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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,4 (1988) 

NON-CONSTANT CONTINUOUS MAPS OF MODIFICATIONS 

OF TOPOLOGICAL SPACES 

V. TRNKOVÁ, N. HUŠEK 

Dedicated to Professor Miroslav Katětov on his seventieth birthday 

Abstract: For every pair of monoids M, £ M« there exists a regular T, -

space X such that all the non-constant continuous endomaps of X form a monoid 
isomorphic to M, and of its completely regular modification form a monoid i-

somorphic to M?. An analogous statement is true also for compactly generated 

modification and sequential modification. A more general setting of simulta
neous representations of small categories is investigated and stronger and 
more complex results are presented. 

Key words: Representations, modifications. 

Classification: 54H10, 54B30, 18B30 

I. Introduction. In !G], 3. de Groot proved that every group can be re

presented as the group of all homeomorphisms of a (suitable) topological spa

ce onto itself. He put the question (at the conference in Tihany in 1964, 

see iHel), whether every monoid (=semigroup with a unit) can be represented 

by all the non-constant continuous maps of a topological space into itself 

(i.e. whether for every monoid M there exists a topological space X such that 

for every non-constant continuous f,g:X-—*X, g«f is non-constant again and 

the monoid of all these maps is isomorphic to M). This was solved in [T,], 

where a metrizable space X representing a given monoid M in the above sense 

was constructed. 

In- [KR1, V. Kannan and M. Rajagopalan proved that for every pair of 

groups G£H, there exists a metric space X such that all the isometries of X 

form a group isomorphic to G and all the homeomorphisms of X onto itself a 

group isomorphic to H. All the above results are strengthened in tT^J, where 

the following statement is proved: for every triple of monoids MjiiM^S-M, 
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there exists a complete metric space X such that all the non-constant maps of 

X into itself which are 

continuous, form a monoid -=-'M,, 

unif. continuous, form a monoid -=-M«, 

non-expanding, form a monoid ~M,. 

Another result of this kind is presented in ' T.i: for every pair of monoids 

AS.B there exists a Tichonov space X such that all the non-constant continu

ous maps of 'X into itself form a monoid isomorphic to A and all the non-con

stant continuous maps of ($X into itself form a monoid isomorphic to B. (How
ever, in general it is not true that for every quadruple of monoids M, 9M„ -« 

£ M,=A £ B there exists a metric space X such that both these statements are 

valid for X.) 

The method developed in 1"T, 1 can be used (after suitable modifications 

which unfortunately make it more involved) also for simultaneous representa

tion of a pair of monoids M, SM« by a topological space and by its (suitable) 

modification. Three of these results are mentioned in the Abstract. Some fur

ther results are mentioned in the part III of this paper. A more general set

ting of almost full embeddings of categories, which is investigated in the 

present paper, admits also to obtain results of another kind than the mere 

representing of pairs of monoids. For example, for every cardinal number O G 

there exists a stiff set % of paracompact spaces (stiff in the sense that if 

X,Y ft C€ and f:X — > Y is a continuous map, then either f is constant or X=Y 

and f is the identity) such that all the spaces from % have the same comp

actly generated modification (and the obtained k-space is rigid). 

Our notation is a standard one. If ^C is a category, then obj 3C deno

tes the class of all its objects and, for a,beobj % , j£(a,b) denotes the 

set of all morphisms of % with the domain a and codomain b. For a-2-*b — * c , 

the composition is written |3 • oc . The category of all sets and maps is de

noted by Set. A "concrete category" means always concrete over Set. If 3C is 
a concrete category and a e obj 3£ , then | a | denotes the underlying set of a 
(but speaking about a topological space, we often do not distinguish between 

the space and its underlying set if there is no danger of confusion). If % 

is a concrete category, then a £b for a,beobj C# means that the identity map 

of |a| = |b| in Set carries a morphism from Cl*C(a,b) (and we say that a is fi

ner than b or b coarser than a). For concrete functors F,G: 3€—*-?$€ , we 

denote by F& G the fact that Fa 6 Ga for all a & obj 3f . In a topological spa

ce X, the closure of a set A is denoted by S or only by "K if there is no 
danger of confusion. 
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II. Preliminaries and some negative results 

II. 1. Let us denote by Top the category of all topological spaces and 

all t h e i r continuous maps. Let us recall that a functor 

$ : X — ^ Top v 

is called an almost full embedding (see e.g. !PT]) if it is one-to-one and 

fo r every pa i r of objects a, b of X 

a continuous map f: -\(a) —><J(b) is non-constant, 

iff f=$(g) fo r a (unique!) X -morphism g:a—>b. 

If *X has precisely one object, say a, then the existence of an almost full 

embedding $ of %tC into Top is precisely the representability of the endo-

morphism monoid M= IV(a,a) as the monoid of all non-constant continuous maps 

of the topological space X= tf (a) into itself. If TV is a d isc rete category 

(i.e. it has no morphisms except the unities), then c <J-( c)Io»-€ obj 'ft't is 

a stiff class of topological spaces. In IT,', it was proved that every small 

category can be almost fully embedded into the category of all metr izable 

spaces. 

