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Orlicz lattices with modular topology I 

MARIAN NOWAK 

Abstract. In this paper we investigate some linear topology on a <r~Dedekind complete 
Riesz space X tha t is determined by some functional p defined on X and called a modular 
. The pairs (X, p) will be called Orlicz lattices, and this topology will be called a modular 
topology and denoted by r * . The modular topology r * is the finest linear topology on 
X under which every modular convergent sequence is convergent. Under some additiona l 
conditions relating properties of a modular p to the order structure of a Riesz space X , 
the modular topology T* has a number of interesting properties. It is proved tha t r £ is 
the finest Lebesgue topology on X. It is shown tha t a linear functional on X is continuous 
for Tp if and only if it is order continuous . The Mackey topology of (X, Tp) is described. 
Examp les of Orlicz lattices with modular topology are given. 

Keywords: Orlicz lattices, Orlicz spaces, locally solid topologies 

Classification: 46E30 

1. Topological properties of modular convergence in Orlicz lattices. Given 
a linear topological space (X, r ) , we shall denote: 

(X, r)* - the topological dual. 
(X, r ) + - the sequential topological dual = the collection of all sequentially r -

continuous linear functionals on X. 
Bd(r) - the collection of all r-bounded subsets of X. 
For notation and terminology concerning Riesz spaces and locally solid topologies 

we refer to ([1], [10]). 
We start with the definition of an Orlicz lattice (see [18], [16]). Let X be a 

a-Dedekind complete Riesz space. A functional p : X —• [0, oo] is called a modular. 
if the following conditions hold: 

(pi) p(x) = 0 iff x = 0. 
(p2) \x\ < \y\ implies p(x) < p(y). 
(p3) p(xt V x2) < p(x\) -f p(x2) for xx > 0 ,£2 > 0. 
(pA) p(Xx) -> 0 if A -> 0. 

A pair (X, p) will be called an Orlicz lattice. Let us note that p is a modular in the 
sense of ([12]). A modular p is said to be convex, if p(axi ~\-fix2) < otp(xi) + Pp(x2) 
for a, /? > 0 and a-f/5 = 1. A modular p is said to be metrizing. whenever p(xn) —* 0 
implies p(2xn) —• 0 for a sequence (xn) in X. 

A net (xa) in X is said to be modular convergent to x € X> in symbols xa —• X, 
if there exists a number A > 0 such that p(X(xa — x)) —> 0(cf. [12], p. 50). 

or 

We say that a sequence (xn) in X is order star-convergent (resp. relatively 
uniform star-convergent: resp. modular star-convergent) to x € -X", in symbols 
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xn —• x (resp. xn —* x, resp. xn —• a:) if every subsequence of (a:n) contains 
a subsequence which is order convergent (resp. relatively uniform convergent; resp. 
modular convergent) to x. 

A subset A of X is said to be modular bounded, if Anxn —• 0 for each sequence 
(xn) in A and each sequence (An) of numbers that converges to 0. We will denote 
by Bd(p) the collection of aU modular bounded subsets of X. 

Now, let (X1 p) be an Orlicz lattice. Then on X one can define two linear topolo
gies, closely associated with modular convergence in X. 

First, the family By
p = {aUp(e) : a ^ 0,e > 0}, where Up(e) = {x € X : p(x) < 

e}, constitutes a base of neighbourhoods of zero for the well-known topology Tp on 
X, generated by the Riesz F-norm ||#||^ = inf{A > 0 : p(x/X) < A}. It is known 
that \\xn - x\\p -> 0 iff p(X(xn - x)) -~+ 0 for all A > 0. The topology r^ has the 
following important property which can be found in ([6], Theorem 3.4). 

Theorem 1.1. rp is the coarsest of aii linear topologies r on X under which 

xa —* 0 implies xa —* 0 for a net (xa) in X. 

In ([6], Theorem 7.4), the following result is proved. 

Theorem 1.2. A subset A of A is T^-bounded iff it is modular bounded, i.e., 
Bd{rZ) = Bd(p). 

