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Orlicz lattices with modular topology II. 

MARIAN NOWAK 

Abstract. The paper is a continuation of the author's paper [14], where the so-called 
modular topology on Orlicz lattices is investigated. Here the modular topology on an 
Orlicz lattice endowed with a convex modular is studied. We prove that sequentially 
modular continuous functionals have extension property. The different spaces of linear 
mappings on Orlicz lattices are considered. Applications to the theory of Orlicz spaces are 
given. 

Keywords: Orlicz lattices, Orlicz spaces, locally solid topologies 

Classification: 46E30 

1. Modular topology on Orlicz lattices with convex modulars. 
We shall use here the same notation and terminology as in the first part [14]. 
In this section we assume that (X,p) is an Orlicz lattice, where p is a convex 

modular which satisfies the cr-Lebesgue property, the cr-Patou property and the 
o*-Levi property. Moreover, we assume that normal dual X„ of X separates the 
points of X . 

Then, according to [14, Theorem 2.5], the modular topology r * coincides with 
the Mackey topology ( r ( K , X ~ ) . Moreover, by [5, Ch.X,§2, Theorem 5], the Riesz 
space X is order isomorphic to some ideal of L°($l> S,/*) for some measure space 

On the other hand, if X is an ideal of L°(ft, ]£ ft), where the measure ft is locally 
finite, then by [14, Theorem 3.1] r* is a Hausdorff locally convex topology, hence 
the normal dual X„ separates the points of X. 

The usual topology T% can be generated by the so-called Luxemburg B-norm 
||x||(p) = inf {A > 0 : p(x/\) < 1}. It is easy to see that || • \\(p) satisfies the cr-Fatou 
property, and since X has the countable sup property (see [15, Theorem 1.7]), || • ||(^) 
has also the Patou property. Moreover, since p satisfies the Levi property (see [14, 
Theorem 2.1(vi)]), || • \\(p) satisfies the Levi property, because Bd(p) = Bd(T%) (see 
[14, Theorem 1.2]). Moreover, by [15, Theorem 2.6], (X, || • ||(,)) is a Banach lattice. 
According to [5, Ch.X,§4, Theorem 8] we have the following result. 

Theorem 1.1. X is a perfect Riesz space, i.e., it(X) = (X„ ) ~ , where n : X —• 
(XZ)~ and *(x)(f) =-= f(x) forx€X andfe K~. 

We shall need the following result. 

Theorem 1.2. The equality Bd(T?) = Bd(rf) holds. 

P R O O F : It suffices to show that Bd(ct(X,X^)) C Bd(rf). Since | | . ||(,) has the 
Fatou property, by the Nakano-Amemiya-Mori theorem (see [5, Ch.X,§4,Theorem 
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7]) for every x € X we have ||*||(p) = sup{|/(x)| : / € X~, | | / | | <} , where | | / | | = 
sup{|/(x) | : x € X, |W|(p) < 1}. Let us assume that a subset A of X is cr(X,X~) 
- bounded, i.e. that sup{|/(.r) : x £ A] < oo for every / € X~. For each x € A 
let us put Fx(f) = f(x) for / € K~. Then sup{Kx(/) | : x € A) < oo, for every 
/ € K~. Since (K~, || • ||) is a Banach lattice, by the Banach -Steinhaus theorem 
we get sup{||Kx|| : x € A} < oo, where | |F , | | = sup{\f(x)\ : / G K~,||/|| < 1}. 
Thus, sup{||x||(p) : x G A} < oo, and the proof is finished. • 

From the last theorem it follows that the bornological topology associated to r* 
is the usual topology r^ (see [19, p. 15]). Hence we have the following. 

Theorem 1.3. The space (X, T£) is bornological if and only if the modular p is 
metrizing. 

The next important properties of r^ are included in the following theorems. 

Theorem 1.4. The modular topology r* satisfies the Levi property. 

PROOF : We know that the modular p satisfies the Levi property. Combining 
[14, Theorem 1.2] with Theorem 1.2 we get Bd(p) = Hd(r^), and thus the proof is 
finished. • 

Theorem 1.5. The space (X, r*) is complete. 

PROOF : We know that r* is a Hausdorff Lebesgue topology and by the previous 
theorem r* is also a Levi topology. In view of [1, Theorem 13.9] X endowed with 
T* is complete. • 

Since the space (K , r ^ ) is complete, by the last theorem we have the following. 

Corollary 1.6. If the modular p is not metrizing, then the modular topology T£ is 
not metrizable. 

