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Combinatoric properties of classes in AST 

J.MLCEK 

Abstract We say that a class Q C [[V]k]m is (&, m)-complete on Z iff (Vti € [Z]°°)(3v € 
M°°)([Mfc]TO £ Q) where [Z]°° = {u C X,uis an infinite set}. We discover some theo
rems on an existence of complete classes, namely those which are figures in an equivalence 
= with P fully revealed (and exact). Note that Ramsay theorem is a special case of such 

theorems on completeness. 

Keywords: Completeness, condesation, equivalence = , figure, Ramsay theorem 
{P} 

Classification: 03E70, 05C55 

INTRODUCTION 

Having an equivalence E on a class [Z]k we call, as usual, a subclass U C Z 
homogenous for E iff (3* € Z)([U]k C £"{*}) , i.e. iff [[U]k]2 C E, where E = 
{{x, y} € [V]2; (x, y) € E}. Assuming that F, Z are set-definable and there is only 
a finite number of factor-classes of E, we conclude by using the Ramsay theorem 
(see §1) that 

(i) (v« € [ZD(iv e M°°)([M*]2 c E). 

(We put [Z]°° = {u C Z;u is an infinite set}.) Let us agree on calling E submit
ted to (1) (k, 2)-complete on Z. Note that the condition that [Z]k/E is finite is 
equivalent to 

(2) (VueKzi'pXM2 n i ; / 0 ) 

Such an E, satisfying (2), is called 2-condensating on [Z]k. Thus the following 
"completeness theorem" holds: Let E be an equivalence on [Z]k and suppose that 
k > 1, E, Z are set-definable. If E is 2-condensating on [Z]k then E is (k ,2) -
complete on Z. 

We naturally generalize the notion of completeness: writing m instead of 2 and Q 
instead of E in (1) we obtain the definition of (k, m)-completeness of Q on Z. Sim
ilarly can be gained the notion that Q is m-condesating on Z. Now, completeness 
theorems are those which conclude from condensation to completeness; we discover 
four such theorems. The point is in finding a type of classes such that a completeness 
theorem holds for Q, contained in the system of classes of such a type. We find two 
such systems of classes: fully revealed classes and so called m-K-symmetric classes. 
To justify the introduction of the second one, let us observe that 2-J5--«ymmetric 
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classes, where E is an equivalence on V, are just figures in E. Moreover, we de
scribe an operation U(K) such that, roughly speaking, U(K) is a lower bound for 
m-K-symmetric k-condensating classes. We introduce an operation V(K ) which 
is in an important special case of K inverse to U. By this special case we mean 
that K = E{P}, where P is fully revealed and exact (see preliminaries and §4). 
Note that E{P} denotes an equivalence, usually known as = . We obtain, as a 

conclusion, the least element among k-condensating figures Q in E{P}, which are 
k-transitive, i.e. they satisfy V(Q) Q Q- This element is, moreover, (l, k)-complete 
for each / € FN. 

The results of Alena Vencovska (see[C]) which are identical with those obtained 
here when specifying k = 2 = m and P is a set, have been a source of inspiration 
for the problems of this paper. 

PRELIMINARIES 

We shall use the obvious notation of the Alternative set theory; recall that t, j , 
k, /, m, n range over finite natural numbers. 

We define [X]° = X, [X]n = {tCX; t&n} if n > 1 and [X]<m'n> = [[X]m]n ; note 
that [X]<°'n> = [X]n . Assume that 0 ^ r C FN2. We put [X]r = lj{[X]p;p € r } . 

Having 0 ^ T C FN we write (T,m) instead of T x {m} and (k ,m) instead of 
{{k,m)}. 

Let us introduce the following symbols: 

[X]°° = ( « C X;u is an infinite set }, [X]* = P(X) - [X]°°. 

We put, for an equivalence F, 

E = {{xty}elV]*;{x,y)eE}. 
Let P be a class. We define 

E{P} = {(x,y);<p(x,P) <^ <p(y,P) 

holds for every normal formula <p(v, P) € FL} 

and 

Def {P} = {x; there exists a normal formula <p(v, P) € FL 

such that (3!v)<p(v, P) A <p(x, P) holds}. 

Let P be fully revealed. Then E{P} is a compact equivalence. Each monad 
of such an equivalence is either infinite or one-element set {x} with x 6 Def {P}. 
Assume that (x,y) € E{P}. Then there exists an automorphism F such that 
F(x) = y and F"P = P hold. 

