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Planarity thresholds for two types 
of random subgraphs of the n-cube 

KARIN MAHRHOLD, KARL WEBER 

Abstract. Solving a problem posed by the second author (cf. [2]) we determine the thresh
old probability pf = 2_ n l1 1n""4 l1 1(p t f = 2 - n ! 1 4 n ~ 4 ! 1 4 ) for planarity of random induced 
(spanning) subgraphs of the n-cube. 
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The n-cube Qn is the graph consisting of the 2 n vertices ( a i , . . . , a n ) , a* E {0,1}, 
and the n 2 n _ 1 edges between vertices differing in exactly one coordinate. A span
ning subgraph g of Qn has the same vertex set as Qn. An induced subgraph / of 
Qn with the vertex set A C Qn contains exactly those edges of Qn that join two 
vertices in A. (Note that by Qn or / are not only denoted the graphs but also their 
vertex sets, g stands for the edge set of g too.) Choosing the edges of g (the vertices 
of / ) at random, independently of each other with the same probability p, we arrive 
at a random spanning (induced) subgraph whose probabilities are defined as Prob 
(g) = ptilqn*"'1-^ a n d Prob ( / ) = pl1V nH1 l , respectively, where q = 1 - p . We 
say g (or / ) has a given property almost surely (a.s.) if the probability that g (or 
/ ) has this property tends to 1 as n —• oo. A probability p is called a threshold for 
the property E if p = o(p) implies E is almost sure whereas p = o(p) imphes E is 
almost sure. 

In the sequel we write a « /5 instead of a = o(/3). We write a x /5 if a and 
(3 have the same order of magnitude, i.e.a = 0(fi) and /? = 0(a). AH limits, 
asymptotics, etc., are understood as n —• oo. 

Our main result is the following 

Theorem 1. The probability p/ = 2~"n/11n~4/11 is the threshold probability for 
planarity of random induced subgraphs ofQn, and the probability pg = 2""n/14n~4/14 

is the threshold probability for planarity of random spanning subgraphs of Qn. 

A graph is called cubical if it can be embedded into some Qn, i.e. if it is isomorphic 
to a subgraph of Qn ([1]). A cubical subdivision of K5 (K3.3) with minimum number 
of vertices is called a minimum subdivision of Ks (K3,3)- The key result for the 
proof of Theorem 1 is 
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Theorem 2 ([3]). Every minimum subdivision 0/K3.3 or K5 is isomorphic to Si 
or S2, respectively (cf. Fig. 1). Both S\ and S2 are (up to isometric transformations 
of Qn) uniquely embeddable into Qn for n > 4. 

S1 

Fig. 1 

Note that Si contains 11 vertices and 14 edges and S2 contains 11 vertices and 
16 edges. 
PROOF: of Theorem 1. First we deal with random induced subgraphs / . Obviously 
2nn11 p12 is the order of magnitude for the expected number of connected subgraphs 
of / with 12 vertices. Hence for p « 2~n/12n -11 '12 = p\ this expectation tends to 
zero and so / contains a.s. no connected subgraph of order 12 ( or greater). Now 
denote by X(f) the number of copies of Si or S2 in / . Then by Theorem 2 

•EJrx2(2)2"-V,xn42V1-

(Note that the number of 4-cubes in Qn is (n)2n"'i, and each 4-cube contains a 
bounded number of copies of Si and S2. Moreover p11 is the probability that such 
a fixed copy is a subgraph of / ,) 

For p « pf = 2"*n/11n~4/11 we have EX -» 0 and / contains a.s no copy of Si 
or S2 and, since pf < pu no nonplanar subgraph in general. 

In order to show that for p » pf, f contains a copy of Si or S2 (actually of 
both of them) a.s. we use the second moment method. Because of Prob(K = 0) < 
D2X/(EX)2, our assertion follows if D2X = o((EX)2) or EX2 = (EK)2(1 + o(l)), 
respectively, can be shown. 

Denote the copies of Si and S2 in Qn by Ki, K2,..., Kr (T x n42n by Theorem 
2) and define Xi(f) = 1 if / contains K, and Xi(f) = 0 otherwise. Then we have 
EX2 =B ̂ E(X%Xj)^ where the sum is taken over all (ordered) pairs (t,j), 1 < t,j < 
T. Now, by Theorem 2, K,- is contained in exactly one 4-dimensional subcube W, 
of Qn. Conversely, every Wi contains the same constant number of K'^s. Hence we 
get 

£ E(XiXj) = 0(n8-*2np22~2fc) = o((EX)2) 

(iJ):\WinWj\~2k 
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for p » p / , k = 0,1,2,3. Moreover, 

Y^E(X{Xj) = 0(EX) = o((EX)2) for p » pf 

(iJ):Wi = Wj 

and since K; D Kj = 0 implies Ep^X,) = (EK t)(^^i) w e n a v e 

^ ( K . X ^ ^ E K ) 2 

( t , i ) :WinW> = | . 

Now the proof for random spanning subgraphs g goes along the same line. The 
expectation for the number of connected subgraphs of g with 15 edges is of the 
order 2nn15p15. Thus for p « 2~n /15n_1 = p^ the graph g contains no connected 
subgraph with 15 (or more) edges. Denote by Y(g) the number of copies of Si in 
g. Then (arguing as above) 

EY x n 4 2 V 5 , 

and we may proceed as above. (In this case we have E(XiXj) = (EXi)(EXj) even 
for \WinWj\<l.) m 
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