In [20], J.H.Webb defines and studies sequentially barreled spaces. A locally 
convex Hausdorff space (X, r ) is called sequentially barrelled if every a(X*,X)-
convergent to zero sequence in X* is equicontinuous. 

Theorem 1.7. The space (K, r*) is sequentially barrelled. 

PROOF : By [14, Theorem 2.4 and Theorem 2.5] we have r* = r ( K , ( K , r * ) + ) . 
Since the space (X, r*) is complete, according to [20, Theorem 4.3] the space (X, r*) 
is sequentially barrelled. • 

Theorem 1.8.. The space (,X,T£) is barrelled if and only if the modular p is 
metrizing. 

PROOF : If p is metrizing, then r * = r^ . Assume that the space (X,T£) is 
barrelled . Since the norm topology r^ has the Fatou property, it has a base 
B = {V} of neighbourhoods of zero consisting of solid and order closed sets. Then 
by [1, Theorem 12.7], every set V € B is closed for r*, because r* is a Hausdorff 
Lebesgue topology. Thus, by [3, Theorem 6.2.1] we get r^ C r*, and this means 
that p is metrizing. • 
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2. Extension of sequentially modular continuous functionals. 
In the theory of Orlicz lattices the problem of extension of sequentially modular 

continuous functionals is of interest. 
We recall some notations. Assume that (ft, ]T), p) is a a-finite measure space. 

Let X be an ideal of L° such that suppX = 12, and let || • || be a Riesz norm on X. 
Then the pair (X, || • ||) is called a normed function space. 

The associated space X* of X is defined by 

X*={ye X': / , e X*}, 

where X* and X* denote the Kothe dual and the Banach dual of X respectively, 
and f(x) = JQ x(t)y(t) dp for x e X. 

The associated norm || • | |x on Xx is given by 

.Ml* = l l / , | |* . = sup{| / x{t)y{t)dn\ :x€X, \\x\\ < 1} 
JQ 

(see [5, Ch.VI, §1]). 
If Ko is an ideal of K, we shall denote by (Ko)x the associated space of (Ko, II * II)> 

i.e., (K0)
x = {y e (x0y : gy e {XoYh w h e r e 9*(*) = Jo *(*)v(0 <*/* for x e X0. 

We shall denote by || • | |£ the associated norm on (Ko)x-
The following result will be needed. 

Theorem 2.1. Let (K, || • ||) be a normed function space, and let X0 be an ideal of 
X such that suppKo = H. The (X0)

x = Xx and ||y||$0 = HvH* for every y € Xx. 

PROOF : See [16, Theorem 0.1.]. • 

If a convex modular p is defined on X then we put ||:r|| = ||a:||(ff) = inf{A > 0 : 
p(x/X) < 1} for xeX. 

We are now ready to prove that sequentially modular continuous functionals on 
Orlicz lattices in L° have the extension property. The details follow. 

Theorem 2.2. Let X be an ideal of L° such that suppK = Q, and let p be a 
convex modular on X that satisfies the a-Lebesgue property, the a-Fatou property 
and the a-Levi property. Let X0 be an ideal of X such that suppKo = ft- I/ 
/o is sequentially modular continuous functional on (X0lp), then there exists a 
sequentially modular continuous functional f on (X, p) such that f(x) = f0(x) for 
xeX0 and ll/oll = | | / | | . 

PROOF : Let f0 be a sequentially modular continuous functional on (X0l p). Since 
p satisfies the cr-Lebesgue property on X0, f0 is sequentially order continuous on 
Ko- Therefore, by [5, Ch.VI, §1, Theorem 1] there exists a unique y € (X0)' such 
that f0(x) = JQ x(t)y(t) dp for x € X0. Since f0 € (Ko)*, we obtain that ye(X0)

x. 
But according to Theorem 2.1, we have that y € Xx and ||y||x0 = | |y| |x- Therefore, 
putting f(x) = JQ x(t)y(t)dp for x e K, we obtain by [14, Theorem 3.3] that / is 
a sequentially modular continuous functional on the whole space (X^p). Moreover, 
we have / (* ) = /0(x) for x € X0 and | | / , | | = ||y||£o = ||y||* = | | / | | . • 
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3. The modular topology Tp on Orlicz lattices endowed with convex 
orthogonal additive modulars. 

In this section, we assume that (X, p) is an Orlicz lattice, where p is a convex 
orthogonal additive modular (i.e., p(x\ -f x2) = p(xx) 4- p(x2) if \xi\ A \x2\ = 0 ) 
that satisfies both the <7-Fatou property and the <7-Levi property. Then p satisfies 
also the <7-Lebesgue property (see [16, Theorem 4.2]). Moreover, in view of [21, 
Theorem 5.1], the Riesz space X is order isomorphic to some Musielak-Orlicz space 
L*. 