Definition. We denote by Nd{P} the system of all classes {x;<p(x,P)}, where 
<p(vy Z) is a normal formula of the language FL. Writing X G Nd{P} we mean 
that JJf is a class from Nd{P}. 

Definition. We say that a class P is exact iff X € Nd{P} -> X n Def {P} ^ 0 
holds. 

Let P be fully revealed, X € Nd{P} and let <p(v, Z) € FL be a normal formula. 
Then {x;<p(x,P)} e Nd{P} holds, too. However, not yet that each X € Nd{P} is 
a figure in the equivalence E{P}. 
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§1 RAMSAY THEOREM 

Our aim is to prove the following 

Ramsay theorem. Let I > 0, m > 1 and let {Pi; i < m) be a cover of a class [Z]1. 
Assume that all classes —Z, Pi, —Pi, i < m, are revealed. Then (Vu G [z]°°)(3v G 
[u]°°)(3i < m)([v]1 C P^ holds. 

To justify the name of this theorem, let us introduce the following consequence. 

Corollary. (VI, k, m > l)(3n)(Vp)(p is a cover of [n]1 A p « m —• (3u C n)(3p, G 
p)([u]lCPiAu&k). 

Indeed, we deduce from the previous theorem that, for each 7 ^ FN, holds: 
m > 1 —• (Vp)(p is a cover of [7]' Ap«m —> (3u C n)(3pi € p)(M' C pt A uwk). We 
conclude from this, using the overspill principle, that the corollary is true. 

Remark. We shall use in the following familiar properties of revealed classes/as, 
for example: if X, Y are revealed, then XUY, XC\Y, are revealed, if —X is revealed 
then — [X]m is revealed and X is revealed if[X]m is revealed. 

The proof of the Ramsay theorem will be given in a sequence of lemmas. We use 
the following notation: let Rams, denote the sentence 

(VQ C [V]l)((Q is revealed A -Q is revealed ) - (Vti € [V]00) 

(3v G [uD([v]! C Q V [v]1 C [V]1 - Q)). 

Lemma 1. Rams, holds for each I G FN. 

This is a key lemma of our proof. Before we give its proof, let us prove the 
Ramsay theorem from Lemma 1. 

Lemma2 . Let [Z]1 = Pi U P2,Pi n P2 = 0. Suppose that -Z, Pi, P2 are all 
revealed. Then (Vti € [Z]°°)(3v E [u]°°)([v]1 C Px V [v]1 C P2). 

PROOF: Put Q = P-. Then -Q = P2U(-[Z]1) and, consequently, -Q is revealed. 

(See Remark above.) Now, the lemma2 follows from the lemma 1 immediately. • 
We can easily prove, by induction on m, the following 

Lemma3. Let [Z]1 = P0 U ••• U Pm_i,m > 1 and let {Pi;i < m} be a partition 
of[Z]1. Suppose that -Z,P0,... , P m - i are revealed. Then (Vti € [Z]°°)(3v € 
[ti]°°)(3i G m)([v]1 C Pi). 

Now, let us prove the Ramsay theorem from lemma3 . Put Po = Po,Pi = 
P, - UPj = H(Pi - P,). Each class P, - Pj is revealed and, consequently, Pi is 

revealed for all i < m. We have, for i < m, P, C Pj. Thus the partition {P,; t < m} 
of [Z]1 satisfies the assumptions of the lemma 3 and our theorem is proved. 
PROOF: of the lemma 1 We shall prove it by induction on /. 

(1) Ramso and Ramsj hold trivially. 
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We shall Prove Rams.—•RamsJ+r Let us denote by />/+1(K,Q) the formula 

Q C [V]'+1 A (3x € K)(3i> € [X]°°)([v]1 C Qx), 

where Qx * {t G [V]1; t U {x} G Q}. We prove 

(2) Rams, A Q C [V]l+1 A Q, -Q are revealed -> 

- ( V u € [Vp)(„+ 1(u, Q) V pl+1(u, [V] ,+I - Q)). 

Let u € [V]°°, z G V. Then Qx and - Q x axe revealed, Qx C [V]1. We deduce 
from Rams, that (3v G [t-PXH* C Qx V [v]1 C [V]' - Q«). Consequently, (3* € 
u)(3v € M°°)(M' C Qx) V (3* G u)(3v € [ u p X H ' C [V]' - Qx) holds, too. We 
have [V]' - Qx = ([V]'+1 - Q)x and (2) is proved. 

