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The homogenous Dirichlet problem for 
non-elliptic partial differential equations 

with strong nonlinearities 

GERALD WARNECKE 

Abstract. T h e existence of weak solutions to certain non-elliptic semilinear partial differ­
ential is shown. The use of anisotropic Sobolev spaces makes it possible to apply methods 
developed in elliptic theory. The generating functions for the Nemytski! operators are not 
required to be of polynomial growth. 

Keywords: Anisotropic Sobolev Spaces, Semilinear Partial Differential Equations, Dirichlet 
Problem, Strong Nonlinearities » 

Classification: 35J60, 35J70, 46E35 

1.1. In this paper we study, for example, the following differential equations 

(1.1) Uyy - UXXXX - (g(Ux))x = / , 

(1.2) dXxxx(uxxxx + uzxyy + uVyyy) -f g(u) = / 

(1.3) "*xyy+ <?(") = /• 

Here g : R —• R is a function that satisfies g(t)t > 0 for all t € R. We will show the 
existence of weak solutions to a generalized Dirichlet problem. A point in this paper 
is to show that methods used for elliptic equations with similar nonlinearities apply 
also to these non-elliptic equations. This is accomplished by chosing an appropriate 
anisotropic Sobolev space. For linear equations the generalized Dirichlet problem 
has been studied by Doppel and Jacob [7], Jacob [13]. For semilinear equations 
with a different type of nonlinearity an existence theorem using the mountain pass 
lemma was given in Warnecke [31], [32]. Equations of type (1.1) are known as 
Boussinesq equations. The nonlinearities discussed in this paper are not of the 
same kind that appear in the original Boussinesq equation (cp. Boussinesq [3], [4] 
or Zabusky [34]). In the original equation one has g(t) = i2 , i.e. an even function. 
This is the type of nonlinearity treated in Warnecke [31],[32]. In this paper we 
treat nonlinearities that are generated by odd functions like g(t) = t 2 | , + 1 , p € N 
(cp. Moser [21]). In Moser [21] equations like (1.1) are called hyperbolic. As 
will be seen in the analysis below these equations are more elliptic than hyperbolic 
in any sense of these terms. In order to avoid confusion one should be careful to 
note the sign in front of the term uxxxx. Kalantarov and Ladyzhenskaya [15] are 
occasionally cited in connection with Boussinesq type equations, but they treated 



328 G.Warnecke 

equations like Utt 4- uxxxx + g(ux)x = 0. This a semilinear version of the hyperbolic 
beam equation and has the opposite sign for the fourth order term. The linearized 
version of equation (1.2) was studied by Herler [10]. It describes the deflection 
of anisotropic shells. The linearized version of equation (1.3) was introduced by 
Dynkin [8] for stochastic processes (cp. Doppel and Jacob [7]). Note that this is an 
example of a non-hypoelliptic operator (for a definition see Hormander [12]) that 
can be treated using "elliptic" methods. 

1.2. We will study semilinear differential equations of the form 

. (1.4) A(x, D)u(x) + N(u)(x) = / ( * ) , x € G, 

in a domain G C R ^ (G may be unbounded). Here A(*, D) is a linear differential 
operator in divergence form (see Section 4.1) and N(-) is a Nemytskii or super­
position operator (see Section 4.4). The generating functions for the Nemytskii 
operators will not be required to be of polynomial growth. The solutions to (1.4) 
will be sought in a Sobolev space H^(G) that corresponds to the operator A(',D) 
(for definitions see Sections 2.5 and 4.1).For certain domains one can define trace 
operators on the boundary. Thereby the solutions in HQ(G) can be shown to sat­
isfy certain homogenous Dirichlet boundary data in a generalized sense (see also 
Rakosnfk [24] [25], Warnecke [31]). 

If A(-,2D) is an elliptic operator of order 2m then the Nemytskii operator N(-) 
may include derivatives up to the order m — 1. This property will have to be 
generalized for the non-elliptic operators to be studied here (cp. Chapter 4). The 
linear differential operator A(>,D) will be an operator of order 2m that does not 
contain all the derivatives of this order relevant for elHpticity. The main questions 
to be addressed in this paper will be: 1.) Can the Hilbert space methods developed 
for semilinear elliptic problems be modified for applications involving anisotropic 
Sobolev spaces? Which derivatives may appear in the Nemytskii operators N()? 

1.3. The generalized Dirichlet problem for non-hypoelliptic linear partial differ­
ential equations was studied by Nikol'skii [23] as well as Louhivaara and Simader 
[19], [20]. The latter papers inspired Doppel and Jacob [7], Jacob [13], Schomburg 
[26] to study very general classes of linear operators A(-,D) that have an associ­
ated biHnear form A[-, •] which satisfies a generalized Garding's inequality on an 
anisotropic Sobolev space, see also Jacob and Schomburg [14]. It was shown that 
for linear boundary value problems the well known Hilbert space methods used 
in elliptic theory (cp. Friedman [9] or Showalter [27]) may be applied to certain 
non-hypoelHptic boundary value problems. 

1.4. The treatment of equation (1.4) in the case of eUiptic operators (including 
quasilinear elliptic operators) goes back to numerous papers of Brezis, Browder, 
Hess and others (for references see for example Brezis and Browder [5], Browder 
[6], Hess [11], Landes [17], Lehtonen [18], Simader [28] and Webb [33]). The usual 
techniques include a priori estimates and cut off functions for the type of nonlin-
earities considered here. The unbounded nonlinearity is approximated by bounded 
terms with compact support. This reduced problem is solved using Schauder's fixed 
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point theorem. Then the a priori estimate and Vitali's theorem are used to obtain 
the solution to the original problem. The main ingredient in the a priori estimate 
is that the Nemytskii operators N(-) are mainly generated by functions that satisfy 
g(t)t > 0. In this paper it is shown that these methods may be modified to work in 
the setting of anisotropic Sobolev spaces. 