Next, in ([6], Theorem 4.1) it is proved that the family: 

f oo N \ 

®p = i U (A1 Up(en)) : (e«) ™ a sequence of positive numbers > , 
lisr-=i n=l J 

constitutes a base of neighbouroods of zero for some linear topology on X which 
will be called a modular topology and denoted by r£ . The following basic property 
of T^ can be found in [6], Theorem 4.2). 

Theorem 1.3. r^ is the finest of all linear topologies r on X under which xa —• 0 

implies xa —* 0 for a net (xa) in X. 

Moreover, arguing as in the proof of ([14], Theorem 1.2) one can show that the 
modular topology r * has the following stronger property which will be the key tool 
for the discussion on topological structure of OrUcz lattices. 

Theorem 1.4. Tp is the finest of all linear topologies r on X under which xn —• 0 

implies xn —• 0 for a sequence (xn)inX. 

It is seen that r * C T J , and according to ([7], Theorem 3.5) we have the foUowing. 

Theorem 1.5. r £ = r ^ iff a modular p is metrizing. 

In view of ([7], Section 5.1) and ([6], Theorem 9.3) we have: 
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Theorem 1.6. If a modular p is convex, then the topologies r* and T% are iocally 
convex. 

The next theorem characterizes the linear topologizability of modular convergence 
of nets. 

Theorem 1.7. Modular convergence of nets in X is generated by some linear topol-
°9V iff a modular p is metrizing. 

PROOF : The result follows from Theorems 1.1, 1.3 and 1.4. • 

Moreover, we have the following. 

Theorem 1.8. Sequential modular convergence in X is generated by some linear 
metrizable topology iff a modular p is metrizing. 

PROOF : If p is metrizing, then by Theorem 1.5, xn —* 0 iff xn -A 0. Assume the 

there exists a metrizable linear topology r on X such that xn —• 0 iff a;n ~» 0. Then 
in view of ([7], Theorem 1.3) and ([6], Theorem 3.4) we have r^ C r . In turn, by 
Theorem 1.4 we have r C rp

A. Thus r£ = T^, and this means that p is metrizing. • 

In Section 3 we give an example of Orlicz lattice (K, /?), where a modular p is 
not metrizing, but sequential modular convergence is generated by the modular 
topology r*. 

2. The modular topology r* on Orlicz lattices. 
For an Orlicz lattice (X,p) we shall consider some further conditions relating 

properties of a modular p to the order structure of K, described in the following 
definition. We say that: 

(i) p satisfies the <r--Lebesgue (resp. the Lebesgue) property if xn j 0 in X with 
p(Xxi) < oo for some A > 0 implies p(Xxn) I 0 (resp. xa J, 0 in X with p(Xxa) < oo 
for some indices a 0 and A > 0 implies p(Xxa) J, 0). 

(ii) p satisfies the cr-Fatou property, if xn f x in X implies p(xn) | p(x). 
(iii) p satisfies the cr-Levi property, if 0 < xn f in X and the set {xn}-modular 

bounded implies that xn | x holds in X for some x € X. 
By replacing the word "sequence" with "net" in the definitions (ii) and (iii) we 

obtain the Fatou property and the Levi property respectively. 
We shall need the following results concerning the order structure of Orlicz lat

tices. 

Theorem 2.1. Let (X^p) be an Orlicz lattice. Then the following statements hold: 
(i) If p satisfies the a-Lebesgue property, then X is a super Dedekind complete 

Rtesz space and p satisfies also the Lebesgue property. 

(ii) If p satisfies the p-Fatou property and the a-Levi property, then xn —• 0 
(0)* 

implies xn —* 0 for a sequence (xn) in X. 
(iii) If p satisfies the a-Lebesgue property, the a-Fatou property and the a-Levi 

operty, then xn —> 0 iff xn —> 0 for a sequence (xn) in X. 
(iv) If p satisfies the a-Levi property, then X endowed with the F-norm topology 

TJ; is complete. 
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(v) If p satisfies the a-Lebesgue property, the a-Fatou property and the a-Levi 
property, then p satisfies also the Levi property. 