I I . 2 . In what follows, we investigate the situation, when a functor 

m:Top —vTop 

is given such that 

(i) m is idempotent (i.e. m ~m=m) and 

(ii) m preserves the under ly ing sets and maps, i.e. the following dia

gram commutes, 

Top -J-L» Top 

\ / 
Set 

where the unnamed arrows denote the f o r g e t f u l functo r . Let us call any such 

functo r m sho r t ly a modification. 

Given a modification m, we ask, fo r which small categor ies k,, k« and 

fo r which functors T : k , — > k 2 there exist almost full embeddings $i:k,—* 

—-> Top and io'^2—*" Top sucn ^la* the s cl u a r e 

,1 *?2 

M m K 
Top ~ J U * Top 

commutes (i.e. <J2 * "-£ ~
m 9 $i)- *n such a case, we say that \ has a simul-
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taneous representation by m. 

If Y has a simultaneous representation by m> then Y must be faithful. 

In fact, $ x and m are faithful so that m « §>x= §2 ° * is also f a i t h f u l» 

hence ¥ must be faithful. We prove that for some modifications used in topo

logy, the faithfulness of Y is also sufficient. Let us say that a modifica

tion m:Top —**Top is comprehensive if every faithful T has a simultaneous 

representation by m. 

Clearly, if m has to be comprehensive, then its image m(Top) must be big 

enough, every small category k« has to be almost fully embedded into m(Top). 

This eliminates e.g. the discrete or the indiscrete modifications. On the ot

her hand, if m(Top) is too big, then m fails to be comprehensive again - the 

trivial example is the identity functor m:Top—»*Top, then only full embed-

ings Y:k,—*-k ? have simultaneous representations by m. Below, we discuss 

less trivial examples of modifications which fail to be comprehensive. 

II.3. First, let us recall that a modification m is called an upper mo

dification (or a lower modification) if mX.rX (or mX IX) for all topological 

spaces X (in a little wider sense, these terms are used in £uj). In Top,upper 

modifications coincide with the bireflections, lower modifications with all 

the coreflections distinct from the functor sending every space to the void 

space (i.e. the concrete coreflections), the corresponding bireflective (or 

coreflective) subcategory of Top is determined by the class {X|mX=X}. Let us 

also recall that every class *£ of topological spaces determines 

a lower modification m 

by the rule that for every space X, 

(T*is open in m<gX iff f~1( (X) is open in Y for all Y e ^ and all 

continuous f:Y—*X 

and an upper modification m^ 

by the rule that for every space X, 

it~l(Cf)lY &<€ , (Tis open in Y, f:X~-*>Y is continuous! 

forms a subbasis of open sets in m**X. 

(Thus, the discrete and the indiscrete modifications are m*# and nr where T 

consists of a one-point space.) The class b^f = -fX|m^X=X} (or c#= 

= 4x|m^X=X|) determines the biref lective hull (or the coreflective hull) of 

the class 1? and the modification m^ =m ^ (or m ^ =m ^ ) is the correspond-
x ct 

ing bireflection (or coreflection). 

II.4. Let us discuss the comprehension of the upper modifications m 

from the point of view of the size of m(Top). The indiscrete modification has 
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the smallest possible image, it is the last modification in the order of con

crete functors Top — . M o p . The next upper modification in Top smaller than 

the indiscrete one in the zerodimensional modification z. The class z(Top) is 

still too small, no zerodimensional space X with more than one point has the 

property that every non-constant continuous map of X into itself is already a 

homeomorphism of X onto itself, hence no non-trivial group has a representa

tion by all the non-constant continuous maps of a space in z(Top). The next 

smaller upper modifications are generated by continua. As it follows from our 

Main Theorem, some of these modifications are already comprehensive. 

Now, we try to approximate the comprehension of upper modifications from 

the opposite side - when m(Top) is big (equivalently, if the functor m is clo

se to 1 T Q D ) . As already mentioned, m cannot be the identity, but it cannot be 

either the nearest upper modification, namely the symmetric modification (X 

is said to be symmetric if x s y implies y * x). We shall show that in a more 

general context. The class of symmetric spaces is the bireflective hull of 

all T,-spaces, and the class of T,-spaces is an extremal epireflective subca

tegory of Top (extremal means that the reflective maps are quotient, i.e., if 

X belongs to the subcategory then any finer space belongs to it, too). 

Proposition 1. If ^C is the bireflective hull in Top of an extremal e-

pireflective subcategory & of Top, then the reflection m onto 3C is not 

comprehensive. 

Proof. Take for k, the trivial category with a unique morphism and for 

k2 a category with a unique object a and such that k2(a,a) is an infinite 

group (the functor Y is the unique possible). Suppose that a simultaneous 

representation (<tp $ 2) exist, then $2a must be aT,-space, $2a * 3C , hen

ce $ 2a € *J6 and consequently, $,a £ & (since $ , a 4 $ 2 a ) , which is impos

sible. • 

The last Proposition applies e.g. to the bireflective hull of Hausdor?ff 

spaces, Uryson spaces (every two points have disjoint closed neighborhoods), 

functionally separated spaces (the completely regular modification is Haus-

dorff), totally disconnected spaces, hereditarily disconnected spaces; the 

last two examples can be also treated similarly as zerodimensional spaces. 

