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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

ON A UNIFICATION PROBLEM RELATED TO 

KREISEL'S CONJECTURE 

Pavel PUDLAK 

Abstract: We consider a unification problem with substitutions cf , 
^jj-'-jtfp, as unknown. We show that the problem is decidable for n=l and that 

the general case reduces to n=2. 
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Classification: 03F99 

It is well-known that the existence of a proof with k steps of a senten­

ce A in some proof systems can be expressed by a set of equations with un­

known terms 12,5,7,83. Such a system of equations is also called the second 

order unification problem. In some cases the resulting unification problem is 

the ordinary unification, i.e. the first order unification [7l. Then we can 

use the nice properties of the first order unification: 

(a) the existence of the most general unifier, 

(b) the decidability. 

However, the general second order unification is undecidable [6 3. 

A famous conjecture of G. Kreisel says that if Peano Arithmetic PA pro­

ves in k steps A(Sn(0)) for every n, then it proves also Vx A(x). Here Sn(0) 

is the n-th numeral. Recently M. Baaz proved this conjecture [2,33. (However, 

some strengthenings of this conjecture are still open.) One of the main ideas 

(perhaps the most important one) is the reduction of the problem to a unifi­

cation with unknown substitutions instead of unknown terms. The unification 

problem can be stated as follows: 

Problem. Given pairs of terms (s,,t,),...,(s ,t ) find substitutions 

6 , ffp...,^ such that 

(i) Sl<T tf^t/,..., snJVn=tn<** . 

Baaz has shown that there is a most general solution (unifier) cT , 
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provided (1) has a solution. This enables him to generalize proofs as requir­

ed in Kreisel's conjecture. However, the corresponding existence problem, i.e. 

whether (1) has a solution, is not known to be decidable. If the problem were 

decidable, then one could strengthen Baaz's result as follows: 

There exists a recursive function f such that if PA proves in k steps 

A(Sn(0)) fo r all n£f(k,A), then PA proves Vx A(x). 

We shall show the following p a r t i a l results concerning this question. 

Though these results do not give anything i n te res t ing fo r Kreisel s conjectu­

re, they might be of some in te rest fo r computer science, where unification 

problems occur quite often , cf.tsl. 

Theorem. 

(i) For n=l the existence problem is decidable. 

(ii) If the existence problem is decidable fo r n=2, then it is decidab­

le in general. 

We shall use the following notation. t , s , . . . denote terms; Greek letters 

denote substitutions'; t (f1 is the term obtained from t by i-times applying 

substitution & ; var(t,,... ,t. ) is the set of var iables that occur in t,,... 

...,v 
Lemma. Suppose s cT =t £ fo r some <f . Then there exists A such that 

(i) *AQ^AQ, 

(ii) fo r every A , if s A =t A then AQA = A , 
(iii) var(s AQ,t AQ) £ var(s, t ) . 

Proof. Let A be given by the unification a lgo r i thm. Then we have 

(2) x fivar(y AQ) ss^x AQ=x. 

Since tJ is most general, A A,- A for some Z L . By (2) we have for 

x€var(y AQ) 

xA =x AQ A^xAv 

whence (ii). (iii) is c lear . 

Recall that the unification algor i thm eventually stops on every input. 

Proof of the theorem 

(i) Let s=s,, t=t,. Put X=va r (s , t ) . Take countably many disjoint copies of 

X; we can think of them as if they were obtained by successive applying a one 

to one mapping oC on X. Thus the var iables that we shall use will be contair.-
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2 
ed in the disjoint union Y=Xv/Xocu Xoc u... . 

Now we shall describe a decision algorithm for the question: Do there e-

xist <T , 6f such that scf& =t<f ? 
Step 0. Put d* identical. 
Step i+1. Apply the unification algorithm (Lemma) to 

s<f0 ... cTĵ oc and t <f Q ... cf ̂  

(a) the pair is not unifiable - answer NOT; 

otherwise let cf., be the unifier, 

(b) ^i+i is a one-to-one mapping from var(tcT ... cT-) into-Y - answer 

YES; 

(c) for some k^i, yc var(t <fQ... cfk), j£0, yoc
 J 6 var(y<fk+1 <fk+2- • • 

... <fi+1) and Y<*
 J-#y-/k+1<fk+2--- cTi+1 - answer NO; 

(d) none of the above - go to Step i+2. 

First we shall show that the algorithm eventually stops on every input. 
Suppose not, i.e. for some s, t the algorithm constructs infinitely many sub­
stitutions */ , d\ ,... . Let us call <f. proper if y <f. is not a variable 
for some yevar(tcT ... <Ti_1). If there were only finitely many proper cf. s, 
then, after the last one, in each step the number of variables in td* . . . c T . 
must decrease, by (b), which is impossib le . So let l . £ i * < i 7 . . . be such that 
(f. , d". , ... are proper. It follows from Kbnig's lemma about finitely bran-

ix i 2 

ching infinite trees that there exist variables Y ,Y,,... such that 

y 0c var(t), 

v>i«var(vjV V ' " \ i 
" W + ' J V V - V ' 

where <f. = <fQ. Each y. i s of the form xoc p f o r some x € X , piTO. Since X i s 
o ** 

f i n i t e , there are k < j , p £ q and xcX such that 

P q q-P 
yk=xocH, yyXtc-ykoc * p . 