1.5. As mentioned above we would like to obtain a large set of derivatives that 
may be used in the nonlinear operator N(*). This issue hinges on the existence of 
compact embeddings for anisotropic Sobolev spaces. To the operator A(',D) one 
has to find a set of multiindices K(A) such that for bounded domains the embedding 
H^(G) —• H0 (G) is compact. A sufficient condition for K(A) will be given in 
Section 3.5. This requires the use of very general Sobolev inequalities as given in 
Theorem 3.4 (see also Tafel [29]). Results of this type for Lp spaces are due to 
Besov, Flin and Nikolskii [2]. For compact embeddings see also Rakosnik [24], [25] 
and Warnecke [31], [32]. 

I would like to take the oportunity to thank Prof.K.Doppel for suggesting this 
research and introducing me to anisotropic Sobolev space. Also I thank Ralf Kieser 
for his help in proof reading the manuscript. 

2 Anisotropic Sobolev Spaces. 

2 .1 . First all it will be necessary to introduce some notation. Let N ^ denote the set 
of multiindices a = (o: i , . . . ,a/v) with a,- 6 No for j = 1 , . . . , N, N € N(No = 
{0}UN). Analogously NN denotes the set of multiindices with positive components. 
We introduce the order of a : \a\ := a\ + • • • + &N and set 8° := 9J*1 . . . d%N, 
where dk :== #§- for 1 < k < N. Further we define for x € R N the exponents 
-at — «.-*i - a i V 
J/ . — «Cj . . . * i y . 

2.2. Take a:, y € R N then we define a partial ordering by x < y iff XJ < yj for 
all j = 1,...,N, and resp. x < y, iff Xj < yj for all j = 1,...,N. Also for 
j G {1 , . . . ,N} we define the special multiindices e, := (6ij,.. .^S^j). Here 

f 1 -o* * = i 
'"" 1 0 for k £ j 

denotes the Kronecker symbol. 

2.3. Let M c R N b e a finite set, M = {a ( 1 ) , . ..,a(*>},ib € N , a ( ^ € R * for 
j = 1 , . . . , k. Then the convex hull chM of M is given by 

(2.1) ch M := {x € R N | There exist tx,..., tk € [0,1] such that 
k k 

^ t i = l anda r = ^ ^ a ( i ) } . 
i=i i=i 

Take A / 0 to be a finite set of multiindices, i.e. i C N 0
N , i = {o;(1),.. •, <*(fc)}> * € 
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N . We introduce the following notations: 

A : = {a\a € N ^ and there exists a a € A such that a <&}, 

\A\ : = max |a | (the order of A) , 

a£A 

konv A: = ch A fl N ^ , 

# A — number of elements in A. 

2.4. In this paper G will always be a domain in R^, i.e. an open connected subset. 
We write G1 CC G for a bounded subset G' of G with G C G. Further we will only 
consider function spaces of real valued functions. For spaces not introduced in this 
paper we use the notation of Adams [1]. Let B n := {x € R n | \x\ < n} for n € N 
and set 

XG(X) •= \ e a ^ to be the characteristic function of a set. 
for x € G 

0 for x <£ G 

2.5. By || • ||o = || • ||O,G we denote the norm on L2(G). For a finite set of multiindices 
A C N ^ and an arbitrary function <p € CQ°(G) we define the norm 

(-•2) kk G :={Ell a VII?, G + IMIo2,G}' 
a£A 

One has ||<p|U,o < oo for all v? € CQ°(G). Obviously || • |U,G is a norm. If no 
ambiguities concerning the domain G occur we will just write || • |U-

Now we may introduce the following linear space: 
^(G^the completion of CQ°(G) with respect to the norm || • |U,G-

If the domain G is unbounded will assume that A = A throughout the paper. This 
condition will allow us to use the Leibniz rule for the differentiation of products. 
On bounded domains the above restriction is not necessary due to the Poincare 
inequahty (3.4). It implies that the norms defined by A and A are equivalent. 

2.6. R>r (p,tj> G CQ°(G) let us introduce the bilinear form 

(2.3) (V,II>)A,G =J2 [ ^tp^^dx + / <pxl>dx. 
a€AJG JG 

Since (y?,¥?)>i,G = IMIA.G ^ S * o r m *s positive define. The Cauchy-Schwarz in­
equality gives 

(2.4) \(<P^)A,G<\MUGWUG, 

i.e. ( V ) A , G is a continuous scalar product on the space CQ°(G). It follows that 

Lemma 2.1. The space HQ
A(G) is a separable ffilbert space with the scalar product 

(vUc 
PROOF : See Waraecke [32]. • 
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Comment 2.2. If A = {a € N ^ | |a | < m} for some m € No one obtains the 
classical Sobolev space H™' (G) with the norm ||u>||ro$ = £ II^HIo f° r *-! 

w € H™'2(G) (cp. Adams [1], Chapter III). 

2.7. The elements v € HQ(G) have weak derivatives ^v^a € A, in £2((jr). For let 
(^n)nCNo C CQ°(G) be a sequence such that %j)n —» t; with respect to || • ||x. Then 
the sequence (9QrV,n)n6N0 converges in L2(G) to an element v a € L2(G) for every 
a € A Due to the uniqueness of weak derivatives one has va = dav (cp. Adams 
[1], Section 1.57). 

3 Embeddings of anisotropic Sobolev Spaces. 

3.1. In this chapter we have collected some inequalities that are used to obtain 
embedding theorems for anisotropic Sobolev spaces. Corollary 3.3 will allow us 
to deduce continuous embeddings from relations between multiindex sets. We will 
present the inequalities. % 

3.2. Let A and A\ be finite non-empty subsets of R N such that A\ C A. We define 

(3.1) 
ch(A] A\) := {x\x € R N and there exists an element a € A\ 

and an s > 1 such that a 4- s(x — a) € ch(A)} 

(cp. Tafel [29], Def. (17.1)). 