PROOF : (i) -(iv). See ([16]). 
(v) Assume that 0 < xa | and the set {xa} is modular bounded. By (i) it suffices 

to show that the set {xa} is order bounded. Conversely, let us assume that the set 
{xa} is not order bounded. Then, in view of ([16], Theorem 3.1) for every A > 0 
there exist e > 0 and an increasing sequence of natural numbers (kn) such that 

m 

sup^Ak" 1 \J xa.): xa. e {xa},m € N} > e 
j=-

for all n. Hence, since 0 < xa j , there exists an increasing sequence of indices 
{<*n} C {a} such that p(\k~1x€ln) > e for all n, and this means that the set {xa} 
is not modular bounded, which contradicts our assumption. Thus the set {xa} is 
order bounded, and the proof is finished. • 

These additional conditions imposed on a modular p will impose also a number 
of interesting properties of the modular topology rp

A on I . The basic properties of 
r* are included in the following theorem. 

Theorem 2.2. Let (X,p) be an Orlicz lattice. 
(i) Suppose that modular p satisfies the a-Lebesgue property. Then r* is a 

Lebesgue topology. 
(ii) Suppose that a modular p satisfies the a-Lebesgue property and the a-Levi 

property. Then r* is finer that any a-Lebesgue topology on X. 

PROOF : (i) Using ([1], Theorem 1.2), it is easy to show that r* is a locally 
solid topology. Combining Theorem 2.1 (i) and Theorem 1.3 we have that r* is a 
Lebesgue topology. 

(ii) Let us assume that r is a cr-Lebesgue topology on K, and let xn —> 0. Then 
by Theorem 1.4, we get r C r*. • 

As an application of the last theorem we get the following: 

Theorem 2.3. Let (X, p) be an Orlicz lattice. Suppose that a modular p satisfies 
the a-Lebesgue property, the a-Fatou property and the a-Levi property. Then the 
following statement are equivalent: 

(i) p is metrizing. 
(«)T? = T?. 
(Hi) The Riesz F-norm || • \\p is order continuous on X, i.e., Tp is a Lebesgue 

topology. 
(iv) The Riesz space X has the diagonal property for order convergence. 
(iv) In the Riesz space X order convergence is stable. 

PROOF : (i)<* (ii) See Theorem 1.5. (ii)=> (iii) See Theorem 2.2. 
(iii)==>(iv) Assume that Tp is a Lebesgue topology. Since X endowed with r j is 

complete (see Theorem 2.1), according to ([3], Ch. 7.1.3, Proposition 8) and ([3], 
Ch.5.2.8, Proposition 3) The Riesz space X has the diagonal property. 
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(iv)=» (v) See ([10], Theorem 70.2). 

(v)=-> (i) Let xn —• 0. Then xn —> 0, because in X order convergence and 
relatively order convergence coincide (see [10], Theorem 16.3). Since (X, r^) is 

complete, in view of ([3], Ch. 7.1.3, Proposition 7) xn -A 0, but this means that 
Tp is a cr-Lebesgue topology. According to Theorem 2.2, we get T£ ~ T*\ SO by 
Theorem 1.5 p is metrizing. • 

In order to characterize the topological dual of (X,T£) we now recall some 
definitions. 
Let X, p) be an Orlicz lattice. A linear functional / on X is said to be modular 
continuous (resp. sequentially modular continuous; resp. sequentially modular 

star-continuous) if xa —• 0 (resp. xn A 0; resp. xn —• 0) in X implies f(xa) —• 0 
(resp. f(xn) - • 0; resp. f(xn) -> 0). 
The collection of all modular continuous (resp. sequentially modular continuous; 
resp. sequentially modular star-continuous) linear functional on X will be denqted 
by X ' (resp. X s ' ; resp. X?p) . 

We will denote by X° (resp. X 5 0 ,resp. Xs°) the collection of all order continu
ous (resp. sequentially order continuous; resp. sequentially order star-continuous) 
linear functionals on X. In view of ([4], Ch.VII,§2) we have 

and similarly one can get 

X° C xso = xso, 

X" C Xs" = Xs'. 

We will also write X ~ and X~ (see [1], Definition 3.8) instead of X° and X 5 0 , 
because X 5 0 C X ~ , where X ~ denotes the collection of all order bounded linear 
functionals on X ([19], Proposition 5.22). 