Put 

Y = {u€[VP;/, ,+,(«, Q)} 

and Y9 = {u € [V]°°; „+ 1(u, [V]'+1 - Q)}. 

Thus, we have (Vu G [V]°°)(u G V V u G Y% i.e. F U V = [V]/+1. We have, in 
addition, uGYAvDu—> v €Y. Thus Y C [V]°° is an upper-class in the ordering 
([V]°°,C). We deduce from this that (Vu G [V]°°)(3u> G [V]°°)(w C u A u> C 
r v u » n y = ^ where u> = {t> G [Vp;v C u>}. We have (Vu G [Vp)(3iv G 
[u]00)(M00 C r V M°° C Y') and, consequently, 

(Vu G [VP)(3u> G M°°)[(Vt, G [u,p)p,+1(t;,Q)V 

(3) (Vu€M~)p,+ 1(t ; , [V] l + 1-Q)]. 

Now we prove 

(4) (Vu> G [Vp)((Vu G M°°)Pi+i(«,Q) - (3u G M°°)(M'+1 £ Q)). 

Let ai 6 u;, t?t G M°° ^e such that [v-]' C Qai. Suppose that we have, for 
i = 0,1,2,. . . , a i+1 G Vi - { a i , . . . , a j and u i+1 G [t;* - {ai,...,aj}]°° such that 

L e t {%>• •-,<*.,} C [{a1 , . . . ,a„}]'+1 be such that 1 < to < h < • • • < «i < 
n. We ^ v e {a t l , . . . ,a,,} G [v,0]' and, consequently, {ah,... ,a;.} G Qa,0, i.e. 
{at'o»• • • > a« } € Q. Thus, we have the following: 

(Vn>I)(32GMw)([z] l + 1CQ). 

Choose, tot n>liZn£ [w]n s u c h t h a t ^ jf+i C Q. Q is revealed. Thus, there exists 
u such t ^ t .Uj*n]'+i C u C Q, and we have (Vn > /)(3* G Mn)([*] , +1 C u). We 

have, co^equently, &<y£FN such that (3z G [«>n([z]l+1 C u); such a z satisfies 
^ G [tup /s [z]Hi g Q and (4) is proved. 

Now, ^ n s ^ R a m s ^ j is an easy consequence of (3) and (4). • 
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§2 COMPLETENESS 

Definition. Let 0 ^ r C FN2. Q is called r-complete on Z iff 

(Vu6[zr)(3t;€[tir)(Hrcg). 

Proposition. Let, for every i £ FN, Qi be r-complete on Z{. Then C\Qi is r -
complete on nZ{. 

PROOF: Let u € [nz t]°°; choose v0 € [u]°° such that [v0] r C QQ. Let vi+x € [u,]00 

and [u l + i ] r C Q t + 1 , i £ FN. Then there exist v G [nvt]°°. We have (Vz)([i>]r C 
Q)- • 

Proposition. The system of r-complete classes on Z is closed under countable 
intersections. If a subclass of a class X is T-complete on Z, then X is T-complete 
on Z, too. Q is T-complete on Z ifJQV\[Z]r is r-complete on Z. Q is T-complete 
on Z <~+ (Vp £ T)(Q is p-complete onZ). k 

PROOF: Only the last proposition is not quite trivial. But it follows from the fact 
that r X FN. * 

Definition. Q is k-condesating on Z iff (VM € [Z]°°)([u]k f) Q ^ 0). 

Proposit ion. If Q is k-condesating on Z, Z' C Z and Q' D Q, then Q' is k-
condesating on Z'. 

Example. Let P be fully revealed. Then dotE{P} is 2-condesating on V. 

Theorem (1.theorem on (0, k)-completeness). 
Let Q C [V]k be k-condesating on Z and let Q,—Q)Z,—Z, be revealed. Then Q 

is (0, k) -complete on Z. 

PROOF: Let u € [Z]°° and put Pi = Q D [Z]k, P2 = -Q f) [Z]k. We deduce, by 
using the Ramsay theorem, that there exists a set v € [t-]°°, which is homogenous 
for the partition {Pi ,P2} of [Z]k. We can see that [v]k C Q. m 

Definition. We put, for k > 2 and s € [V]*"1, Qk[s] = {x;{x}Us €Qf) [V]k}. 
We omit the index k if there is no danger of confusion. 

T h e o r e m (on compactness). Let Q be k-condensating on W, k > 2 . Assume that 
-Q, W are revealed. Then there exists w € [W]* (i.e. finite w C W) such that 

PROOF: Let us prove, firstly, that 

(3n)(W C W)(n<v ~> [v]k n Q ^ 0). 