Theorem 3.1 . (Ehrling's Lemma) Let A\ and A2 be two finite subsets ofNjf such 
that Ai 7- 0 and A := Ax U A2. Take p € N(f. Then p € ch(A;Ax) iff for every 
e > 0 there exists a constant C(e) > 0 such that 

(3.2) P M I L W ) $ *IMIA„R" + C(£)IMU,R" 

/or all <p € Co°(R i v). Further P € fconv A iff a constant C > 0 exwfc JUC^ <&at 

(3.3) H^VHLW) £ CIMUR" 

/or all if € C$°(RN). 

PROOF : This is shown in Tafel [29], Theorem (19.2). • 

3.3. For bounded domains one has the following Poincare inequality: 

Theorem 3.2. Let G be a bounded domain and take d € R N such that dj := 
sup{|gj-||x = (XU...,XN) € G}, for j = 1,. . . ,N . Further let A C N ^ , A / 0, be a 
finite multiindex set and a £ A an arbitrary multiindex. Then for every multiindex 
P € NQ such that P < a the inequality 

(3.4) ||0*ti||o < ^"-ftd^WdOuWo 

holds for all u € H*(G). 

PROOF : See Doppel and Jacob [7], Lemma 1. • 
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Corollary 3 .3 . Let G be a domain. Take A, B C N ^ to be two finite multiindex 
sets such thai B C konv A. Then the space HQ(G) is continuously embedded in the 
space HQ(G). Further our general assumptions on multiindex sets imply ^(G) 2-
H*0™^) ~ H£(G). 

PROOF : Take an arbitrary <p € CQ°°(G). Then (3.3) and (3.4), in case G is 
bounded, otherwise our assumption A = A for unbounded domains imply the in­
equalities 

(3.5) MB < IMLB„i < c'Mh < CM* < C\\AA < CIMI*.,.* 
The constants C\C > 0 have to be chosen appropriately (C = C for unbounded 
domains). Since CQ°(G) is a dense subset of the spaces we are concerned with, the 
corollary is proved. • 

We now have a sufficient criterion to tell us when two finite multiindex sets 
A,B C N ^ give the same anisotropic Sobolev space, i.e. HQ(G) ~ HQ(G). This 
is true when konv A = konv B. 

3.4. Our compact embedding theorem will be proved with the help of the compact 
embedding properties of the usual Sobolev spaces. In fact, we will only need the 
Rellich lemma, namely the compact embedding of the Sobolev space H0' (G) into 
L\G). 

Theorem 3.4. Lei G be a bounded domain. Further take k € N, ra € No- Then 
the embedding of the space HQ * (G) into the space H™' (G) is compact. 

PROOF : See Adams [1], Theorem 6.2. • 

3.5. We will now define for a given finite multiindex set A ^ 0 a multiindex set 
that gives a compactly embedded space. We set: 

(3.6) K(A):=N0
Nnch(I,{0}), 

for the notation remember (3.1). Let us consider, for example, the multiindex sets 
for the equations in Section 1.1. The set A := {(4,0), (3,1), (2,2)} contains the mul-
tiindices for equation (1.2). Then we have K(A) = {(0,0), (1,0), (2,0), (3,0), (0,1), 
(1,1), (2,1)}. In case of equation (1.1) we have A = {(2,0), (0,1)} and therefore 
K(A) = {(0,0), (1,0)}. Finally, for equation (1.3) the multiindex set is A = {(1,1)} 
giving K(A) = {(0,0)}. 

In order to show that for bounded domains G the anisotropic Sobolev space 
HQ(G) is compactly embedded in the space H» * '(G) we will need the following 
lemma. Remember the notation (1) = {a € NQ | \a\ = 1}. 

Lemma 3.5. Let G be a bounded domain. Further let A be a finite multiindex 
set with the property that (1) C konv A. Then every sequence (wn)n€N C H0

A(G) 
that is bounded with respect to the norm || * |U has a subsequence (u*)*€N such that 
(97u*)*eN converges in L2(G) for every 7 € K(A). 

PROOF : Take 7 € K(A). Then (3.2) and (3.4) imply that for each e > 0 there 
exists a constant C(e) > 0 such that 

(3.7) ||^u||„<e||«|U+c(e)||«||o 
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for all u € HQ(G) (since CQ°(G) is a dense subset). Since (1) C konvA Corollary 
3.3 implies that 

(3-8) Hull!,, < C| |u| | . 

for some constant C > 0 and all u € HQ(G). 
Now let (un)n €N C HQ(G) be a bounded sequence. We may assume that 

||un|U < 1 for all n € N. By (3.8) this sequence is also bounded in the space 
HQ (G). By the compact embeddings in Theorem 3.4 there exists a subsequence 
(uk)k€N converging in L2(G). Using (3.7) for this subsequence we obtain 

(3.9) ||8*(ti* - tuOllo < 2e + C(e)\\uk - u*,||0. 

Since e may be chosen arbitrarily small and (uk)k£ti converges in L2(G) the right 
hand side of (3.9) can be made arbitrarily small. Therefore, the sequence (d7u*)*eN 
is a Cauchy sequence in L2(G). This is true for any 7 € K(A). • 

Corollary 3.6. Under the assumptions of Lemma S.5 the embedding of the Sobolev 
space H0

A(G) into the Sobolev space HQ (G) is compact. Therefore, bounded 
sequences in HQ(G) have convergent subsequences in HQ * ,* and weakly convergent 
sequences in H0

A(G) converge in HQ (G). 

Lemma 3.7. Let G, G' C JlN be domains such that G' f) G ^ 0. Further, take 
tl> € Cg°(G') and let A be finite multiindex set. Ifu € Hf(G) then%l>u € H^GOG'). 