The next theorem characterizes the topological dual of (X,r*) . 

Theorem 2.4. If a modular p satisfies the cr-Lebesgue property, the cr-Fatou prop
erty and the a-Levi property, then for a linear functional f on X the following 
statements are equivalent: 

(i) f is continuous for r*. 
(ii) / is sequentially continuous for T 

(in) f is modular continuous. 
(iv) / is sequentially modular continuous. 
(v) / is sequentially modular star-continuous. 

(vi) / is order continuous. 
(vii) / is sequentially order continuous. 

(viii) / is sequentially order star-continuous. 

PROOF : We shall show that (X,r*)* = X,r*)+ = X ' = Xs" = Xs fi = X° = 
X s o = Xf° . Since r£ is a Lebesgue topology, we have (X,r£)+ c X 5 0 . We 
have that X° = X 5 0 , because X has the countable sup property (see Theorem 
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2.1(i) ). Thus (X , r A )+ C X° = Xso = Xso. On the other hand, we have 

(X,T£)* C Xp C Xs? = XSp (see Theorem 1.3). According to Theorem 2.1 

(iii) we have Xso = Xsp and since (K , r A )* c (X , r A )+ , it suffices to show that 

Xsp C (X , rA )* . For this purpose, we shall show that a(X,Xsp) C T A . In view of 

Theorem 1.4, it will be sufficient to show that for a sequence (xn), xn —» 0 implies 
f(xn) -* 0 for each / € Xsp. But this is obvious, and thus the proof is finished. • 

Under the assumption imposed on the Orlicz lattice (X,p) as in Theorem 2.4, 
we have that the Mackey topology r A of (X , r A ) (see [20]) coincides with the 
Mackey topology T(X,X~). The next theorem characterizes the Mackey topology 
r{X,X-). 

Theorem 2.5. Let (X, p) be an Orlicz iattice with the normai dual X~ separating 
the points of X. Suppose that a modular p satisfies the a-Lebesgue property, the 
a-Fatou property and the a-Levi property. Then the following statements holds: 

(i) T(X,X~) is the finest locally convex topology on X which is weaker that rA 

(ii) T(X,X~) has a base of neighbourhoods of zero consisting of all sets of the 
form : Uiv=i Ct2n=i c o n v^p(£n)A where (en) is a sequence of positive numbers, 

(iii) If a modular p is convex, then rA = T(X,X~). 

P R O O F : (ij It is known that the Mackey topology T(X,X~) is locally solid ([1]. 
Ex. 4,p. 163). Since X~ = X~, by ([1], Theorem 9.1) T(X,X~) is a Lebesgue 
topology, and according to Theorem 2.2 T(X,X~) C rA . Now, let £ be a locally 
convex topology on X weaker than rA . Then ( K , 0 * C X~; hence a(X,(X,£)*) C 
a(X, X~). In view of ([2], Theorems 6 and 7), we get £ C T(X, (X, £)*) C T(X, X~). 

(ii) Write W(en) = UN=i(-Cn-=i ^P(€»*))> w n e r e (€n) is a sequence of positive 
numbers. It is easy to check that the system of all sets of the form conv W(en), is 
a base of neighbourhoods of zero for some locally convex topology rc on X weaker 
than T A . Suppose that / is a linear functional on X continuous for r £ . Then / is 
bounded on some neighbourhood W(en), and has the same bound on conv W(en). 
Therefore / is continuous for rc. Moreover, in view of ([6], Theorem 10.4), also the 

system of all sets of the form: U (_Cn-=i c o n v Up(£"))ls a D a s e °^ neighbourhoods 
i V = l 

of zero for rc. Since rc C r A , by (i) we have rc C T(X,X~). On the other hand, 
since T(X,XU) C rA , it is easy to see that T(X,X~) C TC. Thus rc = T(X, X~). 

(iii) If p is convex, then by Theorem 1.6 the modular topology r A is locally convex. 
Therefore, by (i) r A = T(X, X~). m 

For a convex modular p the modular topology r A will be investigated in detail in 
the second part of this paper ([17]). 

As an application of Theorem 2.4 we have the following result. 