Suppose that there exists, for every n € FN, vn € [W]* such that n^<vn A[vn]
kf)Q = 

0. The class \Jvn C W is countable; let u such a set that \Jvn C u C W holds. 
We have {vn}n C P(u) C P(W). Put u = P(u). We have U { K ] * } F / V £ - Q -
Thus there exists a set q such that {[vn]

k}FN Q q Q - Q - We have (Vn)(3u € 
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u)(n<v A [v]k C q). There exists a 7 ^ FN and a set v € u (i.e. V C W) such that 
7XV (i.e. V £ [W]°°) and [v]k C g (and, consequently, [u]* n Q = 0), which is a 
contradiction with k-condensation of Q on W. 

Put 

D = {w C W; [u;]* n Q = 0 A ( V x G W - u>)[{*} U w]* 0 Q ?- 0} 

Let w 6 D. Then tu^n and, consequently, tv has the required properties. • 

Corollary. Let Q be k-condesating on W, k > 2. Assume that Q, W are from 
Nd{P}, where P is fully revealed and exact. Then there exists w 6 [W]f such that 

W~wC\J{Q[s]is€[w]k-1} andw€ Def{P}. 

PROOF: Let D be as above. Then D € Nd{P} and DnDef{P} 7- 0. • 

Definition. Let k > 2, m > 0. We put 

vT(w,Q) = {te [wr-,(3s € [wtl'-'X* e [<?M]m)} 
vr(0) = vr(V,Q) 

Note that W CWAQ'QQ-* S7k(w',Q') C VtWQ)-

Proposi t ion . Ie< £ 6e on equivalence. Then 

(1) y J W = ^{[^"{a:}]"; £ " { x } ? n + 1}, tofceneoer n > 0. 

(2) VI(E)QE 

The proof is easy. 

Definition. A class Q is called m-transitive, for m > 1, iff Vm(Q) Q Q --olds. 

Theorem (first theorem on (/,m)-completeness). 
Xe* Q be k-condensating on [Z]1, k > 2, I > 0, m > 1. Assume that Q, —Q, Z, 

—Z are revealed. Then \7™([Z]\Q) is (I, m)-complete on Z. 
Suppose, moreover, that Q is k-transitive. Then Q is (I, k)-complete on Z. 

PROOF: Put W = [Z]'; then Q, W satisfy the assumptions of the previous theorem. 
Let w € [W]f be such that [Z]1 C U{QM; 5 € M**"1} U {w}. We obtain, by using 
the Ramsay theorem, that (Vti € [Z]°°)(3i; € [u]°°)(3s 6 M*"1)([v]1 C Q[s]). We 
have, for such v, s, [v]1 C [Z]' and s C [Z]'. We conclude from this that 

(Vu € [Z]°°)(3v € M°°)([MT £ V?([Z]l,Q)). 

We have yf([Z]l,Q) C V?(Q)- Thus m = lb > 2 -> V j ( Q ) is (/,m)-complete on 
Z, which implies the last assertion of the theorem in question. • 
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Example. 

(1) Let E be equivalence on [Z]1, I > 0. Assume that E is 2-condensating on 
[Z]\ E, - E , Z, ~Z revealed. Then E is (/, 2)-complete on Z. 

(2) Let P be fully revealed. Then E{P} is (/, 2)-complete on V for every / G FN. 

P R O O F : 

(1) y i ^ is (Z,2)-complete and v ! (K) £ E. 
(2) E{P}is2-condesatingon[V]'. Let Et € Nd{P} be such equivalences that 

E{P} = nE t . Every Et is (/, 2)-complete on V by (1). Thus E{P} is 
(/, 2)-complete on V, too. • 

Proposition. Assume that k > 2, m > 2 and let K be (0,m)-complete on V. 
Then Vm(K) " (0,k)-complete on V. 

PROOF: Let u £ [V]°°; then there exists v £ [u]°° such that [v]m C K. Assume 
that t £ [v]k. We have an s £ [v - t]m~l and, consequently, x£t~>{x}Us£K 
holds. Thus t £ Vm(-Y)- • 

Proposit ion. Let, for i £ FN, Qt be revealed and Q t + i C Qit- let W be revealed, 
too. ThenVn

k(W,nQi) = r\Vn
k(W,Qi). 

PROOF: Prove, firstly, that if Q is revealed and t £ [V]n then Qt = {«; (Vx € 
t){{x} Us £ Q)} is revealed. 

