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Mathematical modelling of an electrolysis process 

M I L O S L A V F E I S T A U E R , H A R I J S K A L I S , M I R K O R O K Y T A 

Dedicated to the memory of Svatopluk Fučík 

Abstract. The paper is devoted to the mathematical and numerical study of a problem 
arising in the investigation of the electrolytical producing of aluminium. The electrolysis 
process is described by the Poisson equation for the stream function to which we add 
nonlinear Newton boundary and transmission conditions representing turbulent flows in 
the boundary and anodes layers. The solvability is proved by the use of the monotone ' 
operator theory. The problem is discretized by conforming linear triangular elements and 
the solvability of the discrete problem and the convergence of approximate solutions to the 
exact solution is studied. 

Keywords: electrolysis, linearized Navier-Stokes equations, elliptic boundary value prob­
lem, nonlinear Newton and transmission conditions, weak solution, monotone operator 
theory, linear conforming triangular elements, convergence 

Classification: 35D05,35J65,65N30,76D99,76W05 

Introduction. 
The electrolysis belongs to modern technologies of obtaining aluminium. The 

motion of the aluminium metal and the electrolyte induced by the electromagnetic 
forces is described by the Navier-Stokes equations. In [1] it was shown that provided 
the forces flux is in the range 200 - 250 kA and the thickness of the aluminium -
electrolyte layer (0.05 - 0.3 m) is small in comparison with the horizontal size of the 
equipment (4 - 10 m), then the nonlinear terms can be neglected and the process 
can be averaged in the vertical direction. Then we come to a two - dimensional 
model problem in a domain Q C R2. This domain consists of several subdomains 
Q,, i = 1,..., N - for simplicity we shall suppose that N = 2 - which represent 
electrolytical tanks and of the common boundary (dQ\ D d£l2) D 0 representing 
the channel with anodes (see Fig.l). Let us assume that the flow is laminar in 
Hi and fti* Then the so-called stream function satisfies a linear Poisson equation 
in Qi U fi2- However, in thin layers near the boundary d£l and in the channel 
dUi n dft2 of anodes we get turbulent flows (see [13]). These flows need not be 
resolved and their contribution can be included into a boundary condition on dfl 
and a transmission condition on dQ\ D dQ2. 

As a result we get a boundary value problem in the domain ft for the stream 
function, which is discontinuous across dfti D dQ2 in general, satisfies the Pois­
son equation in ftj(t = 1,2), nonlinear boundary condition on dQ and nonlinear 
transmission condition on dfti f) dQ2. 
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Here we shall deal with the solvability and the finite element approximation of 
this problem, provided the domains Qi(i = 1,2) are polygonal. (More general 
situation with nonpolygonal domains will be studied in a forthcoming paper [4].) 

1. Continuous problem. 
Let H, Oi, 0 2 C JS2Jbe bounded polygonal domainswiththeir boundaries dQ, (Kit, 

dQ2 and closures n , f l i ,0 2 satisfying the relations 0 = Oi U?22, Qi fl Q2 = 0 . We 
denote T3 = dtti fl 0Q2 and T, = dUi - T3, i = 1,2 (see Fig. 1). 

x2 

fìi 

Fig.l 

We consider the following boundary value problem: Find u,-: 0* —• .R1, i = 1,2, 
such that 

(1.1) 

(1.2) 

(1.3) 

дn 

Aщ = div / in fìj, i = 1,2, 

+ fclt-.fЧ =/„ = 7*n onГй i = l,2, 

^ T = - ^ | = fc|u2-u1|«(u2-«1) + 7-rri onr s 

Here / = (/i,/2) : Q —• R2 is a given vector field (determined from Maxwell's 
equations), n = (ni,n 2 ) and n* = (nj,n2) denote a unit outer normal to 6*0 and 
to dQi, respectively, k > 0 and a > 0 are given constants. (The case a = 0 or a > 0 
corresponds to linear or nonlinear turbulence law, respectively, in the neighbourhood 
of dQ and T2.) d/dn and d/dn* denote the derivative in the direction n and n 1 , 
respectively. Of course, n 1 = - n 2 and d/dnl = -d/dn2 on T3, n = n*, 0/dn = 
d/dn4 on Ti, t = 1,2. 
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1.4. Definition. Let / 6 [Cl(Q)]2. We say that u = (uXiu2) is a classical 
solution of the problem (1.1) - (1.3), if t*,- G C*(jtii)(i = 1,2) satisfy equations 
(1.1), boundary conditions (1.2) and transmission condition (1.3). 