PROOF : The Poincare inequality for bounded domains, Theorem 3.2, or respec­
tively our assumption A = A for unbounded domains imply that the Leibniz rule 
for derivatives of products may be used in our spaces. This gives ||^U||A,G' < 
CW)|MU. • 
Lemma 3.8. Let G, K c KN be domains such that K CC RN and G O K ^ 0. 
Take A to be a finite multiindex set. If (un)n€N C HQ(G) is a sequence that is 
bounded in the norm || • \\A then there exists a subsequence (uk)k^ and an element 
u € H^G) such that: 

(i) u* - u in H^G) and d^u* ~- d°u in L2(G) for all a € X 
(ii) The restriction of the sequence to the set K f)G converges uk\GnK -* UjonK 

with respect to the norm || • \\K(A),GnK-
(iii) The sequence converges pointwise almost everywhere ^ u ^ —• ̂ u in G for 

all a € K(A). 

PROOF : 

(i) Follows from the fact that in Hilbert spaces bounded sets are weakly rela­
tively sequentially compact and from Corollary 3.3. 

(ii) Let K' be a domain such tha£K CC K' CC RN and take (p € Cg°(RN) to 
be a function with y? = 1 on K, <p = 0 on R N \ K'. According to Lemma 3.7 
(puk € H^(GnK'). Since Gf)K' is bounded Corollary 3.6 gives a convergent 
subsequence in H*^A'(G H K'). Because <p = 1 on K we obtain (ii). 
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(iii) By (ii) we have a subsequence (u*)*eN converging with respect to 
II * ||K(yl),GnBi- Then there exists a further subsequence (ttk')*'€N wi*h 
daUk' —» 5°u almost everywhere in G fl B\ for all a € K(A) (cp. Kol-
mogorov and Fomin [16] Section 7.2.5). We apply this procedure inductively 
to the domains G fl Bn, n = 1,2,3, A diagonal sequence will have all the 
desired properties. 

4 Operators , Fixed Point Theorem. 

4.1. We begin by introducing a class of linear operators. For convenience we will 
not take the most general definitions. Let G C R N be a domain and A C N ^ be 
a finite multiindex set. Further suppose that A has the property that 6j € A for 
,; = 1 , . . . , N (i.e. (1) C A). We wiU consider the foUowing linear differential 
operators 

(4.1) A(.,Z?)= £ ( - l ) W a « a a / 9 ( . ) 3 ' . 
a,0€A 

We assume that the coefficients aap : G —• R satisfy aap € C#(G) for m = |a| 
(for notation see Adams [1]). We demand that aap ^ 0 for at least one pair of 
multiindices a,0 € A with |a | = |/3| = |A|. Therefore A(«, D) will be a differential 
operator of order 2|A|. Also we assume aap = apa for all a , j^ € A To the 
differential operator A(«, D) and its' multiindex set A we associate the Hilbert space 
HQ(G) with the scalar product (•, -)A, defined according to (2.4), cp. Chapter 2. 

4.2. Further we define the bilinear form associated with the operator A(-,D) 

(4.2) -%,$:= £ /a^W^di 
at0€A JG 

for aU y>,V> € CQ°(G). The Cauchy-Schwarz inequality implies the continuity of 
the biUnear form on the space H^G), i.e. A[<p,^) < C^IMUIMU *° r a s u - t a D - e 

constant Ci > 0. It can therefore be extended to the whole space H^G). 

4 .3 . We say that A(-, D), respectively A[; •] satisfies Garding's inequality on the 
space HQ(G) if there exist constants CQ,C\ € R,Co > 0, such that 

(4.3) A [ u , u ] > C o H f t - c , | | « | | o 2 

for all u € HQ(G). Linear operators with this property were, for example, studied 
by Doppel and Jacob [7], Jacob [13], Jacob and Schomburg [14], Schomburg [26] 
as weU as Herler [10]. 

4.4. Let r = #K(A) (cp. Sections 2.3 and 3.5). A function b : G x R r -*> R is said 
to satisfy the Caratheodory condition iff 

(4.4) (a) b(x, •) is continuous for almost all x € G 

(b) 6(-, t) is measurable for aU t € R r . 
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If u : G —• R r is a measurable function then the Caratheodory condition implies 
that j<-,/*(•)) : G ~-> R is measurable (see Vainberg [30], §18). We set Vr(G) := 
{fi : G —• R r | p measurable }. Then the function &(•, •) generates the Nemytsk i i 
operator B : $r(<C7) -» Vl(5) defined by fi >-> B(fi) := 5(-,^(-)) for all ^ € 
$ r (G) . We will suppose that the multiindices in K(A) are numbered, i.e. K(A) = 
{au...,ar}. For u € H*(G) we set /i(u) := ( 9 a * u , . . . , 5 * ' u ) € (L2(G) )*>;__€ 
K(A), 1 < j < r. Now we can define the Nemytskii operator B : Hf(G) -* Vl(G) 
by setting B(u)(x) := b(x, fi(u)(x)) = B(/i(u))(x). For L2(G) spaces one has the 
following important property of the Nemytskii operators: 

Theorem 4 . 1 . For ail v € (L2(G))r one has B(v) £ L2(G) iff there exists a 
function a € L2(G) and a constant d>0 such that 

(4.5) \b(x,t)\<a(x) + d\t\ 

for aii (x,t) eGxW. In this case the operator B : (L2(G))r -> L2(G) is auto­
matically continuous and bounded, i.e. it maps bounded sets to bounded sets. 

PROOF : This is a special case of Theorem 19.2 in Vainberg [30]. • 

4.5. Let K,y be Banach spaces. A continuous operator T : X —> Y is said to be 
completely continuous if it maps bounded sets in X to relatively compact sets 
i n F . 

Corollary 4.2. Let A be a multiindex set with (1) C A. Further suppose that 
b : G x R r —• R ts given as above. If u € H$(G) and the function &(•, •) satisfies 
(4'5) then B : H$(G) —• L2(G) is continuous and bounded. If G is a bounded 
domain then B(>) is also completely continuous. 

PROOF : Obviously the map fi : H$(G) —• (L2(G))r is continuous and bounded. 
If G is a bounded domain it is also completely continuous by Corollary 3.6. Since 
B : (L2(G))r —* L2(G) is continuous and bounded the operator B(>) has the desired 
properties. • 

For completely continuous operators one has the well known 

Theorem 4.3. (Schauderfs Fixed Point Theorem) 
Let X be a 'Banach space and K a closed, bounded, convex, nonempty subset of X. 
Suppose that the operator T : K —• K is completely continuous. Then T has a fixed 
point x € K, i.e. T(x) = x. 