So, these subcategories are too big as targets of upper modifications m which 

can be used for simultaneous representations. 

II.5. In the case of lower modifications, m cannot be the least one, 

neither the last but one (the corresponding subcategory consists of sums of 

indiscrete spaces). That is very easy to show. We may prove an assertion si-
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milar to Proposition 1. 

Proposition 2. If ̂  is a class in Top such that Y s It? provided Y is 

coarser than a connected X Q % , then m«£ is not comprehensive. 

Proof. If T , k,, k« are the same-as in the proof of Proposi t ion 1, 

then $2a must be connected, belongs to <£ , thus |>a belongs to r€ as 

well, hence $,a= $?a. 

Thus every comprehensive lower modification m is f iner than a non- t r i v i 

al lower modification m' which is not comprehensive (take the coreflective 

hull of m(Top)u (connected spaces;). 

II.6. Thus, we have seen that there are bounds fo r the comprehension of 

modifications, bounds both from "above" and "below". We do not know conditi

ons necessary and sufficient for the comprehension of modifications. However, 

the construction presented in this paper is rather general and gives the 

proof of the comprehension of some current modifications. 

III. The Main Theorem and its applications 

111.1. Like above, the properties needed for our construction are of 

two kinds: one group of proper t ies says that the image m(Top) cannot be too 

small, the other says that m(Top) cannot be too big. 

Definition. We say that a modification m:Top —i*--Top is stabilized by 

complete m e t r i z a b i l i t y if, fo r every space X, the following statements are 

fulfilled: 

a) if As,x is a C*-embedded regularly closed completely metr izable sub-

space of X, then the topologies of X and of mX coincide on A. 

b) If A»X is a C* -embedded zero set, BcX is cozero set containing A 

and such that B\A is completely met r izable, then mA (or mB) is a closed (or 

open, resp.) subspace of mX and the topologies of X and of mX coincide on 

B\A. 

111.2. The conditions from the preceding definition are needed in our 

const ruct ion (in fact, a little less is needed - see the const ruct ion in 

IV.2, 3, 4). By taking A=X in (a) we get that every completely met r izable 

space is a fixed object of every modification m stabilized by complete m e t r i 

zability. If m is an upper modification, it follows that m is f i n e r than the 

completely regular (=uniformizable) modification u (i.e. u=m where tfis the 
class of all completely regular spaces, or, equivalently, *€ consists of an 
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arc). And conversely, if an upper modification m is finer than u, then m is 

"almost" stabilized by complete metrizability. Indeed, the condition (a) is 

trivially satisfied and in (b), one can see easily that mA is a closed set 

and mB an open set in mX and that the topologies of X and mX coincide on B \A 

(use the fact that any x€ B\A has a neighborhood H L B \ A in X which is de

termined by a continuous function being zero outside B \ A ) . So, for a given 

upper modification m finer than the completely regular one, it suffices to 

show that both mA, mB are subspaces of mX. 

III.3. If m is a lower modification stabilized by complete metrizabili

ty, then m must be coarser than the sequential modification s (i.e. s=m^, 

where *f consists of all finite spaces and all convergent sequences). And a-

gain, if a lower modification is coarser than s, then m is "almost" stabili

zed by complete metrizability: (a) is trivially satisfied and similarly all 

the conditions of (b) except for those conditions that mA, mB are subspaces 

of mX. 

111.4. if m is an arbitrary modification stabilized by complete metri

zability, then m must be coarser than the sequential modification s and finer 

than the completely regular modification u (since uX Lor sX] is the coarsest 

Lor the finest! space rendering all the continuous maps on X into a metrizable 

space M Cor on a metrizable space M into XI continuous as a mapping uX —* M 

Lor M — > s X , resp.]). It follows from the two preceding paragraphs that for 

such a modification m to be stabilized by complete metrizability, it suffices 

and is necessary that mA, mB are subspaces of mX in the condition (b). 

111.5. The conditions describing the stabilization by complete metriza

bility ensure that m(Top) is not too small (since m(Top) contains all metriz

able spaces; Hence, by T V ] , any small category can be almost fully embedded 

in it). Now we add the condition ensuring that m(Top) is not too big: 

Definition. We say that a modification m:Top —*Top is essentially non-

identical if there exists a Hausdorff space X such that mX is Hausdorff, eit

her X £ mX or mX £ X and neither X nor mX contains a metrizable continuum. 

Any such space is called a distinguishing space of m. 

111.6. Every non-identical lower modification m is essentially non-iden

tical. That assertion follows from the fact that Top is the coreflective hull 

of T,-spaces with a unique accumulation point (such spaces are zerodimension-

al); if m ̂  I-- then mX ^ X for some of those spaces X and, hence, this 
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space X is a distinguishing space for m. 

For upper modifications m, the situation is more delicate. It is easy to 

show that if a totally disconnected space does not belong to m(Top) then m is 

essentially non-identical (such a situation occurs if m(Top) is contained in 

the class of regular spaces) . This situation can be given a more general set

ting. In the case that m(Top) contains with any Hausdorff space X not contai

ning metrizable continua all finer spaces than X, one must proceed individu

ally for every such m . 