Let us notice that provided u = (ui>u2) is a classical solution and we define 
u : Hi U U2 —• R1 by u | Qi == u,-, t = 1,2, then in general, u has a discontinuity 
across r s defined together with u by equation (1.1) and conditions (1.2), (1.3). On 
the other hand, the derivative -^r is "continuous" across V*. 

Let u — (ui,tt2) be a classical solution. If we multiply equation (1.1) by an 
arbitrary v, e C°°(jCli)(i = 1,2), integrate (1.1) over (1*, apply Green's theorem 
and use conditions (1.2), (1.3), we get 

Y f Vui-Vvidx + y f k\ui\aUiVidS+ 
t£J*< £}Jr* 

(1.5) + / k\u2 - ut\a(u2 -mXt* - vi)dS = T I / • VV|<*V, 
JTz £rt J*i 

(wb^eHSiOxC 0 0 ^) . 

(Here V = (d/dxud/dx2), x = (xi,x2).) Identity (1.5) leads us to the concept of 
a weak solution of the problem. 

We shall deal with the well - known Lebesgue and Sobolev spaces 1^(0), 
I/(ai)yI/(m)t Wk*(Q)t Wk*(Qi) (etc.) (1 < p < oo, 1 < k < oo, Jfe is an in­
teger), equipped with the norms || • ||0,Ffo, || • ||o,F,Q<, II • lk„,*i, II • IU,F,n» II • ||*,Ffn, 
(etc.), respectively. (See e.g. [10],[11], [14].) By | • |*,F,Q we denote the seminorm 
in Wk**(n): 

(1-6) |u|fc,F,n = ( £ llj^TlloVn)17'. »eWk»(Q). 
a+fi*k OXxOX% 

Let us remind the completely continuous imbedding Hrl»2(Ol) *-+«-> L9(dQ>i) for 
ail q € (1, +oo) - see [11], [14]. Hence, there exists a constant cx -= c%(q) > 0 such 
that 

(1.7) IMkf,*>, < dMiAOi> * € W^ili) 

and from each sequence {un} bounded in W1,2(0,) we can choose a subsequence 
strongly convergent in L9(dQi). 

In the sequel we shall assume that 

(1.8) / € [ 2 . W . 

Let us define the Hilbert space H(Q) = W ^ f l i ) x Wl>2(to2), equipped with the 
norm 

(-.») llu||l.2fl = (||u1||?,2>ni+|K||?>2)(1,)
1!2, u = (.ultu2)eH(n), 
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and define the forms 

(1.10) Қщv 

c(uђv 

d(щv 

L(v 

a(u, v 

= 5ľ / Vu.Vü.daľ, 

= Ż / ҺWiľWidS, 
ІҐIJV* 

= / k\u2 - ui\a(u2 - UІ)(V2 -v^dS, 
Jr* 

= E/ 7 '*****' ÍҐiJЪ 

= Қuy v) + c(uy v) + d(u, ü), 

w = (t-i,tl3), V = (ÜЬ^2) 6 H(Ü). 

Let us notice that the forms c and d are well-defined in virtue of (1.7). 
In H(Q) we shall also use a seminorm | • 11,2,0: 

(i.u) H i ^ = (MU* + l«.l.,W1/2. « = («i.«a) e *(«)• 
1.12- Definition. We say that u = (t*i,u2) is a weak solution of problem (1.1) 
(1.3), if 

(1.13) 

6) 

« Є Я(íl), 
o(u,v) = I(t;) to Є Я(íì). 

1.14. Lemma. The form L is linear and continuous on H(U). For each u € 
JET(O) the forms a(u, •), 6(u, •), c(ut •) and d(u, •) are linear and continuous on H(Q). 
Moreover, b is a continuous bilinear form on H(Q). 

Rrom the above considerations it follows that problems (1.1) - (1.3) and 
(1.13, a-b) are formally equivalent in the following sense: If u = (uj, u2) is a classical 
solution, then it is also a weak solution. On the other hand, provided u — (ui,u2) 
is a weak solution and u,- € C2(Ot), t =-1,2, then u is a classical solution. 

If a = 0, then the problem is linear; for a > 0 we have a nonlinear problem with 
a similar structure as problems studied in [9] with the use of a variational approach. 
Here we shall apply the monotone operator method. 

2. Solvability. 
First, let us prove some auxiliary assertions. 

2.1. Lemma. Let q > 1. The there exists a constant c2 — c2(q) such that 

(2.2) 
l«lî,.,n + Ht.Гn ( Ż llu<llî,,.r, + l«i ~ «-Иîлл) > 

>ынь,ӣ 
Vu = (.i,щ)єя(й), U5É0. 
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