Commentationes Mathematicae Universitatis Carolinae

Jaroslav Ježek
Minimal bounded varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 2, 261--265

Persistent URL: http://dml.cz/dmlcz/106635

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

29,2 (1988)

MINIMAL BOUNDED VARIETIES

J. JEŽEK

Abstract

We describe all the minimal bounded varieties of algebras with one k-ary operation (for any $k \geq 2$). The collection of these varieties is found to be independent and to consist of the variety of constant algebras plus an infinite number of varieties that are equivalent with the varieties. of point algebras studied by T. Evans and M. Saade.

Key words: Bounded variety, minimal variety, equational theory. Classification: 08B15

A variety V of algebras of a finite similarity type ρ is said to be bounded if there exists a natural number m such that every term of the type ρ is equivalent, with respect to V, with some term of length not greater than m. An equational theory is said to be bounded if the corresponding variety is bounded. In [2] we have studied bounded equational theories. We have introduced a class of special equational theories which we called well-placed; we have proved that every well-placed equational theory is bounded and, conversely, in the case of a similarity type ρ consisting of a single operation symbol, that every bounded equational theory is contained in a well-placed equational theory; and we have proved, under the assumption on ρ, that an absorptive equational theory (an equational theory containing an equation $x * t$ where x is and t is not a variable) is bounded iff it is well-placed. This allowed us to find all the equationally complete bounded equational theories (for a type $\rho 0$ with a single operation symbol). The aim of the present paper is to describe the corresponding varieties; they are, of course, just the minimal bounded varieties. We shall show that this collection coincides (up to the equivalence of varieties and after omitting the variety C of constant $\rho-$ algebras) with the varieties of point algebras introduced and studied in the papers [1],[3],[4],[5] and that it is an infinite collection of independent varieties.

Throughout this paper let ρ be a fixed similarity type consisting of
one operation symbol F which is of arity $k \geq 2$. By a place we mean a finite word over the alphabet $\{0, \ldots, k-1\}$; infinite words over $\{0, \ldots, k-1\}$ are called directions. The length of a place e is denoted by $\boldsymbol{\lambda}(\mathrm{e})$. A nonempty place e is said to be irreducible if it is not a power of any place shorter than e. Given a place $e=c_{0} \ldots c_{n-1}$ (where $c_{i} \in\{0, \ldots, k-l\}$ for all i), we denote by $\operatorname{cyc}(e)$ the set of the places $c_{i} \ldots c_{n-1} c_{0} \ldots c_{i-1}$, with i ranging over $\{0, \ldots, n-1\}$. Given a nonempty place e, we denote by e^{ω} the unique direction h such that e^{i} is an initial segment of h for any positive integer i; and we put $J(e)=\left\{f^{\omega}: f \in \operatorname{cyc}(e)\right\}$. For a ρ^{ρ}-term t and a place e we denote by $t[e]$ the subterm of t occurring at the place e; it can be defined recursively by $t[e]=$ $=t$ if t is empty, $t[e]=t_{i}[f]$ if $t=F\left(t_{0}, \ldots, t_{n-1}\right)$ and $e=i f$, and $t[e]=1$ in all other cases. For a term t and a direction h denote by $\tau_{t}(h)$ the unique initial segment e of h such that $t[e]$ is a variable and put $t[h]=t[e]$.

We have proved in [2] that the following is the list of all minimal bounded varieties of type ρ : the variety C of constant ρ-algebras (satisfying the equation $F\left(x_{0}, \ldots, x_{k-1}\right) \approx F\left(y_{0}, \ldots, y_{k-1}\right)$) and, for any irreducible place e, the variety V_{e}, the equational theory E_{e} of which consists of the equations $s \approx t$ such that
$s[h]=t[h]$ and $\boldsymbol{\lambda}\left(\boldsymbol{\tau}_{s}(h)\right)=\boldsymbol{\lambda}\left(\boldsymbol{\tau}_{t}(h)\right) \bmod \boldsymbol{\lambda}(e)$
for all $h \in J(e)$. Moreover, $V_{e}=V_{f}$ for two irreducible places e, f iff cyc $(e)=$ $=\operatorname{cyc}(f)$. In order to be able to say more about the varieties V_{e}, we introduce the following notation.