III.7. Main Theorem. Every essentially non-identical modification m 

which is stabilized by the complete metrizability is comprehensive and all 

the representing spaces (i.e. all the spaces $.(©0, c e o b j k., i=l,2, in 

the notation of II.2) can be always chosen to be Hausdorff spaces. If, more

over, there is a distinguishing space X of m such that both X and mX are reg

ular (or completely regular or normal or paracompact), then all the represen

ting spaces can be chosen with the same property. 

111.8. Remark. The choice of the categories k,, k2 and Y* in the Main 

Theorem is rather free. If we choose k, and k? with precisely one object, say 

a, M ,=k , (a ,a ) , M2=k2 (a,a ) are their endomorphism monoids, a faithful functor 

H* :k,—-*-k« is precisely an embedding of M, into M?, we obtain a representa

tion of the pair of monoids M, £ M« by ^ ( a ) and its modification mtK(a). 

If we choose k« with precisely one object a and one morphism 1 and k, is a 

discrete category with card obj k,= ©e , where ou is a prescribed cardinal 

number, and lr sends all the objects of k, to the unique object of k«, then 

>, = 4̂ >-,( t y ) | c « obj k,} is a stiff set of spaces and m $ , ( e r ) = & 2 ( a ) , hence 

all the spaces X a X have the same modification mX (which is a rigid space 

because k2(a,a)= "*1J ) . 

111.9. Let us present some examples of modifications m:Top—>Top which 

fulfil the presumption of the Main Theorem, so that the Main Theorem can be 

applied on them. 

a) Completely regular modification. As follows easily from III.2, the 

completely regular modification u is stabilized by the complete metrizabili

ty. The classical example of a regular T,-space which is not completely regu

lar IE J, is a distinguishing space of u such that both X and uX are regular 

T,. Hence every faithful T : k , — » k 2 has a simultaneous representation by u 

such that all the representing spaces are regular T,-spaces. . 

b ) Sequential modification. The sequential modification s=iry (see 
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III.3) is stabilized by the complete metrizability. (In fact, sA is a closed 

subspace of sX for every closed A~X; sB is an open subspace of sX for every 

cozero set B~ X; the proof of (a) and of the other requirements in (b) in 

TII.l is trivial, see III.3). It has a distinguishing space X such that both 

X and sX are paracompact, see III.6. Hence every faithful Yik,—s» k~ has a 

simultaneous representation by s such that all the representing spaces are 

paracompact. 

c) Further lower modifications. If *t is a class of topological spaces 

which is closed with respect to continuous images, then for every space X 

AfeX is closed in m ^ X iff AnK is closed in K for each subspace K of X 

which belongs to Y? . 

This description implies easily that ITU. A is a closed subspace of m ^ X for e-

very closed A £ X and m ^ B is an open subspace of m ^ X for every cozero set 

B £ X provided that tf is closed also with respect to closed subspaces. Thus, 

if ff G. *€ and *€ is closed with respect to continuous images and closed sub-

spaces, then m ^ is stabilized by the complete metrizability, see III.3. Mo

reover, if m«,. is not identical, then it has a distinguishing space X such 

that both X and m^ X are paracompact, see III.6. Hence the Main Theorem can 

be applied e.g. on the following classes *€ -

«£ = all compact spaces, i.e. n y is a compactly generated modifica

tion; 

*€= all the spaces of the cardinality -&.«•• , where oo is a given in

finite cardinal, i.e. m<g is the coreflection on the subcategory 

of all the spaces with the tightness 4s.cc ; 

*£= all the compact spaces of the cardinality £ oc . 

For any class <£ containing if , we can form its closure with respect to clo

sed subspaces and then with respect to continuous images. If the obtained 

class 2 is still not so large that m^> is already the identity, then m** is 

comprehensive and all the representing spaces can be chosen to be paracompact. 

d) Composition of modifications. If m is an upper modification and m' a 

lower one, then both mom' and m'»m are modifications again, but it is neit

her an upper nor a lower modification in general. For example, the modifica

tion s * u sends the space Y=Z JUL T, where Z is a non-compact Lindelof space 

with a unique non-isolated point and T is the real line, the open subbasis of 

which is formed by all open intervals and the set of all irrational numbers 

(and 11 denotes the coproduct, i.e. the sum), on the space s (uY)=D ii R» 

where D is discrete and R is the real line with the usual topology, so that 

neither s«»uY.SrY nor Y^suuY. Let us notice that still s v u is stabilized by 

- 755 -



the complete metrizability and the space Z is a distinguishing space for sou. 

However, since the distinguishing space X of a modification m has to satisfy 

either Xta-mX or mXs-*X (and this is necessary for the construction in the 

proof of the Main Theorem), all the representing spaces fulfil the same ine

quality for any faithful Y (this can be seen from the construction), so that 

we work "in essence" only with lower or upper m o d i f i c a t i o n s . 