But then the condition (c) is satisfied, hence the algorithm must stop. 

Now we show that it always answers c o r r e c t l y . First suppose it answers YES. 
Then the condition (b) must be satisfied, i.e. 

s < r 0 . . . < f i o e < * - i + 1 = t c ґ 0 ...rf-i-Г, i+1 

and <f
i + 1
 :var(t <f ... <f.) Y is one-to-one. Then we can take <f ' the in­

verse of c**
i+1
 on ( v a K t d * ^ . . . d^i)) ( f i + 1 and obtain 
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s ďo •cГiOt ď i + 1eГ'-t-- 0
 ...<f

r 

Thus we have a solution cT= dQ ... d^ 6* = <* «
 i + 1

cT'. Now suppose that 

there exists some solution sA -X A .We should show that neither (a ) nor ( c ) 
can be satisfied. Let <$ , cT-,...,^" be the substitutions constructed by 
the algorithm. A is defined on var(s, t)=X. We extend A on Y by putting 

(2) x<*
 l A = x < 4 \ xeX, i*l. 

Claim. 

f^A = 4 for i=0,...,n. 

Proof: For i=0 it is trivial. Suppose it holds for i. We have, by ( 2 ) 
and the induction assumption 

(3) sd*
o
 ... cf.oc A=s<fQ ...fiA^sA-xA^xS^ ...drkA . 

Thus A unifies scf ... (f^oc and tcT ...</".. Since cT., is the most gene­

ral unifier for this pair constructed by the unification algorithm, we have, 

by Lemma, <f. *A - & > which proves the claim. D 

The argument above (3) also shows that the pair scT ... <f-oc , tcT ... 
... (5*i is always unifiable, hence the case (a) cannot occur. Suppose (c) holds. 
By Claim we have 

t-r 0 .. .<r k j-t«r 0 ...<r k < r k + 1 ... t / i f d . 

Hence yA contains y o6
J A as a proper subterm. But y oC^A =y A ^ by (2), 

hence y A would contain itself as a proper subterm. Thus (i) is proved. 
(ii) Let s,,t.,...,s ,t be given. Let 

*
X V ''' 'x

m*
 = v a r

^
s
i>

t

1
,. • • »

s

n
»t

n
). 

Let Y be an infinite set of variables containing x,,...,x ; let oc , X oC , 
« ° 1' ' m7 

X eC ,... be as in (i). Take two terms f(z,,...,z ), g(z-,...,z ) with n 

resp. n.m variables. We shall show that 

(1) is solvable iff 

(4) f(s
1
c.<

1
,...,s

n
oc

 n
)^Z

1
=f(t

1
oC

1
,...,t

n O C
:

n
)id 

(5) g(x
1
,oc

1
,x

1
oC

2
,...,x

1
oc

n
, V

1
^*

2
"*"^

4
^ 

=g(x
]
oc

n
,x

1
oo

1
,... .Xjot""

1
, »

x
m°*

n
'

x
in ^9'''' V*"̂  ^ 

is so lvable. First suppose that (1) has a solution <f, 6' ..., €fn. We may 
suppose that the solution contains only variables from Y. Put, for j=l,... 
...,n, x*X, 

x oc J_d =x <T*c J, 
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: J 2*1=x Š. ocJ, 

x o-. J ^2=xoc ~̂*1 for j r 2 , 

xoC 2"2=x 0Gn. 

Then, clearly, (4) and (5) are satisfied. Conversely, let A , .Zp.2-2 b e a 

solution of (4) , (5) . Then we'have by (5) , for i = l , . . . , m , j = l , . . . , n , 

x € v a r ( x l 0 6 lA , . . . ,xmo<? n^j ) . 

(6) x ^ J z f 1 ^fCA , 

(7) x S j =*• 
Define 
(8) xi<f =xiocZ3 , 

(9) x f f . ^ x S ^ ^ . X J - 1 . 

The following computation shows that cf, ff.,..., & is a solution of ( 1 ) : 

, , - (6) (8) 
= t^ocld S ^ _ i a» tjofr^l ~ t j Cf\ 

This completes the proof of the theorem. 

For his proof Baaz needs solutions of (1) which satisfy particular addi­

tional restrictions. We shall show that each system of the type (1) with addi­

tional restrictions is equivalent to a system without restrictions. 

First observe that we may insist that 6*.= &• for some i, j. This is be­
cause we can replace the i-th and j-th equation by a single one 

f(s i ,s j)cT6r i=f(t i , t j)cr' , 

where f is some term with two variables. 

We cannot force xcf =x but we can force x<f and yd* be distinct varia­
bles for x4y. (For example, by taking three different constants c , c , c and 

x y 
adding equations 

xcfef =cxcf , ycfo
- =c cf , x S £ x = y <T 6T =c cf .) 

Thus by applying a suitable permutation of variables we can obtain a solution 

in which <f is constant on a prescribed set of variables. 
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Finally observe that the condition that 6*. is constant on va r (xcf) f o r 

a ce r t a in va r iab le x is equivalent to 

x ó" & . =x cҐ. 
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