Let e be an irreducible place of length n. Denote by $c(0), \ldots, c(n-1)$ the sequence of the letters of e and put

$$
\begin{aligned}
& e_{0}=c(0) \ldots c(n-1)=e \\
& e_{1}=c(1) \ldots c(n-1) c(0), \\
& \quad \ldots \\
& e_{n-1}=c(n-1) c(0) \ldots c(n-2),
\end{aligned}
$$

so that $\operatorname{cyc}(e)=\left\{e_{0}, \ldots, e_{n-1}\right\}$. For $i \in\{0, \ldots, n-1\}$ and $j \in\{1, \ldots, n\}$ denote by $f_{i, j}$ the final segment of e_{i} of length j. Since e_{i} is irreducible, it is easy to see that none of the places $f_{i, 1} e_{i}, \ldots, f_{i, n} e_{i}$ is an initial segment of another one. From this it follows that there exists a term \propto_{i} such that $\operatorname{var}\left(\alpha_{i}\right)=\{x\}$ (where x is a fixed variable) and $f_{i, j} e_{i}$ is an occurrence of x in α_{i} for any $j \in\{1, \ldots, n\}$. For every $i=0, \ldots, n-1$ let us fix one such term α_{i}. Also, none of the places e_{0}, \ldots, e_{n-1} is an initial segment of another one and so there exists a term $\boldsymbol{\gamma}$ such that $\operatorname{var}(\boldsymbol{\gamma})=\left\{x_{0}, \ldots, x_{n-1}\right\}$ and $\boldsymbol{\gamma}\left[e_{i}\right]=x_{i}$ for $i=0, \ldots, n-1$.

For any term t denote by $\propto_{i}(t)$ the term obtained from α_{i} by substitu-
ting t for x. Denote by $\boldsymbol{\gamma}\left(t_{0}, \ldots, t_{n-1}\right)$ the term obtained from $\boldsymbol{\gamma}$ by substituting t_{0}, \ldots, t_{n-1} for x_{0}, \ldots, x_{n-1}.

Lemma 1. The following equations belong to the equational theory E_{e} :
(1) $\boldsymbol{\alpha}_{i} \propto F\left(\alpha_{i}, \ldots, \alpha_{i}\right)$ for $i=0, \ldots, n-1$;
(2) $\boldsymbol{\gamma}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right) \approx x$;
(3) $\alpha_{i}(\boldsymbol{\gamma}) \approx \alpha_{i}\left(x_{i}\right)$ for $i=0, \ldots, n-1$;
(4) $\quad \alpha_{i}\left(F\left(x_{0}, \ldots, x_{n-1}\right)\right) \approx \propto_{m}\left(x_{c(i)}\right)$ for $i=0, \ldots, n-1$ (where $m=i+1$ for $i<n-1$ and $m=0$ for $i=n-1)$.