IV. The,proof of the Main Theorem 

IV. 1. Let us denote by G the category of all directed connected graphs 

without loops (i.e. the objects of G are all (V,R), where V is a set and RsVx 

x V such that never (v,v)sR and for every v,v'a V Cnot necessarily d i s t i n c t . ] 

there exist v
0
=v,Vp... ,v

n
=v' in V with (v

i
_

1
,v

i
)e RuR""

1
; h:(V,R) —>(V'',R') 

is a morphism of G iff it is an RR'-compatible map, i.e. it maps V into V' 

such that (v,v')fi R = . > (h(v),h(v')) 6 R'). Let H be a category, the objects 

of which are all triples (V,R,S), where (V,R) is an object of G and S~R; h: 

:(V,R,S)-—>(V',R',S) is a morphism of H iff it is both RR -compatible and 

S S - compatible. There is a natural forgetful functor 

P:H~>G 

which forgets the second relation, i.e. P(V,R,S)=(V,R), P(h)=h. In LT.,3, for 

any faithful functor Y : k , — > k
2
, where k, and k

2
 are small categories, full 

embeddings (= full one-to-one functors) A , : k , — > H , A ? : ^ — ^ G are const

ructed such that the square 

Y 

л i 
Л
2 

P
 V 

H > G 

commutes. Hence to prove our Main Theorem, it is sufficient to construct, for 

a given essentially non-identical modification m stabilized by the complete 

metrizability, almost full embeddings $,:H—*Top, 4
2
:G —>Top such that 

the square 

P 

T o p
_i»-vr

0
p 

commutes. Then i o A , and $>
2
© A

2
 9

i v e a
 simultaneous representation of 

Y by m. 
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I V . 2 . We will construct the functors $ , , j ? in IV.3 - 4 below. First, 
let us introduce some notation and show some auxiliary statements. If P is a 

space metrized by a complete metric p , A £ P its subspace with $«>(a ,a ' ) .£ l 
for all distinct a,a'c A and X is a space with |X|=|A|, we denote by 

PA X 

the space on |P| with the topology s u p ( t , d ) , where t is the topology given by 
rt> and d is the topology of X extended on |P| such that any point x 6|P| \ |x| 

is i s o l a t e d . Hence X is a zero set and C * -embedded subspace of P»X and 

P^X\X is metrizable (by a complete m e t r i c ) . 

Observation. If m is a modification stabilized by the complete metriza-

bility, then mX is a closed and P \ A an open subspace of mP.X. Moreover, if 

X^mX (or X>mX), then PAXirmPAX (or P ^ m P ^ ) . 

IV.3. In the rest of IV, we suppose that an essentially nonidentical mo

dification m stabilized by the complete metrizability is given and X is its 

distinguishing space. 

Let P be a space metrized by a complete metric ^ , A its subspace with 

j>ia,a')J* 1 for all distinct a,a'c- P and |A| = |x|, p,, p 2, P 3 are three dis

tinguished points of P such that ^ ( p p P J >1 and yu(p.,A)>l for 

i,j 4-fl,2,3i, i-4j. Depending on it, we construct the functor <£ 2:6—^Top. 

The construction of J ? is just the arrow construction, described in a gene

ral setting e.g. in £PTj: each arrow r £ R in a connected graph (V,R)«obj G 

is replaced by a copy of mP.X. More in detail, we take a copy (mP.X) of the 

space mP«X (all the points, subspaces, ... of (mP.X) are denoted as in mP.X, 

only the letter r is added) for each r€ R and, in the coproduct 

IX (mP«X) , we identify, for each r=(v, ,v?)c-R, 
rsR A r 

p, with p, ' iff r'=(v,,v')e R, we denote the obtained point by v,, 

Pl with p2y iff r'=(vj,Vl)€R, " " ," " " " v p 

p 2 j r with p2jr- iff r'=(vpv2)sR, '' " " « v2, 

p3 with p3 r',for all r's R, " " " " " " c, 

taking all the sets C { y J *& Jy^P-* J < t}: with £ > 0 as a local basis 
r*R r * r r '̂r 

of c and all the sets I \yT\ £r(yr»Pi r ) < t $ c- L/ { yrl P r(y r>P 2 r > < Cf 
rc-R* ' r6R-> 

with ! > 0 as a local basis of v, where R. is the set of all r&R such that 
v is its i-th member. Hence the obtained space $2(V,R) contains V (as its 
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C* -embedded discrete zero set ) and ^(VjR) \ \j (mX) can be metrized by 

a complete metric. 

Observation. m$2(V,R)= $2(V,R). 

If h:(V,R) — > (V',R) is a morphism of G, we define f=£?(h) such that it maps 

each (mP»X) onto OnpAX)r'
 as t n e identity, for all r=(v-,v2)«R and r'= 

=(h(v,),h(v2))g R', i.e., in our convention, f(x )=x ' . 

Observation. $2-G —>-Top is a correctly defined one-to-one functor. 

Every $(V,R) is regular or ... or paracompact whenever mX has this p roper ty . 