As in the section 1 we assume that the normal dual X~ of X separates the points 
of X. By [15, Theorem 1.6], (K, || • ||(p)) is a Banach lattice, and this means that 
the modular p is complete (see [11, p. 171]). 

Moreover, we shall assume that limA~,o \~l p(\x) = 0 for x € X. Then, in view 
of [11, Theorem 38.9, Theorem 38.10 and Theorem 42.17] on X~, the so-called 
conjugate modular p can be defined as follows 

p = sup{/(x) - p(x) : x € X} for / € X~. 

By [11, Theorem 38.9], the conjugate modular p is convex and orthogonal additive, 
satisfies the <7-Fatou property and is monotone complete (for definition see [11, 
p. 157]). Hence p satisfies also the a-Lebesgue property (see [17, Theorem 4.2]) 
and the a-Levi property, because for a modular bounded subset A of X~ we have 
sup{p(k/) : / € A} < oo for some number k > 0 (see [4, Proposition 1.3]). 

In X another B-norm || • \\° can be defined as follows: \\x\\°p = sup{|/(a:)| : 
/ € X~,p(f) < 1}. It is known that if the modular p is continuous (i.e., p(x) = 
sup{p(a) : |a| < |x|, p(a) < oo} [11, p.182]), then B-norm || • \\°p is equivalent to 
H • \\(p) (see [11, Theorem 43.6 and Theorem 40.9]). 

Henceforth, we shall assume that the modulars p and p are continuous on X and 

The following lemma will be needed. 

Lemma 3 . 1 . The equality Bd(a(X~,X)) = Bd(rX) holds. 

PROOF : We first show that Bd(a(X~,(X~)~) = .Bd(r-Y). We known that the 

topology r~ on X~ satisfies the Fatou property, because p satisfies the Fatou prop

erty. Moreover, the space (X~, r~) is complete, because the modular p is complete 

on X~. Thus (X~,TX)* = (X~)~. Then ,by Nakano-Amemiya-Mori theorem, 

for every / € X~ we'have | | / | | ( ? ) = sup{ |F( / ) | : F € (X~)~,||F|| < 1}, where 

|(F|| = sup{ |F( / ) | : / € X~, \\f\\(p) < ! } • Arguing similarly as in the proof of The

orem 1.2 we obtain that Bd(a(Xn,(X~)~) = Bd ( r - ) . In view of the perfectness 

of the Riesz space X (see Theorem 1.1) the proof is finished. • 

As an application of Lemma 3 A we have the following. 

Theorem 3.2. The strong topology /3(X>X~) coincides with the norm topology Tp 

onX,i.e.,0(X,XZ) = TY. 
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PROOF : By Lemma 3.1, the polarsets (B,~Jr))Q of the balls B,~Jr) = {/ € 

%n '• ll/ll<~) — r K r > ^ constitute a base of neighbourhoods of zero for the strong 

topology /5(K, X~) on X. Since WfWffi < 1 iff ? ( / ) < 1, we have 

% ) W ) ° = {x G X : | / (x) < 1 for / € X~ with | | / | | ( ? ) < r} 

= { x € K : W ° p < r - 1 } . 

Thus the proof is completed. • 

The next theorem characterizes semireflexivity of (X, r*) in terms of the conju
gate modular p. 

Theorem 3.3. The space (X,T£) is semireflexive if and only if the conjugate mod
ular p on X£ is metrizing. 

PROOF : Since r* is a Lebesgue topology, in view of [1, Theorem 22.4] the space 
(X,T£) is semireflexive iff fi(X^,X) is a Lebesgue topology. By the perfectness 
of X (see Theorem 1.1) and Theorem 3.2 we have /?(K~,K) = r~. But r~ is a 
Lebesgue topology iff p is metrizing. • 

As an application of Theorem 1.8 and Theorem 3.3, we get a characterization of 
reflexivity of the space (X, r*) . 

Corollary 3.4. The space (X, r*) is reflexive if and only if both p and p are metriz- , 
ing. 

4. Some p roper t i e s of t h e modular topology r * on Orlicz spaces L v . 
In this section we apply the results form Sections 1 and 3 for an investigation of 

the modular topology r* on Orlicz spaces L* generated by a convex Orlicz function 

By an Orlicz function we mean a function <p : [0, oo) —• [0, oo] which is non-
decreasing, left continuous, continuous at zero and <p(u) = 0 iff u = 0. An Orlicz 
function <p is called convex if <p(au + fiv) < a<p(u) -f P<p(v) for a, /3 > 0, a -f fi = 1. 