Proof. (1) Let $i \in\{0, \ldots, n-1\}$; put $s=\alpha_{i}$ and $t=F\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. Let $h \in J(e)$. Then $h=f_{i, j} e_{i} e_{i} \ldots$ for some $j \in\{1, \ldots, n\}$. Evidently, $\tau_{s}(h)=f_{i, j} e_{i}$. If $j \neq 1$ then $f_{i, j-1} e_{i}$ is an occurrence of x in s, so that each of the places $0 f_{i, j-1} e_{i}, \quad f_{i, j-1} e_{i}, \ldots,(n-1) f_{i, j-1} e_{i}$ is an occurrence of x in t and especially $f_{i, j} e_{i}$ is an occurrence of x in t, which means that $\boldsymbol{r}_{t}(h)=f_{i, j} e_{i}$. If , $j=1$ then $f_{i, j}=c(n-1)$; since $e_{i} e_{i}$ is an occurrence of x in $s, f_{i, j} e_{i} e_{i}$ is an occurrence of x in t and $\tau_{t}(h)=f_{i, j} e_{i} e_{i}$. In both cases we get $\boldsymbol{\lambda}\left(\boldsymbol{\tau}_{s}(h)\right) \equiv$ $\Rightarrow \boldsymbol{\lambda}\left(\boldsymbol{\tau}_{\mathrm{t}}(\mathrm{h})\right)$ mod n . Of course, $\mathrm{s}[h]=\mathrm{t}[\mathrm{h}]=\mathrm{x}$.
(2) Put $s=\boldsymbol{\gamma}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ and $t=x$. Let $h \in J(e)$, so that $h=e_{i} e_{i} \ldots$ for some i. We have $\tau_{s}(h)=e_{i} e_{i} e_{i}, \tau_{t}(h)=\emptyset$ and $s[h]=t[h]=x$.
(3) Let $i \in\{0, \ldots, n-1\}$; put $s=\boldsymbol{\alpha}_{i}(\boldsymbol{\gamma})$ and $t=\boldsymbol{\alpha}_{i}\left(x_{i}\right)$. Let $h \in J(e)$. Then $h=f_{i, j} e_{i} e_{i} \ldots$ for some $j \in\{1, \ldots, n\}$. We have $\tau_{s}(h)=f_{i, j} e_{i} e_{i}, \quad \boldsymbol{\tau}_{t}(h)=f_{i, j} e_{i}$ and $s[h]=t[h]=x_{i}$.
(4) Let i $\in\{0, \ldots, n-1\}$ and define m as above; put $s=\alpha_{i}\left(F\left(x_{0}, \ldots, x_{n-1}\right)\right)$ and $t=\alpha_{m}\left(x_{c}(i)\right)$. Let $h \in J(e)$. We have $h=f_{i, j} e_{i} e_{i} \ldots$ for some $j \in\{1, \ldots, n\}$. We have $\tau_{s}(h)=f_{i, j} e_{i} c(i)$ and $s[h]=x_{c(i)}$. Of course, $t[h]=x_{c}(i)$. It remains to prove $\boldsymbol{\lambda}\left(f_{i, j} e_{i} c(i)\right) \equiv \lambda\left(\tau_{t}(h)\right)$ mod n. If $j<n$ then $h=f_{i, j} c(i) e_{m} e_{m} \ldots$, so that $\tau_{t}(h)=f_{i, j} c(i) e_{m}$. If $j=n$ then $n=e_{i} e_{i} \ldots=c(i) e_{m} e_{m} \ldots$, so that $\tau_{t}(h)=$ $=c(i) e_{m}$; in this case we have $\boldsymbol{\lambda}\left(f_{i, j}\right)=n$.

For every nonempty set M and every irreducible place $e=c(0) \ldots c(n-1)$ we define an algebra $\mathcal{A}_{M, \mathrm{e}}$ of the type $\rho=\{F\}$ with the underlying set M^{n} by

$$
\begin{aligned}
& F\left(\left(a_{0,0}, \ldots, a_{0, n-1}\right), \ldots,\left(a_{0, k-1}, \ldots, a_{n-1, k-1}\right)\right)= \\
& \quad=\left(a_{1, c(0)}, a_{2, c(1)}, \ldots, a_{n-1, c(n-2)}, a_{0, c}(n-1)\right)
\end{aligned}
$$

Theorem 2. Let e be an irreducible place. The following are equivalent for an algebra A of the type $\rho=\{F\}$:
(i) A belongs to the variety V_{e};
(ii) A satisfies the $3 n+1$ equations (1) - (4) from Lemma 1 ;
(iii) $A \cong \Omega_{M, e}$ for a nonempty set M.

Proof. (i) implies (ii) by Lemma 1. in order to prove that (ii) implies (iii), let A be an algebra satisfying the equations (1) - (4) and denote by M the set of idempotents of A, i.e. elements a such that $F(a, \ldots, a)=a$. For $\mathbb{A} \in A$ put $\varphi(a)=\left(\alpha_{0}(a), \ldots, \alpha_{n-1}(a)\right)$. By (1), φ is a mapping of A into M^{n}. By (4), $\boldsymbol{\varphi}$ is a homomorphism of A into $\mathcal{A}_{M, e}$. By (2), $\boldsymbol{\varphi}$ is injective. By (3), $\boldsymbol{\varphi}$ maps A onto M^{n}.

It remains to prove that (iii) implies (i). Since V_{e} is a nontrivial variety, it contains arbitrarily large algebras; but (i) implies (iii) and so V_{e} contains an algebra $\mathcal{A}_{K, e}$ for a set K such that M is a subset of K. Clearly, $\boldsymbol{\Lambda}_{\mathrm{M}, \mathrm{e}}$ is a subalgebra of $\boldsymbol{\Lambda}_{\mathrm{K}, \mathrm{e}}$ and hence $\boldsymbol{\mathcal { A }}_{\mathrm{M}, \mathrm{e}}$ belongs to V_{e}, too.