Indeed, let C = {SU}FN Q Q' be countable. Put qn = {{a:} U s; x £ t}\ then 
qn £ [QY- U?« £ Q - s countable, thus, there exists u such that \Jqn C u C Q. 

Then C C {s; (Vx £ t)({x} U s £ u)} C Q*. 
The inclusion C of our proposition is easy. Assume t £ f] VZ(̂ V» Qi)- Q\ n[W] "1 

is revealed, thus there exists s £ Q(Q' 0 [W]*"1). We have (Vi)(Vx £ t)({x} Us£ 

Qi), which implies that t £ [(f)Qi)[s]]n. We have s £ [W]k~l and t £ [W]n, which 
t 

finishes our proof. • 

§3 K-SYMMETRIC CLASSES 

Definition. Let m > 2. A class Q is called m-K-symmetric on W iff 

(Vs £ [W]m n KX* n Q ^ o -> s c Q) 

Q is m-K-symmetric iff Q is m-K-symmetric on V 

Remark. 

(1) Q is m-K-symmetric on W «-+ Q n W is m-K-symmetric on W. 
(2) If Q is m-K-symmetric on W, K' C K and W' C W, then Q is m - K ' -

symmetric on W', too. 

Proposit ion. 
Det E be an equivalence. A class X C W is 2-E-symmetric on W <-• X is a 

figure in EnW2. 

The proof is easy similarly as that of the 
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Proposit ion. 
The system of m-K-symmetric classes on W is closed under intersections and 

unions of subsystems and under the complement. 

Definition. 
Let k > 1, 0 ^ r C FN2. Let K, Z be classes. We define 

k(Z,K) 

[ J = {t € [Z]k;(3u € [ZD([u)r CKAtCu)}. 
r 

k(K) k(V,K) 

u= u • 
r r 

Proposit ion. 
Let k > 1, 0 £ T C FN2. Assume that K is T-complete on Z. Then [Jk(Z,K) 

is (0,k) -complete on Z. 

PROOF: If u G [z]°°, then there exists a t; € [u]°° such that [v]r C K. We have 

H f ccu^,K). • 
Example. Let P be fully revealed, k > 1. Then U*FN 2)(^{P}) *s (0> k)-complete 
onV . 

Theorem(on lower bound). 
Let Q be m-K-symmetric on [V]k and k-condesating on Z; let m > 2, k > 1. 

ThenU\k,m){Z,K)CQ. 

PROOF: At first, we can see that 

(Vi0(m:3M*) -> ((M*]m Q K A [«]* n Q ^ 0 -> M* C Q). 

Let us prove the inclusion in question. Assume that t G U<*,m)(^' -^)- Then there 
exists u 6 [Z)°° such that [[u]k]m C K and * G [t*]* holds. We have [u]k fl Q ^ 0. 
By using the formula above we obtain [u]k C Q and, consequently, t £ Q holds. 

Theorem (Second theorem on (0, k)-completeness). 
Let K be (k,m)-complete on Z. Assume that Q is m-K-symmetric on [V]k and 

k-condesating on Z. Let m > 2. k > 1. Then Q is (0,k) -complete on Z. 

PROOF: \J/k,m)(^i^) *s (0, k)-complete on Z. We deduce from the previous 

theorem that U<*,m)(^ ^ 0 -= Q' Thus, Q is (0, k)-complete on Z, too. 

Let us clear some properties of K-symmetric classes. 

Proposit ion. 
Let Z be m-K-symmetric onW,k>lfm>2. Then 

k(W,K) 

Z is fc-- M symmetric on W. 
<0,m) 
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PROOF: Suppose that t G U<o,m)(W> K) A t n Z ^ 0. Then there exists u G [W]°° 
such that [«]m C K At £ [u]k. Let us choose a G tH Z. Then a € u and we have 
s € [u - {a}]"1""1 -> {a} U 5 € K. Thus 3 € [ti - {a}]"1"1 -+{a}U«CZ holds. We 
deduce from this that u £ Z and, especially, < C Z is true. • 

Proposition, (on restriction) 

(1) let Z be m-K- symmetric, 0 G T C FN. Then U(Ttm)(K) n (zl* £ 

[$Ttm)(Z,K). 

