y ±(t+t*). We obtain 

v"+c v ' + ^ W v * -flf_(tjv" =0 a.e. on L0,Tl, 

v(T)=v(0)=0, v'(T)=v'(0)=l. 

Introducing z:L0,T3—* R, z(t):= exp((c/2)t)v(t), a simple computation shows 

that z is a solution of the nonlinear Oirichlet BVP 

(4.15) z"+(f+(t)-c
2/4)z+ -(yjt)-c2/4)z~ =0, 

(4.16) 2(0)=z(T)=0, 

which verifies 

(4.17) sign z'(T)=sign z'(0). 

The inequalities (4.14) and the hypotheses of Theorem 3.1 imply that the 
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functions g+(t):= yv(t)-c /4 fulfil the assumptions of Lemma 2.4. Then (4.15) 

- (4.17) yield to z(t) 21 0 which contradicts IvH =1. 

Let the assumptions of Theorem 3.2 be satisfied. Then TV(t)=0 a#e# ±n 

[0,T3 . If these inequalities hold with the strict inequality signs on the 

subset of positive measure in [0,T3 (the resonance does not occur), we can 

reach the contradiction by the same way as in the previous case. With resp

ect to the assumptions of Theorem 3.2, we have that either v>0, or v < 0 on 

[0,T3 (see Lemma 2.4, (H2 ) ) . If <y+(t)=0 a-e- on £°>T3 and r J t ) * 0 in a 
subset of positive measure in [0,TJ then integrating (4.12) on [0,TJ, we ob

tain v > 0 . Then it follows directly from (4.12) - (4.13) that v S l / T on 

[0,T3. Similarly, we have v m -1/T on [0,T1 if f_(t)=0 a.e. on [0,TJ and 

^ ( t ) ^ 0 in a subset of positive measure in [0,T3. Finally, it is either 

v m 1/T, or v m -1/T on [0,T3 if ?+ (t)=0 a.e. on [0,T3. Let us suppose that 
v m 1/T on [0,T) (the other case v » -1/T on [0,T1 can be treated similarly). 

Then with respect to the uniform convergence v —* 1/T on [0,T3, we have 

u ( x ) — * + 00 uniformly on [0,T3. Hence the operator equation (4.7) is, for n 
sufficiently large, equivalent to the periodic BVP 

(4.18) un'+c v rnf(t,unWl- *n) fvfce, 

(4.19) un(T)=-Jn(0), up(T)=un(0). 

Integrating (4.18) on [0,T3,'we obtain by using Fatou's lemma and (4.19): 

(4-20) £}&,ln' L*n f ( t '% )+ (1-*n )^J- t* . i la, i n ' ti 'V^'V* 
+ < 1 - e n ) ^ o u n J d t = / T e ( t ) d t -

On the other hand, the assumption (3.6) yields 

jj e(t)dt < JT lim inf [f.f(t,un)+(l- tn) (MLu*Mt, 
V0 JQ (i-+co n n n ' 0 n 

which contradicts (4.20). 

Let us suppose that the assumptions of Theorem 3.3 are fulfilled. Then 

#t.(t)40 a.e. in [Q,T3. If these inequalities hold with the strict inequa

lity signs on the subset of positive measure in [0,T3 (resonance does not 

occur), we can proceed again as in the case of Theorem 3.1. In the opposite 

case we can derive v m 1/T, or v s -1/T on [0,T3, and the proof can be per

formed in a similar way as in the case of Theorem 3.2 but by using the as

sumption (3.7) instead of (3.6) (note that it is (*o<0> ^o*** under the 
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assumptions of Theorem 3.3). 

Step 4. let us suppose that the hypotheses of Theorems 3.1 - 3.3 are 

fulfilled. Then the nonlinear periodic BVP (3.1) - (3.2) has a solution. 

Proof. The nonlinear periodic BVP (3.1) - (3.2) is equivalent to the 

operator equation 

(4.21) u-K(-f(.,u)+Au+e)=0. 

By Step 3 the Leray-Schauder degree of the operator standing on the left 
hand side of (4.21), relative to {xcX; i.xH<Ri, is equal to the degree of 
the operator 

(4.22) u H~* u-K(- .440u
+ + *>Qu~ + Au+e), 

provided that R > 0 is large enough. But according to Steps 1,2 the degree of 

(4.22) is different from zero. Hence the operator equation (4.21) has at le

ast one solution which is simultaneously the solution of the nonlinear peri

odic BVP (3.1) - (3.2): 

5. Concluding remarks 

Reaark 5.1. The assertion of Theorem 3.1 is proved under more restric

tive assumptions in Ora*bek, Invernizzi £43. More precisely, in £4, Theorem 

3.11, we impose uniform nonresonance conditions on nonlinearity f, while the 

nonresonance conditions in Theorem 3.1 are nonuniform ones. 

Reaark 5.2. The proof of Theorem 3.1 can be found in Invernizzi £7] 
if c=0. 

Reaark 5.3. To prove our result, we construct a slightly different ho-

motopy than in £4, 73. The horootopy of compact perturbations of the identity 

used here allows us to treat also the resonance case. This is the topic of 

Theorems 3.2, 3.3. The relation of our result to the paper of Ahmad £21 was 

already pointed out in the introduction. The author of £2] studies nonself-

adjoint resonance problems for POE's with unbounded perturbations. Note that 

in case of Duffing equation we received an explicit bound for the ratio 

s" f(t,s) (if |s| is large enough) by means of the curve C, and the damping c. 

Reaark 5.4. Our result also generalizes the result contained in Ward 
£9, Theorem 11 for the case of the Duffing equation. 
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