PROOF : See Zeidler [35] Theorem 2.1. • 

5 Bounded Nonlinearities. 

5.1. In this chapter we prove an existence theorem for every restricted class of 
nonlinearities. Namely, the type of nonlinearities one obtains in applying the cut 
off procedures to be introduced in Section 6.3 (cp. Simader [28]). 
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Lemma 5.1. Let G be a domain and A a finite nonempty multiindex set. Farther 
suppose we are given for each a € K(A) a function 6a : G x R r —> R, r = #K (A ) , 
that satisfies the Caratheodory condition (4>4) <w wel/ as the inequality (4-5) with 
d = 0 and a common function a £ L2(G). We require that the function a has a 
compact support if G is unbounded. By Ba(-) we denote the respective Nemytskii 
operators Ba : Hf(G) -* L2(G). Let f 6 L2(G) be an arbitrary but fixed function, 
Then for all u,y> € HA(G) the equation 

(5.1) ( N ( u ) , 9 ) A : = ( / , v p ) o - £ < £ a ( u ) , 0 » o 
a£K(A) 

defines a completely continuous operator N : HA(G) —• HA(G). For any u 6 > 
Hf(G) we have 

(5.2) \\N(u)\\A<C*(f,a). 

PROOF : Since the functions 6a(-, •) satisfy the inequalities (4.5) we may apply 
Corollary 4.2 to give Ba(u) € L2(G) for all u € Hf(G). Therefore, using \\da<p\\0 < 
C I M I A (C as in (3.5)) the right hand side of (5.1) defines a continuous linear, 
functional in (p on HA(G) for every fixed u € HA(G). The Riesz representation 
theorem gives us an element w £ HA(G) such that 

(5.3) (w,<p)A = (f,<p)o- £ (Ba(u),ff*<p)o 
a£K(A) 

for all <p 6 Hf(G). NOW define the operator N : HA(G) -> Hf(G) by setting 
N(u) := w as in (5.1). We will now show that the operator N(-) is completely 
continuous. Let us set ip = N(u) — N(v),u,v € HA(G)1 in (5.1) then we obtain 

IIIV(tx) - N(v)\\A = (N(u), N(u) - N(v))A - (N(v), N(u) - N(v))A 

= £ {Bo(u),a-(iV(u))-j\r(»)))0 
aeK(A) 

- £ (B0(»),a-(iV(u))-.V(t;)))o 
aGK(A) 

< ( £ l|B.(u) - B » | | o ] ||iV(u) - N(v)\\K(A) 
\a€K(A) / 

i.e.. 

(5.4) \\N(u)-N(v)\\A< £ \\Ba(u)-Ba(v)\\Q. 
a€K(A) 

Alternatively one also obtains 

(5.5) \\N(u)-N(v)\\A<[ J2 \\Ba(u)\\0 + \\Ba(v)\\0)\\N(u)-N(v)\\K{A). 
\«6if (^) / 
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From (5.4) we obtain the continuity of the operator N(-) since the operators Ba : 
HQ(G) —> L2(G) are continuous due to Corollary 4.2. 

We will now show (5.2). From (4.5) with d = 0 and G' := suppa(-) C G we have 

(5.6) \\Ba(u)\\2 = / \ba(x,>i(u)(x))\2dx < I \a(x)\2 dx = ||a||g. 
JG JG' 

Using (5.1), (5.6) and (3.5) with r = #K(A) we obtain 

(5.7) (N(u),<f)A<\\f\\o\M\o + £ \\Ba(u)\\*M\da9h>G> 
a£K(A) 

<ll / | |o lHlo + r-| |a| |0 |M|jf(A) 

<C3(/,a)|MU 

for a suitable constant Cs(f,a) > 0. Setting <p := N(u) this immediately implies 

(5.8) | | N ( u ) | U < O 3 ( / , a ) 

for all u e H^G). 
Now let us take (5.5) and use (5.6) to get 

(5.9) ||JV(«) - N(v)\\A < 2r • \\a\\0\\N(u) - N(v)\\K(AhG>. 

Take (un)n€N C HQ(G) to be a bounded sequence. Due to (5.8) the sequence 
(N(un))n€N is also bounded in H0

A(G). If G is a bounded domain then Corollary 3.6 
gives a subsequence (N(u*))jfeeN converging with respect to the norm || • ||K"(A),G' If 
G is an unbounded domain then we obtain a subsequence converging with respect to 
the norm || • H ^ ^ . G * by applying Lemma 3.8 (ii). Using (5.9) we may now conclude 
that this subsequence converges with respect to the norm || • H^. Therefore, the 
operator N(*) is completely continuous. • 

T h e o r e m 5.2. (Existence theorem for bounded nonlinearities) Let G be a domain. 
Take A[v] to be a continuous and positive bilinear form, i.e. it satisfies Cardingfs 
inequality (4-S) with C\ = 0. also suppose thai for each a € K(A) we are given a 
function ba : G x R r —* R that satisfies the assumptions of Lemma 5.1. Then there 
exists for each f € L2(G) an element u € HQ

A(G) such that 

(5.10) A[u$ip]+ J2 ( B a ( u ) , 9 » 0 = (/ ,^)o 
a€K(A) 

for all if € H£(G). 