(2) £et z 6e k-K-symmetric and assume that K £ [V]k, n > 1. T&en V*(K n 

[ ^ ) = VZ(K)n[^]n. 
(3) Let Z be m-K-symmetric, k>2,n>l,0eTC FN. Then Vk(U(T,m)(K) 

n [ ^ ) = Vn(U( feT,m>W)n^]n-

PROOF: (1) Let t e U(T,m)(K) n [z\k T h e n t h e r e e x i s t s u € lv)°° such* t h a t 

[uj(T,m) g j£ g^^ ^ £ JWJ* Thus there is an x G « fl Z. Let y G u be arbitrary. 
Then there exists s G [ti]m with {x,y} £ 5. We have [[u]°]m = [u]m C K. Thus 
s € [V]m fl K and 3 (1 Z ^ 0. We deduce from this that s C Z and, consequently, 
y€Z,uCZ. Thus t G U(V,m>(^> # ) h o l d s-

(2) We have: 

v?(K n [Z]k) = {te [V]n; (3* G [V]*"1 )(v* G *)({*} u s e K n [z]*)} = 

= {t G [Z]n; (3 , G [V]*"1 )(Vx G *)({*} U s e K)} = V
n ( K ) n [Z]n. 

Note that in the last but one equality, we have used the implication {x} U s G 
K Ax e Z —* {x} U s e[Z]k, which is quaranteed by our assumptions. 

(3) We deduce from the previous proposition that Z is k-Ur,m)(^)~*ymme*;r*c» 
(3) follows immediately from this and from (2). • 

Corollary. Let Q be m-K-symmetric on [V]k, k-condensating on Z, k > 1, m > 2. 
Let Z be m-K-symmetric and {0, k} £ T £ FN. Then 

lX,m>(*)n [*]*£<?• 

PROOF: We deduce from the theorem on the lower bound that U/y m\ £ Q. The 
assertion follows from this and by using the item (1) of the previous proposition. • 

Now we discuss "inclusive properties" of the operations V> U> *-e- relations of 
the form V ( U W ) £ V(K)> V f l J W ) £ K 

Theorem (on inclusion). Let k >m >1, n>l. Then 

Vk(W,\j{<>m>(K))çvn
m(W,K). 

PROOF: Assume that t G Vn(^V>U<o,m>(^))' * = {*->•• >*»} € [WT- Then 
there exists s G [PV]*"1 such that {#,} Use U<o,m)(K) holds for t -as l ,2 , . . . ,n . 
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Having s € [s]1""1» w e deduce that, for % = 1 , 2 , . . . , n, {Xi} U 5 € K is true. Thus 
* C K[s] and * 6 [KW]n , i.e. t € Vm(*V ,K) holds. • 

Note that Ucr,m) W £ U<o,m)(*0 i s t r u e whenever we have 0 € T C FN. Thus 

V n (^U( f c Tm)(^^ - V m ( ^ K ) h°l<ls under assumptions that fc > m > 1, n > 1 
and 0 € T C f N . 

Corollary. Let k > m > 2 and suppose that K is m-transitive. Then 

(1) V?(U<Vm>(*)) ^ K-
(2) vtwume <Ao< 0 € T C FJV. Tften 

vnu;T,ro>^*))£*-

(3) i4«j«me iTiot 0 € T C FJV ond let Z be m-K-tymmetnc. Then 

vT(Uk
TM(K))^[z]mcKn[zr. 

PROOF: follows directly from the previous theorem and note. We use yet in (3) 
the item (1) of the proposition on restriction. • 

Proposit ion. Let k > 2, 0 + r C FN2. Then 

ijy^jcv^ijy^))-

PROOF: Let t e U* W K ) - T n e n t h e r e e x i s t s u e lw]°°such t h a t t € M* A[u]r c 

K. Choose 5 € [« - t ]*~ x . We have, for each x € t, {x} Us € U * W K ) ; w e de<*uce 

from this that t € V J t W U r W K ) ) - • 

Proposit ion. Let k > 2. Then 

iX.*> ( H r '* ) s v { ( w r ' j i r )-
PROOF: We have, by using the theorem on inclusion, that 

^k(W,\J(ok)(W,K)CV"k(W,K). 

Now, the previous proposition gives the relation in question. • 

§4 COMBINATORY PROPERTIES OF E{P} 

4.1. Throughout this paragraph, let P be a fully revealed class. 
Note that E{P} is {fc,2)-complete on V, thus the next proposition follows from 

the second theorem on (0, k)-completeness: 
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Proposition. Let k > 1. Then each figure in E{P} which is k-condensating on 
V, is {0yk)-complete on V. 

Definition. Let n > 2. We put 

U^{P} = \J{n2)(Ě{P}). 