Theorem 2.6. Let (X, p) be an Orlicz lattice with the normal dual Xn separating 
the points of X. Suppose that a modular p satisfies the a-Lebesgue property, the 
a-Fatou property and the a-Levi property. Then for a linear functional f on X the 
following statements are equivalent: 

(i) / is order continuous. 
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(ii) / is continuous for the weak topology a ( X , X ~ ) . 
(iii) / is sequentially continuous for tf(X, X~). 
(iv) / is sequentially continuous for the absolute weak topology |^|(-^» Xn)-
(v) / is continuous for |cr |(X,X~). 

PROOF : Since (X, |cr|(X, X~))* = X£ (see [1], Theorem 6.6), it suffices to show 
that (iv)=> (v). Indeed, in view of ([1], Theorems 6.6 and 9.1) |cr|(X,X~) is a 
Lebesgue topology. Therefore according to Theorem 2.2, | < J | ( X , X ~ ) C r* . Thus / 
is sequentially continuous for r* so by Theorem 2.4 / is continuous for |cr|(X,X~). 

• 

3. Modular topology on Orlicz lattices of measurable functions. 
Assume that (0,J2» p) is a measure space. Let L° denote the set of equivalence 

classes of all real valued /i-measurable functions denned and finite a.e. on ft. Then 
L° is cr-universally complete Riesz space under the ordering x < y whenever x(t) < 
y(t) a.e. on 0 ([1], Definition 23.17). The family of Riesz pseudonorms {pA : -4>G 
^ , / t (A) < oo}, where 

pA(x) = / |*(t)|(l + K O I ) " 1 dp for x € L\ 
J A 

generates the cr-Lebesgue topology r0 on L° ([1], Theorem 24.1). It is known 
that r0 is the topology of convergence in measure on the /i-measurable subsets of 
Q whose measure is finite. Let us note that if p is locally finite (i.e., for every 
A £ £>M-4) > 0 there exists B € £ such that B C A and 0 < p(B) < oo), then 
r0 is a Hausdorff topology. It is well known that if the measure p is cr-finite, then 
r0 is generated by the Riesz F~norm 

||*||o = / |*(t)|(l + \x(t)\rlf(t)dp for x € L\ 
JQ 

where a function / : 0 —» (0,oo) is /x-measurable and fftf(t)dp = 1 ([7], Ch.L, 
§6). We have the following result. 

Theorem 3.1 . Let X be an ideal of L° and let p be a modular on X that satisfies 
the a-Fatou property and the a-Levi property. Then the modular topology r* on 
X is finer than the topology r0 restricted to X. In particular, if the measure p is 
locally finite, then r* is a Hausdorff topology. 

PROOF : Assume that xn —> 0 in X . Then by Theorem 2.1 (ii) we have xn —» 0 

in X, so also xn —* 0 in L°, and this means that xn -^ 0. According to Theorem 

1.4 weget r^ D r 0 |x . • 

Given an ideal X of L° we will denote by X1 the Kothe dual of X , i.e., 

X' = {y € L° : suppy C suppX(mod/i) and xy € L1 for x € X } . 

According to Theorem 2.4 and ([5], Ch.VI.§l, Theorem 1) we have: 
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Theorem 3.2. Let X be an ideal of Vs and let the measure p be cr-finite. Suppose 
that a modular a on X satisfies the cr-Lebesgue property, the cr-Fatou property and 
the a-Levi property. Then for a linear functional f on X the following statements 
are equivalent: 

(i) / is continuous for r*. 
(ii) / is sequentially modular continuous, 

(in) f is sequentially order continuous. 
(iv) There exists a unique y € X' such that 

f(x) = / x(t)y(t)dџ for all x£X. 
Jíì 

Examp les . 
A. The well known examples of Orlicz lattices of measurable functions are Orlicz 

spaces (see [9], [11]) and Musielak-Orlicz spaces (see [13], [22]). It is known that 
the usual modular 

/ V ( x ) = / ip(\x(t%t)dp 
Ju 

has on the Musielak-Orlicz space L* the cr-Fatou property, and since Bd(r^) = 
Bd(ptp) (see Theorem 1.2) in view of ([22], Theorem 1.1), p^ has the <r-Levi prop
erty. Moreover, by the Lebesgue Dominated Convergence theorem, p^ has on L9 

the cr-Lebesgue property. Therefore, according to Theorem 2.1(v), p^ has the Levi 
property. 