PROOF : Since the functional A[u, • ] : HQ(G) —• R is linear and bounded for each 
u 6 H$(G) we may apply the Riesz representation theorem to obtain a bounded 
linear operator T : H$(G) -> H$(G) such that 

A[ti,¥>l = (Tu,c/>)A. 
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We have assumed that .A[u,u] = (Tu,u)A > Co\\u\\\. Therefore, the operator T is 
continuously invertible with \\T~~1|| < CQ1. Taking N(-) defined as in (5.1) we may 
rewrite (5.10) as follows 

(Tu,<p)A = A[u,<p] = (N(u),<p)A 

for all <p € H^G). We see that (5.10) is equivalent to the equation Tu = N(u) or 
u = T"xN(u). By Lemma 5.1 the operator T~1N(-) is completely continuous. Due 
to (5.2) it maps the closed ball 

K = {u|u 6 Hf(G), H U < C3(f,a)Co1} 

into itself. The statement of the theorem now follows by applying the Schauder 
Fixed Point Theorem 4.3. • 

6 Existence Theorem for strong Nonlinearities. 

6.1. The following conditions for nonlinearities are generalizations of the conditions 
given by Lehtonen [18] (see also Simader [28]). In the case of elliptic operators the 
condition N (ii) is due to Browder [6]. 

Condition (N). Let G be a domain and A a finite multiindex set with (1) C A. 
For each a € K(A) we assume we are given a function ba : G xR r —* R, r = #K(A), 
that satisfies the Caratheodory condition (4.4). FVirther we will suppose that the 
following conditions hold: 

(i) The functions ba may be split into two parts: 
ba(x, t) = ha\(x, t) -f ha2{x, t) for x € G, t € R r . The functions hai(-, -) and 
J*<*2(*> *) shall both satisfy the Caratheodory condition (4.4). 

(ii) For the functions hai we suppose the existence of a function k0 € Ll(G), k0 < 
0, such that 

(6.1) ] T hal(x,t)ta>k0(x) 
a€K(A) 

for almost all x € G and all t € Rr,< = ( t a i , . . . ,tar). Further we suppose 
that for each e > 0 there exists a function ke € I^>C(G) such that 

(6.2) \hal(x,t)\<e £ h$1(x,t)tfi + ke(x) 
0€K(A) 

for almost all x € G, all t € R r and all a 6 K(A). 
(iii) For the functions ha2 we suppose that there exist functions k% € L2(G), k2 £ 

L1(G),k2 < 0, and constants C4,Cs,Ce > 0,C • C5 < C0, (C as in (3.5)) 
Ce > C\ (C0,C\ as in Garding's inequality (4.3)) such that 

(6.3) \ha2(x,t)\<kx(x) + C4\t\ 

for all a € K(A) (cp. (4.5)) and 

(6.4) ] T ha2(x, t)ta > k2(x) - C5|t|
2 + C$|t0|

2 

a€K(A) 

for almost aH x € G and all t € Rr. 
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Remark 6.1. The type of nonlinearities discussed in the paper of Simader [28], 
where pa(x)gQ(tQ) with pa € L^G^Pc > 0,#a € C°(R) and ga(tQ)tQ > 0, satisfy 
the condition (N) with ha2(x, t) = 0, k0(x) = 0 and 

-.(-O5- £ 2 | ™»* WMI U«(*)-

This is true since 
\pa(x)ga(ta\ < epQ(x)gQ(tQ)tQ 

for e\tQ\ > 1. For e\ta\ < 1 one has 

\p<*(x)ga(ta)\ < epa(x)ga(tQ)tQ + pa(x)\gQ(ta)(l -eta)\ 

< epa(s)0c*(*a)*a + 2pa(x)\ga(tQ)\. 

Examples. We will restrict our attention to nonlinearities consisting of odd pow­
ers. Let us take the linear operator A\u = uyy — uxxxx. In Section 3.5 we had 
seen that K(A\) = {(0,0),(1,0)}. Therefore our conditions include equations of 
the following kind 

uxxxx-uyy + u2*+l + (ul*+l)x~f, 

with p,q € N. Taking A2u = dxxxx(uxxxx + uxxyy + a-,-,,,-,) we may construct 
nonlinear terms that include the following derivatives u,ux,uXXiuxxx>uy,uxy and 
uxxy. For example we could take 

dxxxx(uxxxx + uxxyy + uxxxx) + (ti^+1)ry + (4lV)*** = / 
for p, q € N. Finally looking at A3u = uxa.yy we may only take functions of u, i.e. 

"**,„ +1*2 '+1=/ 
with p € N. 

6.2. We will now introduce the cut off operators An(-). Let / : RTO -• R, m € N, 
be an arbitrary function then we set 

M „ f M - J / ( l ) / l / ( l ) l f or / (x )#0 

«sm/(x).= | 0 for/(x) = 0. 

The cut of operators An may now be defined as follows 

A ft ) _ / /(*) f o r !/(*)• ^ n 

A n / W • _ l n . , n / ( x ) for | / (x) |>n. 
If / € L2(G) then A„/ 6 I2(G). For n > 0 and a € i."(^) we define 
(6-5) VUx,.):=XBn(x)>l-/.oi(*>*) J^ 1 ' 2 " 
From now on we will denote the respective Nemytskii operators using capital letters, 
e-g- #e.i,»(u) for haUn(;ii(u)(-)) etc. 

By i : R -> R we denote the identity map, i.e. the map defined by i(t) = t. As 
above we set in(x, t) : XB. (x) • Ani(t) or 
(6-6) /„(«)(x):=.B(x,/i(u)(x)). 
Then .'„(., •) satisfies the assumptions for ba(-, •) in Lemma 5.1. 
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Remark 6.2. Take (x,t) G G x R r . If hal(x,t)ta > 0 then haltH(x,t)ta > 0. 
Therefore, in (6.1) one can replace the terms ha\(*, •) by haitn(-, •). In on the other 
hand ha\(x,i)ta < 0 then we have haitU(x,t)ta > hai(x,t)ta. This implies that 
in (6.1) all functions hai(-, •) may be replaced by the respective cut off function 
haifn(','),n G N. For the functions ha2 and inequality (6.4) the same is true by 
analogy. 

The conditions N (ii) do not guarantee that Hai(u) G L2(G) for u G H^G). We 
will therefore need the following technical lemma that will be applied in the proof 
of Theorem 6.5. The condition (6.7) will be verified there. 