Proposition. 
(1) r/(»){P } = \$FNa)(E{P}). 
(2) <7(n){P} is a figure in E{P}} i.e. it is 2-E{P}-symmetric on [V]n. 

PROOF: Let, for i £ FN, E, € Nd{P} be such an equivalence that Ej+i C Ei 
and f]Ei = E{P} hold. Put U{ = {t £ [V]n;(3u)(A- A [u](,*+1>2) C E.)}. We have 

t 

\J(FN2)(E{P} = fWi (by using the fact that each CI, is revealed) and Ui+i C £/,. 
t . 

Thus, |JnFN2)(^{^>}) 1S a % u r e m E{P}. But it is, moreover, {0, n)-complete on 
V. We deduce from this, by using the theorem on lower bound, that J7(n){P} C 
|Jn

FiV2v(E{P}) holds. Finally, the converse inclusion is easy. • 
Now, we obtain immediately the following 

Theorem (on least element). Assume n > 2. Then tl (n){P} is the least among 
figures in E{P} which are n-condensating on V. 

More generally: Let Z be a figure in E{P}. Then tl(n){P} D [z]n is the least 
among subclasses of [V]n, which are figures in E{P} and n-condensating on Z. 

Proposition. Let n > 2. Then 

U^{P} C vl(E{P}). 

PROOF: V2OMP} i s a figure m E{p}> i-e- 'lt i s 2-E{P}-symmetric on [V]n. It 
is, moreover, n-condensating on V and the relation in question follows from the 
previous theorem. • 

Definition. We put, for n > 2, 

0<">{P} = Vn(£{P}). 

Now, we have for n > 2: 
C/ (n ){P}CD (n ){P}. 

Remark. 
(1) D(n){P} « M{[E{P}"{.r}]n; x £ V - Def{P}}, 
(2) D(2){P} = i;{P}. 

Proposition. D(n){P} is n-transitive. 

PROOF: Let t £ vS(-^(n){P})- T n e n ^ere is s £ [V]""1 such that x £ t ~-> 
{x} U s £ D(n){I>}. We have, for each y £ s, D(n){P}[.s] C E{P}"{y}. Thus 
t £ [£{P}"{y}]n, i.e. t £ D(n){P} holds. • 
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Proposit ion. ll (n>{P} g D(n>{P}. 

PROOF: Assume that {a i ,a 2 } € E{P}. Let F be an automorphism such that 
F(ai) = a2 and F"P = P. Put a3 = F(a2) and xx = { a i , a 2 } , x2 = {a2laz}. At 
first, (x i ,x 2 ) 6 E{P} holds. Suppose that y = {yi,y2} satisfies: [[{xi,x2 ,y}]2]2 C 
E{P}. Then, especially, x\ n y « l A x2 A y « l A yi ^ y2 holds. We can easily see 
that y £ [{ai,a2 ,a3}]2- Assume that {xi,x2} C t € [V]n. Then there is no u D tf 
such that u ? 4 and [[u]2]2 C E{P} hold. Assuming t £ t l ( n>{P}, we see that there 
exists an infinite u D t such that [[t*]2]2 C E{P} (see the second proposition of this 
paragraph) . Thus t $ D*(n>{P}. We can choose t such that {xi ,x 2 } C t £ [V]n and 
t C F{P}"{xi}. Then t £ D(n){P} - tf(n>{P}. • 

Theorem. Every D(n>{P} is (FN,n)-complete on V. 

PROOF: Let E, be as in the first proof of this section. Thus, E,, ~E , are re
vealed and 2-condensating on every [V]'. We conclude, by using the theorem on 
(l, m)-completeness that V2(F«) *s (l,n)-complete on V. We have D (n>{P} = 
V 2 ( F { P } ) = V 2 ( 0 ^ i ) = 0 V n ( ^ i ) and the last class is (l,n)-complete on V. 

i i 

(We have used the last proposition of §2 and the second one.) • 

4.2. We assume in this paragraph that P is fully revealed and exact. 
Proposit ion. Let k > 2, n > 1, Q £ Nd{P}, W £ Nd{P}. Let Q be k-
condensating on W. Then 

rt(MP}nm2)Qvl(Qn[W}k)-
PROOF: Let w £ \W]* n Def {P} be as in the corollary of the theorem on com
pactness and let t = {xi,...,xn} satisfy t £ V 2 ( F { P } H [W]2)\ we have t C W. 
There exists y £ W such that {x,,y} £ E{P} holds for i = 1,2, . . . ,n . Especially, 
E{P}"{xi} ^ {xi} and t n Def {P} = 0. Let s £ [iv]*"1 be such that {xi} U s £ Q. 
We have, for t = 1,2, . . . , n , ( x i , x t ) € E{P}. Choose i £ { l , . . . , n } . Then there 
exists an automorphism F such that F(xi) = X, and F"P = P. Thus F(s) = s 
and F"Q = Q, i.e. {x<} Hs£Q. We have, of course, t £ [(Q f) [W]k)[s]]n and the 
proposition is proved. • 