IV.4. The functor $>.:H—*Top is also constructed by the arrow-const

ruction; given (V,R,S)€ obj H, then, 

if X.£mX, the arrows in S are replaced by copies of mP.X and 

the arrows in R\S are replaced by copies of P.X; 

if rnX-^X, the arrows in S are replaced by copies of P.X and 

the arrows in R \ S are replaced by copies of mP.X. 

We do not describe the arrow-construction with all details as in IV.3 because 

the identifications are as in IV.3 and the local basis of the glueing-points 

is also as in IV.3. 

Observation. m<$,(V,R,S)= $2(V,R); $,(V,R,S) is regular or ... or pa

racompact whenever both X and mX have this p rope r t y . 

If h: (V,R,S)—>(V',R',S') is a morphism of H, we define g= 4 x(h) simi

larly as in IV.3, i.e. g maps the space replacing an arrow r=(v,,v?) onto the 

space replacing the arrow r'=(h(v,),h(v«)) as the identity. Here, we have to 

mention that if reS, then r'fi S' so that r and r' both are replaced by copies 

of mP.X (if X.6mX) or both are replaced by copies of P»X (if mX-iX), hence the 

identity map is continuous; if r c R \ S , then either r'e R'x S' and then r and 

r' are replaced-by copies of the same space again, or r's S'; in this last 

case, the identity map is continuous again, being a map (P/\x)r—*0nP*X) ' , 

if X*mX or ( m P A
x ) r — ' (

p
A
x V if mX'~X* 

Observation. ^i^H—>Top is a correctly defined one-to-one functor and 

Г *2 
Г. 

IV.5. The parts IV.6 - 9 are devoted to the construction of such space 

P, its subspace A and the distinguished points p,, p
2
, p,, that the functors 

$ , and f>
2
, constructed from them as described in IV.3 - 4, are almost full. 

First, let us show that it is sufficient to construct them such that the fol

lowing statements a), b) are true: 
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a) if (V,R)eobj G and ,#mPAR — > $2(V,R) is continuous, then eitherZ 
is constant or there exists rfeR such that Jt is the identity map of mP.R onto 
its r-th copy in $2(V,R), i.e.*£(x)=x for all xamP.R •, 

b) if (V,R,S)f-obj H and JL is a continuous map of mP.R (or P.R) into 
$,(V,R,S), then either £ is constant or there exists re R such that/(x)=x 

for all xemPAR (or for all xeP.R). 

Thus, let us suppose that a) is valid and that f: J2(V,R) —**$2(V',R') 

is a non-constant continuous map. For each rcR, we investigate the domain-

restriction (mPAX)r — > #2(V',R') of f, analogously as in tPTj, pp. 105-6. 

If one of these restrictions is constant, say the r-th one, necessarily f(c)= 

=f(p, )=f(p2 ), hence all these restrictions must be constant, so that f 

must be constant, which is a contradiction. Thus, by a), for every r5R there 

exists r's R' such that f(x )=x - for all xsmP.X. Since (V,R) is connected, 

for every v s V there exists r s R and i£il,2j such that v=p. . Then h(v)= 

-9i ' 9ive a G-morphism h:(V,R)—>(V ,R ) such that f= <[>7(h)
s. l ,r L 

Let us suppose that b) is satisfied and that g: $-(V,R,S) > 
$-(V',R',S') is a continuous non-constant map. We find h:(V,R)—>(V',R') '<d 

similarly as in the previous case. However, b) implies that if r=(v,,v9)€ S, 

then r'=(h(v,),h(v2)) must be in S' because X4-mX, so that the identity map 

mP.R—•P.R is not continuous whenever mX>X and 

P.R—>mP.R is not continuous whenever X ̂ mX. 

Thus, the constructed h is also SS'-compatible, hence it is a H-morphism and 

0= * x ( h ) . 

IV.6. The construction of P, A and p,, p2, p, such that a), b) in IV.5 

are fulfilled, heavily depends on the existence of a Cook continuum. Let us 

recall that a Cook continuum is a non-degenerate metrizable continuum Q such 

that 

if K is a subcontinuum of Q and f:K—*Q is a continuous map, then eith

er f is constant or f(x)=x for all xfcK. 

A continuum with these properties was constructed by H. Cook in I d . A more 

detailed version of the construction is contained in Appendix A in LPTl. We 

use its non-degenerate subcontinua (in what follows, continuum always means 

a non-degenerate continuum). 

We choose pairwise disjoint subcontinua of Q, denoted by A ,B ,€ , A ,,A|, 

^1 o» ^ol'^l'^l o**** ^nere *s a countable collection of them); we will call 

them building blocks. We metrize them such that the diameter of A , 8 , C is 

1, that of A,,B1,C-L is -j etc., in general the space with single index i has 
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diameter 2"
1
 and spaces with indices i, j have diameter 2 i n u

»J'
)
, Further

more, in each of these subcontinua we choose two points of distance equal to 

b =c u, — — ^9 

o o o
 г

 1
 г

 -• 
öo,l 4,o 4,1 

Figure 1 

the diameter of the subcontinuum; we call the points in A , a and a , in B , 

b
л
 and b . in A„ ,, a„ , 
o o' 0,1* o,l 

and ә ,, etc. 
o, 1 

We now glue the spaces into a con

nected metric as indicated by Figure-1. Finally, we form the completion of 

the resulting metric space by adding the points a, b and c as indicated (i.e. 

a=lim a ). The resulting space will be called a triangle space (the construc

tion of the triangle space is also, in another notation, in fPTj, pp. 223-4). 