The modular topology r * on Orlicz spaces L* is investigated in detail in the 
author's papers ([14], [15]). 

B. Let (0 , Yli rO k6 a cr-finite measure space and let L°° be the space of essentially 
bounded /i-measurable functions. We denote by Too the topology on L°° generated 
by the jB-norm: ||.r||oo = esssup|x(t)|. It is well known that || • ||oo is not order 

t€Q 
continuous, whenever 0 does not consist of only finite number of atoms. Let us put 

( \\x0\\ ifxE^aadlHIoo^l, 
Poo(X) I oo if x € L°° and ||x||oo > 1. 

It is easy to verify that poo is a modular on L°°. The following result is known ([8], 
p.922). 

Theorem 3 .3 , The modular topology r * coincides with the mixed topology 7(7*00, 

ro|L~) (M). 

The next theorem characterizes the sequential modular convergence in (L°°, p<x>)-

Theorem 3.4. For a sequence (xn) in L°° the following statements are equivalent: 

(i) x„ W 0. 
(ii) ||-r„||o -+ 0 and |a:n(t)| < K a.e. on ft for some K > 0. 

(iii) x„ -» 0 for r * , . 
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PROOF : (i)<-> (ii) Obvious. 
(iii)<£j> (ii) It is known that || • ||oo satisfies both the <r-Fatou property and the 

cr-Levi property ([5], Ch.IV,§3.3). Hence by ([5] Ch.IV, §3, Lemma 5) the balls 
B(r) = {x € L°° : ||a:||oo < r} , r > 0 are closed in (L 0 , r 0 ) . Therefore, according to 
([22], Theorem 2.6.1) and Theorem 3.3 we have (ii)<* (iii). • 

On the other hand, we have the following result. 

Theorem 3.5. The modular poo w n°t metrizing. 

PROOF : Since TojL<» is strictly coarser than r ^ , we can choose a sequence (xn) in 
L°° such that ||xn||o —• 0 and ||.zn||oo "^ 0- Therefore there exists a number eo > 0 
and a subsequence (x°kn) of (xn) such that ||£jtJ|oo > £o- Taking yn = (l/eo)x°kn 

we have ||y„||oo > 1- Denoting by zn = (l/||yn!|oo)yn w e have \\zn\\oo = 1, and since 
Ki lo < ||ynllo, we get poo(z°n) = \\zn\\0 - 0. On the other hand, P<x>(2zn) = oo, 
and this means that the modular poo is not metrizing. • 

Theorem 3.6. The modular poo satisfies the a-Lebesgue property, the a-Fatou 
property and the a-Levi property. 

PROOF : Since TQ is Lebesgue topology, it is easy to see that poo satisfies the 
cr-Lebesgue property. We shall now show that poo satisfies the cr-Fatou property. 
Indeed, let xn f x in L°°. If ||a:||oo < 1> ti*en Poo(xn) f Poo(x), because r0 is a 
<7-Fatou topology. If ||x||oo > 1> then Poo(x) = oo. Assume that poo(xn) < K for 
some K > 0 and n = 1,2, Then ||xn||oo < 1. Since ||arn — x\\0 -* 0, by ([5], 
Ch.IV, §3, Lemma 4) we have liminf||£n||oo > Iklloo > 1- because || • ||oo satisfies 

n—*oo 

the cr-Fatou property. This contradiction establishes that poo satisfies the a-Fatou 
property. At last, w shall show that poo satisfies the <r-Levi property. Combining 
Theorem 3.3, Theorem 3.4 and ([21], Theorem 2.4.1), we get Bd(p) = Bd(r£) = 
--^(7(Too,TolLcx>)) = Bd(Too). Since Too is a <7-Levi topology, the prof is finished. • 

Combining Theorems 2.2, 3.3 and 3.6, we have: 
Corollary 3.7. The mixed topology 7(^00^0^°°) w the finest Lebesgue topology on 
L°°. 
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