Theorem (on exclusion). Let k > 2, n > 1, 0 ^ T C FN. Then 

V2
n(F{P}) C vn(|J(T2)(F{P}))-

PROOF: It suffices to prove the relation in question for T = FN only. Let us 
use the notation of the first proof in 4,1 . Every (7, is k-condensating on V. We 
deduce, by using the previous proposition, that V?(F{P}) -= V ? W ) holds for each 
t € FN We have 

v2
n(F{P})=nvnw)=vn(n^) 

(see the last proposition in §2), which finishes our proof. • 

We obtain as a consequence of this theorem and of the theorem on inclusion the 
following 



Combinatoric properties of classes in AST 153 

Theorem (on equality). Let k > 2, n > 1. Then 

V2"(£{P}) = v?(|J(FiVi2)(^p}))-

Thus, we have for k > 2, n > 2: 

D(n>{P} = v
n ( r / ( * ) { p } ) . 

Especially: 

E{P} = V1(V(2){P}). 

Propos i t ion . No J7(n>{P} is n-transitive. 

PROOF: Assume that ll (n>{P} is n-transitive. Then 

D(n>{P} C \7l(Uin){P}) C U(n){P} C D(n>{P}, 

which is a contradiction. (See the last proposition in 4.1.) • 

Theorem. Let k > 2, n > 2. Suppose that Q C [V]fc and Z are two figures in 
E{P} and let Q be k-condensating on Z. Then 

(1) D(n>{P}n[z]ncv
n(Q). 

(2) Assume, in addition, that Q is k- transitive. Then D(fc){P} n [z]fc C Q. 

A proof follows immediately from the theorems on least element, on equality and 
on restriction. 

Theorem (second theorem on (l, n)-completeness). Let Q C [V]fc be k-condensa
ting on [W]1, k > 2, I > 0, n > 2. Assume that Q and W are two figures in E{P}. 
Then V?(Q) w (I, n)-complete on W. Suppose, moreover, that Q is k-transitive. 
Then Q is (/, k) -complete on W. 

PROOF: Put Z = [W]1. Then Z is a figure in E{P}. D(n>{P} n [Z]n is (In
complete on W (see the end of 4.1.). We deduce from this by using the previous 
theorem that the assertions in question hold. • 

We give one application to the problems of indiscernibles. We say that X is a 
class of {PJ-indiscemibles iff [K](™>2> C E{P} holds. 

Proposition. Letn > 2. ThenD^n){P} = {t € [V]n;(3u £ [V]°°)(tnu = 0A(Vx € 
£)({#} Uu is a set of {P}-indiscernibles). 

PROOF: The relation D is clear; let us prove the converse one. We have D(n> {P} = 
f) yn(Z7(fc>{P}. Let t e D(n){P}. Then there exists, for each k > 2, a set s € 

[V]*-1 such that tDs=:$Ax€t-+{x}\Jse *7(fc>{P}. Especially, x € t -> 
[{*} U 5](fc'2> C &k holds for each k > 2, where Ek is as in the first proof of 
4.1. Put, for k > 2, ^ = {stk;tCi s = 0 A (Vx € t)([{x} U s](FN '2> C Efc}. 
We have 0 ^ K*+i Q Kit and each Xk is revealed. Thus there exists a set u € 
f]k>2Xk' We have u £ [V]°° and t (1 u = 0. To finish our proof it suffices to 
prove- tf € t -+ (Vi)[{*} U u](,''2> C E{P}. Let i € FN. We have for each k > i, 
* > 2 : * € i - K*> U " 1 < , , 2 > £ Ek, i.e. x € t - [{*} U «]<*'2> C f! -${-?}• • 
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Corollary. Let t € [V]n A n > 2. Assume that (Vx,y € t)((x,y) G E{P}). Then 

there exists an infinite set u such that t f l u = I and (Vx G t)({x} U u is a set of 

{P}-indiscernibles). 
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