Lemma 6.3. Let (uk)k€N a sequence in H$(G) that converges weakly to u G 
HQ(G) such that for all a G K(A) one has ^Uk —> dau pointwise almost ev­
erywhere in G. Suppose that the functions hai(',') satisfy condition (N(i), (ii)). 
Further assume that 

(6.7) sup 
*ЄN 

j £ HaítП(uk)дQuкdx 
fG a€K(A) 

< M < oo 

for a constant M G R. Then one obtains Hai(u) G Lloc(G) and ^2 Hai(u)dau 
a£K(A) 

G Ll(G). For any function ip G C^(G) and every a G K(A) one has 

(6.8) / Hai k(uk)da<pdx ~+ J Hal(u)dQ<pdx 
JG JG 

for k —* oo. Furthermore one also obtains (i*(u*),</?)o —» (u,(p)o for k -~* oo. 

PROOF : Obviously the functions ha\tk('r) w-^ B^8° satisfy the Caratheodory 
condition (4.4). Therefore the functions fcai,*('> ,"("*)(•)) &&& hai(-,fi(u)(-)) are 
measurable (cp. Vainberg [30], Theorem 18.3). Take x £ G with hai(x,-) contin­
uous and dauk(x) -> dau(x) for all a G K(A). Then the functions haXtk(x, •) are 
continuous for all k G N. Now it follows that for any k G N : haxtk(x,fi(un)(x)) —> 
hattk(x,fi(u)(x)) for n ~> oo and haitk(x,fi(u)(x)) --> hat(x,fi(u)(x)) for k ~+ 
oo. This implies for the diagonal sequence n = k that /&ai,*(#,/u(ujb)(ar)) —• 
^ai(^» Ku)(x)) -° r almost all a: G G. Due to inequality (6.1) we have (( £ haitk 

a€K(A) 
(x, fi(uk)(x))daUk(x)) — ^o(^) > 0). Therefore our assumption (6.7) and Fatou's 
Theorem imply that £ hal(x, fi(u))dau = £ -^aiOO^" € -^(G) and we 

a€K(A) a€K(A) 
also obtain JG £ JEfal(u)a°u <fo < M. 

o€K(-4) 

Now let G" CC G1 CC G be otherwise arbitrarily chosen domains. Then from 
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inequality (6.2) we get 

(6.9) 

/ \Halk(uk)(x)\dx~ \hahk(x,fi(uk)(x))\dx 
JG" ' JG" 

<є í í £ W*.M^X*))̂ «*(*)i-*o(*)d* 
jG" \P€K(A) j 

+ / ko(x) dx + / ke(x) dx 
JG" JG" 

<eM + 2e||ko|U-(G) + IIMU*(G") 

for any e > 0. 
This implies that the sequence (Hai,*(«*))*€/V which converges pointwise al­

most everywhere has uniformly absolute continuous integrals on G1 (cp. Natan-
son [22], Chapter VI.3). For, take any A > 0 then there exists a 8(A) > 0 such 
that u(G") < 8(A) (here v denotes the N-dimensional Lebesgue measure) im­
plies that fG„ \Halyk(uk)\dx < A. (For a given A one may choose e so small that 
eM + 2e||ko||L-(G) < V 2 . Now one can take 8(A) > 0 small enough so that the abso­
lute continuity of the Lebesgue integral implies ||fc«|Ul(G") < V 2 f° r all G?" CC G1 

with u(G") < 8(A).) 
Since G' was chosen arbitrarily we now obtain Ha\(u) € L\QC(G) by applying 

Vitali's Theorem ( for N = 1 see Natanson [22], Theorem VI.3.2). Analogously 
as in (6.9) one can show for any arbitrary but fixed function <p € CQ°(G), setting 
G" = sm>p<p as well as max max|d<V(x)| = C(<p), 

a€K(A)x£G"1 ^ " V i r / ' 

/ \Hahk(uk)d
Q<p\dx < C(<p)[eM + 2e\\ko\\mG) + ||*.|U»(o«)]-

JG" 

Now we may again apply Vitali's Theorem in order to obtain the convergence in 
(6.8). Finally let us set Attl(-,-) = 0 for a ^ 0 and set hQltk(x,t) = ik(x,to). Then 
due to Remarks 6.1 and the condition N (ii) is fulfilled. Therefore we may apply 
what we have just shown to this case and obtain {!*(«*), <p)o -+ (w,y>)o for k —> oo. 

• 
Now we will prove the important a priori inequality. 

Lemma 6.4. (A priori Inequality) Let A[v] be a continuous bilinear form defined 
on the space H$(G) that satisfies Girding fs inequality (4- 8). Suppose that for each 
a £ K(A) we are given a function 6a(«, •) such that the condition (N) is fulfilled. 
Take f € L2(G), u € HQ

A(G) and suppose that for some n € N 

(6.10) A[ti, <p] + C\ (ti, <p)Q - C\ (/„(«), <p)o 

+ £ <^l,n(ti) + F a 2 , n ( u ) , 3 » 0 - ( / , ^ ) o 
a€K(A) 
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is valid for all (p € H*(G). Then one has 

(6.11) I M | A < C ( * 0 > W ) , 

indepently of n € N. 

PROOF : By using (4.3) and (6.10) for u € Hf(G) we obtain the estimate 

(6.12) 
C0||u||i<i4[u,u] + Ci||u||2 = - J2 (H«hn(«) + H*2Au),dau)o 

a€K(A) 

+ (/,u)o + Ci(In(u)1u)0. 

Since 0 < In(u) • u < |u|2 this implies 

co||«|fr < - ( E <ff«l,n(u), a°«)o + (#„.,„(«), 9°«)0) 
a€iY(.4) 

+ (/,«)o + dlH|§. 