If <p is a convex Orlicz function, then the functional 

/rti-(«)i)« 
JQ 

P»(-)= / rtl-WD-fc 

is a convex orthogonal additive modular on the Orlicz space L* satisfying the a-
Lebesgue property, the cr-Fatou property and the cr-Levi property, (see [21, §1]). 

If <p is an N-function (see [7]), the modular topology r * has been investigated in 
the author's papers [12], [13]. We shall show that the results of [12] and [13] are 
valid also for an arbitrary convex Orlicz function. 

To the end of this section we assume that (ft, £ , fi) is a a-finite measure space. 
Let <p* denote the function complementary to <p in the sense of Young (see [8]). 

Let us note that <p* vanishes only at zero iff <p(u)/u —» 0 as u —> 0. In general, the 
functional p^*(x) = JQ <P*(\x(t)\) dp. is a semimodular on the space L** = {x 6 L° : 
ptp*(\x) < oo for some A > 0}, i.e., p<p*(\x) = 0 for all A > 0 implies x = 0 (cf. 
[9]). It is well known that the Kothe dual of L* is the space L** (cf. [8]). 

Thus, according to [14, Theorem 3.3], we get the following. 
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Theorem 4.1. Let tp be a convex Orlicz function. For a linear functional f on L* 
the following statements are equivalent: 

(i) / is continuous for r* . 
(ii) / is sequentially modular continuous, 

(in) f is sequentially order continuous. 
(iv) There exists a unique y € L* such that 

(-)= / 
Jn 

f(x) = / x(t)y(t)dџ for x Є L*. 

Remark 1. For <p being an N-function and p. being a finite measure (resp. a cr~ 
finite measure), the equivalence of (ii) and (iv) of the last theorem has been proved 
in a different way in [9,Theorem 4.11] (resp. [10, Theorem 1]). 

Combining [14, Theorem 2.5] ,with Theorem 3.1, we have the following result. 

Theorem 4.2. Let <p be a convex Orlicz function. Then the modular topology r * 

coincides with the Mackey topology T(L^^L* ) . 

Remark 2. If <p is an N function, then the equality r * = r(Xv ', L* ) is proved in 
the author's paper [13]. 

At last, we give a characterization of the barrelledness and the semireflexivity of 
(Lv, T£) in terms of Orlicz functions <p and <p*. 

Theorem 4.3. Let <p be a convex Orlicz function such that <p(u)/u —» 0 as u —• 0. 
Then the space (LV,T^) is barrelled (resp. semireflexive) if and only iftp (resp. <p*) 
satisfies the ^-condition 

(i) for all u, if p is an infinite atomless measure, 
(ii) for large u, if p is a finite atomless measure, 

(in) for small u, if p is a purely atomic measure with measure of atoms bn satis
fying 0 < inf6n < sup6n < oo. 

n n 

PROOF : For every x 6 L{fi,p(p(Xx)/\ —> 0 as A —• 0, because <p(u)/u —> 0 as 
u —> 0. According to Theorem 4.1 and [8, p. 66], we have p<p(f) = Pv*(y), when 
f(x) = fQ x(t)y(t) dp for x € i-^, where y € L**. The result follows from Theorem 
1.8 and Theorem 3.3. • 

Remark 3 . For <p being an N function, the above result is proved in [12, Theorem 
2.2 and Theorem 2.4]. 

5. Linear mappings on Orlicss lattices. 
In this section we shall show the various relations between different spaces of 

linear mappings between Orlicz lattices. 
Let (X\ypi) and (X2,p2) be Orlicz lattices. 
Given linear topologies T\ and r2 on X\ and X2 respectively, we will denote 

by £(rj,T2) (resp. £ # ( T I , T 2 ) ) the collection of all linear (ri,r2)-continuous (resp. 
sequentially (r!,r2)-continuous) mappings of X\ into K2-
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A linear mapping A of X\ into K2 -s said to be order continuous (resp. sequenti

ally order continuous., resp. sequentially order star-continuous if xa —* 0 (reps. 

xn —> 0, resp. Xn —> 0) in X\ implies Axa —• 0 (reps. Axn —• 0, resp. Axn —• 0) 
in X2 (see [18, p.50]). The collection of all order continuous (resp. sequentially 
order continuous, resp. sequentially order star-continuous) linear mappings of X\ 
into K2 will be denoted by £° (resp. Cso, CSo). The coUection of all order bounded 
linear mappings of X\ into K2 will be denoted by £~. 