IV.7. We need four triangle spaces, say T,, T2, T-., L , T^ is created 

from a collection 1^ i ^ *% ^ K ^ l ^ ^ t of subcontinua of Q as in IV.6 
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4 
such that the collection 1- U Z. is stiff (any pairwise disjoint collection 

of subcontinua of Q is stiff). The subspaces A ^ ,ir*,... are called building 

blocks of T.. The copies of building blocks of T. are called also building 

blocks of Y whenever Y is created from the triangle spaces (or also from C« S) 
as described below. Denote by S. the subset of all the glueing points of L , 

i.e. S i = ia
( i ),b ( i ),c ( i ),a ( i )

)a 1
( i )

>...} and by a(i), b ( i ), c ( i ) the points 

added in the forming of the completion. 

IV.8. The role of T, and T, is to obtain sufficiently large stiff col

lection of spaces of a special form. For this reason, we choose a rigid col

lection 

of objects of G, where X is the distinguishing space of m (we recall that each 

(V ,R ) has no non-identical endomorphism and if x -*-x', there is no morphism 

(V ,R )—>(V ' ,R ' ) , such a collection does exist, see [PT"). In T,ll TA, we 

identify a with aK and hK with b , the obtained space is denoted" by 

T, the obtained points by a and b. We use the arrow construction again: in 

(V ,R ), we replace each r;-R by a copy of T; more in detail, in the copro-

duct 1 1 (T) (where (T) are copies of the space T; we use the convention 

» R x 
of IV.3 that points, subspaces,... of (T) are denoted as in T, only the in
dex r is added) we make the following identifications for each r=(vpV2)<*R : 
a with a - iff r'=(v,,v2 )<*

R
X> we denote the obtained point by v,, 

a with b ' iff r'=(v,',v,)£ R , we denote the obtained point by v,, 

b with b ' iff r'-^v,'^)© Rx, we denote the obtained point by v«» 

c with c ' for all r'aR , we denote the obtained point by e , 
r r x* r J x 

c with c„'^ for, all r'«R . we denote the obtained point by c' : r r x r x 1 

the local basis of the glued points is defined similarly as in IV.3, so that 

we obtain a complete metric space; it is denoted by C . 

IV.9. For every x&X, we form the space T0 such that we replace the 
(2) z» x 

subcontinuum C^ in the triangle space T« by the space C . More in detail: 

in C vU(T«\(C
( 2 )\{c ( 2 ),c' ( 2 )|), we identify cv with c

( 2 ) and c' with c'(2). x z o o o xo xo 
Let us denote points, subspaces etc. of T 2 which are outside C , as in T«, 

only the index x is added. Our desired space P is obtained from 

T, LX ii T2 1 xeX l > * 
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by the identification of 

a with a^ ' for all xeX, the obtained point is p., 

b^ ^ with b£ ̂  for all xeX, the obtained point is p2; 

the local basis of the glued points is defined as in IV.3, so that P is real

ly metrizable by a complete metric. Its points p,, p0 are already defined, we 
(1) put p,=c . Finally, the C * -embedded discrete zero set A with the same un-

» (2) 
derlying set as X is formed by all c^ , xsX. 

IV.10. It remains to prove that P, p,, p«, p, and A satisfy the state

ments a), b) in IV.5. First, we prove several auxiliary lemmas. 

Lemma. Let Z be a collection of all building blocks of all Tp...,L. 

Let Y be a space containing Z &Z such that the boundary of Z in Y consists of 

two points z,, z«. Let Z s Z and let f:Z'—>Y be a continuous non-constant 

map. Then either Z'=Z and f is the inclusion (i.e. f(z)=z for all z e Z) or 

f(Z')nZ£-Czx,z2}. 

Proof. Put C/=f"1(Z\-Cz1,z2J). Suppose that C4- 0. If Z'\ 0"=0, then 

f(Z')£ Z\<z,,z2}, hence f must be constant, which is a contradiction. Hence 

Z' \ <7sfc 0. Choose z & C and denote by K the component of z in <J . Since 

Z' \(fjr 0, K intersects the boundary of if (see [Kl, § 42,111); hence f(K) 

is a subcontinuum of Z (it is non-degenerate because f(K)nYz1 ,z2V4a 0 and 

f(K) r. (Z N<z, ,z2l) 4* 0). Since a subcontinuum of Z' is mapped continuously 

onto a subcontinuum of Z, necessarily Z'=Z and f(y)=y for all ygK. Herfce 

f(z)=z; but z was an arbitrarily chosen point of CT » so that f(z)=z for all 

z € Cf . Consequently (X=l\{zvz2\i hence f(z)=z for all z€Z. 

IV. 11. Let Tp...,T4 be as in IV.7. 

Lenaa. Let i,-jfe-{l,... ,4), let Y be a space containing L such that the 

boundary of T. in Y consists of â  , b^ , c . Let f:T.—»Y be a non-con

stant continuous map. Then either i=j and f(x)=x for all xe. T. or f(T.)r.T. £ 

*<.<»b<»c<»>. 