Using the modified inequalities (6.1) and (6.4) (cp. Remark 6.2), the fact that 
Ci — Ce < 0 due to condition N (ii) and taking C as in (3.5) we obtain from (6.12) 
the estimates 

(6.13) 

Co\\u\\A < I -ko(x)dx+ f -k2(x)dx 
JG Ja 

+ Cs £ / l a - t t l ^ x + ^-CeJI I t t l l^ + ll/Hollttllo 
o e t f U ) J a 

< \\kohHG) + I M U M G ) + Cs\\u\\K{A) + ||/||o||u||o 

< C(k0,k2) + CCs\\u\\A + \\f WoMU 

Since due to condition N (iii) we have Co — CC5 > 0, we may chose an e > 0 such 
that § < Co — CC5. Now using 2a& < ea2 + ^62 we obtain 

(Co - cc5)IMft < C(ko,k2) + U/II0M.4 

<C(k0,k2) + ±\\f\\l + £-\\u\\A. 

Since (Co - CC5) - § > 0 we have shown that \\u\W is bounded, i.e. that (6.11) 
holds. • 

Theorem 6.5. (Existence Theorem for strong Nonlineaiities) Let G C R^ 6e 
a domain. Take A[-,-] to be a continuous bilinear form that satisfies Girdingfs 
inequality (4-8)• Suppose we are given functions 6a(-,-),a € K(A) that satisfy the 
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condition (N). Then for each function f € L2(G) there exists a solution u t= H^G) 
satisfying Ba(u) = 6a(-,/x(u))(.) € L^G) as well as £ M ' ^ X - ) ) ^ € 

a€K(A) 
L1(G) such that the functional equation 

(6.14) A[uM+ £ / Ba(u)d"<pdx = (f,<p)Q 

a€K(A) JG 

holds for all <p € Cg°(G). 

PROOF : Take / € L2(G) arbitrarily but fixed. Due to \kajtn(x,t)\ < nxBn(x\ 
j = 1,2, and in(x, t) < nxBn(x) these functions fulfill the assumptions of Lemma 
5.1. The bilinear form A[-, •]+Ci (•, -)0 is positive. Therefore we may apply Theorem 
5.2 for each n € N to obtain a solution un £ HQ(G) to the equation 

(6.15) a[unj<p) + Ci(un,<p)0 - Ci(/n(un),<^)o 

+ £ (Haifn(un)^Ha2tn(un)1d^<p)0 = (fMo 
a€K(A) 

for any <p € CQ°(G). Due to Lemma 6.4 the sequence of solutions (un)n6N is 
bounded in HQ(G) independently of n € N. Using (6.3) we deduce that 

(6.16) ||#a2,n(un)||o < Pl||o + C4\\un\\K{A) 

holds, i.e. for every a the sequence (Ha2,n(un))n€N is bounded in L2(G). Using 
A[un,un) + d K l l g > 0, ||/n(un)||o < ||un||0 and (6.15), (6.4) we obtain 

£ {Hal,n(Un),ff*Un)0 = -A[tln,Un] - C iK | j j + Ci(/n(un), Un)0 

a€K(A) 

~ £ (^2 ,nK),aaUn)0 + (/,Un)0 

a€K(A) 

<CiK| |S + ||^2|UMG)-fCC5KII2A 

-Ce||un||
2

0 + ||/||oKllo. 

Because of the assumption C\ — C% < 0 this implies that 

£ (H„hn{un),ff*Un)o < \\H\»(G) + CC*\\unfA + ||/||oKIU-
a€K(A) 

On the other hand we may deduce from (6.15) and (6.16) {C% as given in Section 
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4.2) 

~ ] £ <ff«l.n(Un),a°'un)o = A[un,Un] + ci||un||g-C,
1{/n(un),Un)o 

a£K(A) 

+ £ (-^oa,n(«n),9°Un)o-(L«n)o 
aeK(A) 

< C2\\U„\\A + Y, (INIo + c4||«n|k(A)) l|5aU„||0 
a£K(A) 

+ II/II0IKII0 

< C2\\unfA + C [(114,11c + CC4||un|U) ||u„|U 

+ ll/l|o|l«n|U]. 

We have now shown that the sequence ( £ (--̂ oi,n(t«n)» #**wn)o)n€lv is bounded 
o€KU) 

inR. 
Since the sequence (un)n^N is bounded in H$(G) we obtain from Lemma 3.8 a 

subsequence (ti*)*€N that converges weakly to an element u € HQ(G). Further we 
have d°Uk —* d?u pointwise almost every where in G for all a € K(A). Now we may 
apply Lemma 6.3 to (4(ufc),<p)0 + £ (#oi,*(«*), d°V)o. Due to ik(x, t0)t0 > 0 

<*€K{A) 
and Remark 6.2 the condition N (ii) is satisfied even if fcoi,*(v) is replaced by 
V f c ( v ) + *"fc(v). Therefore we obtain Hal(u) € Lj^G),' £ H^u^u € 

o€K(.4) 
L1 (G) and we get the convergence 

(h(uk)Mo+ £ ( -^oi ,*K) ,9»o 
o€K(-4) 

~*(",Y>>0 + £ (Hol(u) ,0»o 
o€K(-4) 

for any <p € C0
>(G). Due to (6.16) the subsequence may be chosen such that 

-£-o2,*(u*) converges weakly in L2(G). Since d îifc —> ^u converges pointwise al­
most everywhere it follows that the sequence -fir02,fc(«fc) -+ #02(u) converges point-
wise almost everywhere. Because weak limits are unique it follows that HQ2,k(uk) 
converges weakly to Ha2(u) in L2(G), i.e. (JEro2,*(w*),9or</>) --> {Ha2(u), d°V) for 
all v? € C0°°(G). 

Since the map A[*M '• H0(G) -* & defines for any given <p € C0°(G) a contin­
uous linear functional the weak convergence of the sequence (w*)fcgN implies that 
A[uk,<p] -> -4[u,<p] for k -+ 00. Now take y> € Cg°(G) arbitrarily but fixed. Then 
we take the limit k -* 00 in (6.15) to obtain 

A[uM+ £ (B*i(u) + H€a(u),ff'<p)o = (fMo 
<*€K(A) 

for all <p € C ^ G ) , i.e. (6.14) holds. • 
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