A linear mapping A of X\ into K2 -s said to be modular continuous (resp. 
sequentially modular continuous, resp. sequentially modular star-continuous) if 

i a 4 0 (resp. xn - i 0, resp. xn --+ 0) in X\ implies Axa -4 0 (resp. Axn -4 0, 

resp. Axn A 0) in K2- The collection of all modular continuous (resp. se
quentially modular continuous, resp. sequentially modular star-continuous) linear 
mappings of X\ into X2 will be denoted by Cp (resp. CSp, resp. £« / ) . 

The following relations are well known: 

£° c £so C £f° 

(see [18, p.50]), and similarly one can show that: 

Cp C Csp C Csp. 

Henceforth, we assume that (Xi,p\) and (X2,p2) are Orlicz lattices with convex 
modulars pi and p2 satisfying the cr-Lebesgue property, the cr-Fatou property and 
the cr-Levi property on X\ and X2 respectively. Moreover, we assume that the 
normal duals (X\)~ and (K2)n separate the points of X\ and X2 respectively. 

We are now ready to prove the following theorems. 

Theo rem 5 .1 . The spaces £s(rp
A , rp

A
2) and £(rp

A, rp
A

2) coincide, i.e., £ s(rp
A , rp

A
2) = 

A r p
A , r A ) . 

PROOF : It suffices to show that CS(T*,T*) C C(T*,T*). Indeed, let A € 
£ s ( r A , r A ) . Since ( K i , r A ) * = ( K i , r A ) + (see [14, Theorem 2.4]), in view of [20, 
Corollary 1.10] every sequentially rA-closed hyperplane in X% is rA-closed. Hence, 
by [6, §32, 1 (11)], A is (a(Xi,(Xi)n),cr(X2,(X2)~)) - continuous, so according 
to [2, Ch.IV, §4, Theorem 7] A is ( r p i , r

A
2) - continuous, because we know that 

rA - T(X, (K i)n) for « = 1,2. -Thus the proof is finished. • 

Theorem 5.2. The following relations hold: 

C° c Cso c Cso c £ « , T £ ) C A V V ; , ) 

and 

C C Cs» C £f" C A'pV;,) C £«„<, ) . 
Moreover, every positive (T^,^) - continuous linear mapping of X\ into X2 w 

order continuous. 
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PROOF : In view of Theorem 1.1 we have £ ( T * , r* ) C £ ( T * , r * ) . 
Now, we shall show that 

£ f C £(*&,&)*> ),<r(X2,(X2)
S0)). 

Indeed, a linear mapping A of X\ into K2 -s. OK-^i? (-^i)f°)»°p(X2) C^-2)?0)) - con
tinuous if and only if / o A 6 (K i)f° for every / € (K2)f°. But it holds if A £ £?° . 

We have r * = T(X 1 , (K l ) f ) *» • = 1,2 (see [14, Theorem 2.5]). Therefore, 
using [2, Ch.IV, §4, Theorem 7], we obtain the inclusions of our theorem, because 
£ f = Cfp (see [15, Corollary 2.4]). 

Now let A be a positive ( T ^ , r ^ ) - continuous linear mapping of X\ into X2l and 
let xa i 0 in Ki. Then xa —* 0 for r £ , so Axa —• 0 for r ^ . Since 0 < Axa I in K2, 
by [1, Theorem 5.6] Aar0 | 0 in X2y and this means that A is order continuous. • 

Theorem 5.3. Suppose that the modular pi is metrizing. Then 

c = cs" = C? = AC*;.) = A^v;,). 
PROOF : In view of Theorem 5.2 it suffices to show that 

Ar,v;,)c£'. 

Indeed, if A € ^ T ^ , ^ ) , then A is (T^T^) - bounded. Hence, by [14, Theorem 
1.2], A is (pufr) - bounded (see [4, Definition 3.1]). Therefore, according to [4, 
Theorem 3.2], there exist constants jfc, M > 0 such that p2(kAx) < M\\x\\ipi) for 
all x € Xi satisfying px(x) < 1. 

To prove that A is modular continuous, assume that xa —V 0. Then ||£a||(px) —* 0, 
because p\ is metrizing. Given e > 0 there exists an such that ||^o||(pi) ^ (eM~ Al) 
for a > an, so Pi(x) < 1 for a > a0. Hence p2(kAx) < e for a > a 0 , and this 

means that Ax —> 0. Thus, A G £ p , and the proof is finished. • 
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