Proof. Put U =Ti\-Ca
(i\b(i),c(i)}, (7=rX(U). 

©6) Let j % i: If there is a building block Z of T. with Z r\ <7 * 0, 

f/Z must be constant, by IV. 10; hence its image is a point y e. 1L . Then f 

maps all ̂ »e building blocks> intersecting Z, on y again; hence it maps all 

the building blocks, intersecting them, on y again. We conclude f maps the 

whole T. on y, which is a contradiction. Hence f(T.) n Xi =0. 
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f t ) Let i=j: Let there be a building block Z of li with Z r CT4-0. Then 

either Z £. ( f and f(z)=z for all z s Z or f/Z is constant. Let us suppose that 
f/Z is constant for a building block Z with Z n Cf 4* 0, f maps Z on a point 
y € U . If y is an interior point of a building block of T., we can repeat 

the argument of oc) and conclude that f must be constant on T.. Thus, let us 

suppose that y is in S. (see IV.7). However, every building block Z' of T. can 

be joined with Z by a finite sequence Z=Z ,Z,,...,Z =Z' of building blocks 

such that Z, if;Z.= KzA and none of the points zi»-"> z
n_i is equal to y, so 

that all Z,,...,Z =Z' must be mapped on y again. We conclude that if Z is a 

building block of T. such that Z -̂  C^4-0, then necessarily Z £ C and f(z)=z 

for all zf Z. But if C ** 0, it contains at least one building block of T., 
hence it contains all the building blocks which intersect it, etc. Thus, in 

this case, f(z)=z'for all zcT.. 

IV.12. Let 1 , x e X , be as in IV.9. 
L ,X 

Lenma. Let x,x'eX, let Y be a space containing T« such that the boun

dary of T in Y consists of a^2), b^ 2 ), c ( 2 ). Let f:T9 - ~ » Y be a non-con-
*.«X X X x z,x stant continuous map. Then either x=x and f(z)=z for all z* T 9 ' or 

Proof. Put 1* =Y\fa x
2 ),b x

2 ),c^ 2 )J, U =f"1(tt). By IV. 11, any copy of 

T, or L in 1? x' wnicn intersects (T , is mapped by f either onto some of its 

copies in T« x "as the identity" or f is constant on it. However, if it is 

constant on it, it must be constant on the whole C '(the graph (V '»R ') is 

connected!). Then it must be constant on the whole T« * - the proof is ana

logous as in IV.11. Let us suppose that f maps any copy of T, and of T. which 

intersects Q , onto some of its copies in *U as the identity and that there 
is a copy of T, or T* which intersects ff . Then every copy of T, and T, is 

in ( f (and f maps them on some of their copies as the identity). Then neces

sarily there is a morphism h:(V ',R ')— •> (VX,RX) such that f maps the r-th 

copy of T, (or T J onto its r'-th copy in rU , where r=(VpV 2)« R ' and r' ~ 
=(h(v,),h(v?)). Since ^ is a rigid collection of graphs, then necessarily 

x=x' and h is the identity, i.e. f maps C onto itself as the identity. Then 

necessarily f(z)=z for all z £ T 7 - the rest of the proof is analogous as in 
z»x 

IV.11. 

IV.13. Lxmm. Let (V,R)cobj 6 (or (V,R»S)<tobj H ) , let Y*#2(V,R) (or 

Y=$,(V,R,S)). Let f:P—-*Y be a non-constant continuous map. Then there 

exists r « R such that f(z)=zr for all z « P . 
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Proof. Any building block of Y has the boundary in Y consisting of two 

points. Hence, by IV. 10, f maps any building block Z of P on some of its co-

pies in Y as the identity or f is constant on Z or f maps Z into Y \ Int Z fo r 

any copy Z of Z in Y. In the last case, f/Z must be constant again. In fact, 

if we subt ract from Y all the i n t e r i o rs of all the building blocks of Y, the 

remaining subspace consists of components homeomorphic to the components of 

mX (o r of X.and mX) and one-point components. Since ne i the r X nor mX contains 

a I non-degenerate1 met r izable continuum and both X and mX are Hausdorff spa

ces (see II.4), f(Z) must be a one-point set. Hence f maps any building block 

Z of P e i t he r onto some of its copies in Y as the identity or f/Z is constant. 

If f/Z is constant f o r some building block Z, then f/T is constant fo r the 

t r i a n g l e space T (or the copy T9 ) containing Z, by IV.11 (or by IV.12). Hen-
z,x 

ce it is constant on the whole P. If f maps every building block Z of P on 

some of its copies in Y as the identity, then f maps any t r i a n g l e space on 

some of its copies as the identity, by IV.ll, and it maps any T9 in P on 
z,x 

some of its copies as the identity, by IV.12. Consequently there exists rfeR 

such that f(z)=z f o r all z eP. 

Corollary. The statements a) and b) in IV.5 follow immediately from 

IV. 13 because the identity maps P — * P A X aind P—^mP.X are continuous. 
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