Theorem 3. Let e be an irreducible place. The following are true:
(i) A mapping φ of $\boldsymbol{\Lambda}_{M, \mathrm{e}}$ into $\boldsymbol{\beta}_{\mathrm{k}, \mathrm{e}}$ is a homomorphism iff there is a mapping f of M into K such that $\varphi\left(a_{0}, \ldots, a_{n-1}\right)=\left(f\left(a_{0}\right), \ldots, f\left(a_{n-1}\right)\right)$ for all $\left(a_{0}, \ldots, a_{n-1}\right) \in M^{n}$.
(ii) An algebra A is a subalgebra of $\Omega_{M, e}$ iff $A=\Omega_{K, e}$ for a nonempty subset K of M.
(iii) The congruence lattice of $\boldsymbol{\mu}_{M, e}$ is isomorphic to the lattice of equivalences of the set M.
(iv) The product of a family $\Omega_{M(i), e}$ (i $\in I$) is isomorphic with the algebra $\mathcal{R}_{M, \mathrm{e}}$ where M is the product of the sets M_{i} (i $\in I$).
(v) Every infinite algebra in V_{e} is V_{e}-free; an algebra $\mathcal{\Lambda}_{M, e}$ with M finite is V_{e}-free iff the cardinality of M is a multiple of n.

Proof. It follows from the equations (1) and (2) that a homomorphism between two algebras A, B from V_{e} is uniquely determined by its restriction to the set of idempotents of A. One can easily verify for any mapping f that the mapping φ from (i) is a homomorphism. From this we get (i). The other assertions are easy consequences. The assertion (v) is proved in [5].

Theorem 4. Let e, f be two irreducible places of the same length n. Then the varieties V_{e} and V_{f} are equivalent.

Proof. It follows easily from Theorem 3. Let us remark that the varieties V_{e} and V_{f} are equivalent even if they are of different similarity types $\rho=\{F\}$ and $\sigma=\{G\}$. The varieties V_{e} are thus all equivalent to varieties of groupoids.

A finite collection V_{0}, \ldots, V_{m-1} of varieties of a type ρ is said to be independent if there exists a ρ-term t such that $\operatorname{var}(t)=\left\{x_{0}, \ldots, x_{m-1}\right\}$ and the equation $t \approx x_{i}$ is satisfied in V_{i} for any $i=0, \ldots, m-1$. An infinite collection \mathscr{C} of varieties is said to be independent if any finite subcollection of \mathscr{C} is independent.

For a survey of various properties of independent collections of varieties see [6].

Theorem 5. The collection of all the minimal bounded varieties of the type ρ that are different from C is independent.

Proof. Let V_{0}, \ldots, V_{m-1} be a finite subcollection of this collection. For any $i=0, \ldots, m-1$ we can write $V_{i}=V_{e(i)}$ where $e(i)$ is an irreducible place. The sets $J(e(0)), \ldots, J(e(m-1))$ are pairwise disjoint. There exists a positive integer p such that p is a common multiple of the lengths of $e^{\prime}(i)(i=0, \ldots$, $m-1$) and whenever h, k are two different directions from $J(e(0)) \cup \ldots u$ $u J(e(m-1))$ then the initial segments of h and k of length p are different. There exists a term t such that $\operatorname{var}(\mathrm{t})=\left\{x_{0}, \ldots, x_{m-1}\right\}$ and whenever e is an initial segment of a direction from $J(e(i))$ of length p then $t l e l=x_{i}$. Clear$l y$, the equation $t \approx x_{i}$ is satisfied in V_{i}.

References

[1] T. EVANS: Products of points - some simple algebras and their identities, Amer. Math. Monthly 74(1967), 362-372.
[2] J. JEŽEK, G.F. McNULTY: Bounded and well-placed theories in the lattice of equational theories (to appear).
[3] M. SAADE: A comment on a paper by Evans, Zeitschr. f. math. Logik u. Grundl.d. Math. 15(1969), 97-100.
[4] M. SAADE: Generating operations of point algebras, Journal Comb. Theory 11(1971), 93-100.
[5] M. SAADE: A note on some varieties of point algebras, Czechoslovak Math. J. 29(1979), 21-26.
[6] W. TAYLOR: The fine spectrum of a variety, Algebra Universalis 5(1975), 263-303.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 1.2. 1988)

