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Uniform bounds for solutions of a degenerate 
diffusion equation with nonlinear 

boundary conditions 

JAN FILO 

Dedicated to the memory of Svatopluk FuCfk 

Abstract. This paper deals with solutions u(as.t) of the degenerate parabolic equation 
(j9(u))t = Au in the cylinder D x ( 0 , T ) , P C RN bounded, 0(u) = |u | m s ignu under 
the assumption, that on the lateral boundary nonlinear boundary conditions of the form 
dufdv = f(u), f(u)u < £ ( | u | a + 1 + 1 ) , a > 1 , 1 > 0, are imposed. It is shown that the 
value of the integral 

sup A | u ( M ) l ( N ~ 1 ) ( a ~ 1 ) + * <-* 
D<t<T Jт 
0<t<T JT 

for positive e is crucial for obtaining the JD°°-estimate of the solution. 

Keywords: Parabolic equations, nonlinear boundary conditions, L°°-estimate 

Classification: 35K55, 35K60 

Let u(x^t) be a smooth function satisfying the heat equation u< = usx in the 
rectangle 0 < x < l , 0 < t < T and assume that u(x,0) = uo(x)(0 < x < 
1), u*(0,t) = 0, ti«(l,t) = /(u,(l,t))(0 < t < T), / € C(R). Multiplying the 
equation by u r for positive odd r and integrating we immediately derive 

f1 |u(x, t ) r + 1 dx < I" |u0(x)| r+1 dx + (r + 1)( sup |/(^)|)C rt 
Jo Jo \*\<c 

for C = max |u(l,r) | . Taking the (r -f l)-th root of both sides and passing to the 

limit as r -4 oo we obtain 

(1) |u(x,t)| < me* |r ,(x)| + omax r |u(l,r) | 

for all (x,t) e [0,1] x [0,T], i.e., the solution u can be pointwise estimated by its 
maximum value at the beginning (t = 0) and on the boundary (x = 1). 

In this note we shall prove a result similar to (1) for more general parabolic 
equations in several space variables. To begin with, let us consider the problem 

u« = Дu foг x Є D, ł > 0 

^ = / ( u ) f o r - є Г , ť > 

u(x, 0) = u 0(s), u 0 Є C2(2>), 

(2) | ì : = / ( u ) for*ЄГ, ť>0 
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where .0 C RN is a bounded domain with a smooth boundary T, du/dv denotes 
the outward directed normal derivative of u on T and let / be a smooth function 
satisfying 

/ (u)u<I( |u | ° + 1 + l) 

for fixed constants a > 1, L > 0. For u0 satisfying the compatibility conditions 
duo/dv as /(uo) on r there exists a unique classical solution u(x>t) € C2,1(D x 
[0,T]) for some positive T (see, e.g. [2], [7]). 

We prove that for 
p>(N-l)(a-l) 

there exist positive constants M, i/, independent of T, such that 

(3) Kx ,<) |<M ( l + sup|u0(ar)|)(l+ sup / \u(syr)\"dsY 
x€D 0<r<TJr 

for all (ar, t) € .D x [0,T]. The constants Af,i/ depend solely on the data D,f and 
on p. 

Similar results for problems in which the nonlinearity occurs in the equation 
rather than in the boundary conditions, e.g. 

ut = Au -h f(u) (ar, t) € D x (0, T), 
(4) u(*,t) = G (*,*)€ Tx(0,T), 

u(ar, 0) == Uo(x) x € D> 

have been obtained using the same Moser type method by Alikakos [1], Rothe [12], 
Nakao [9], [10], Filo [5] (the list is surely not complete). To point out the difference 
between the value of the "critical" exponent (N — l)(a — 1) for Problem (2) and 
the analogical one for Problem (4), let us recall the result of [12]. Let 

r > K(a _ i) for N > 3, 

r > a ~ l for N = l ,2 

and let u be a solution, say classical, to Problem (4). Then there exist positive 
constants K, />, <7, independent of T, such that 

K M ) I < mi + sup|u0(x)i)+(i + sup (jL f K«,t)D1/ry /rr 
x€D 0<#<T 1-̂ 1 JD 

forall(ar,t)€.Ox[0,T]. 
As follows from results of Friedman and McLeod [6], this result is sharp (except 

for N -= 1) in the following sense. For special choice of the domain D (D being a 
ball) and initial states it may occur that 

/ N 
sup / \u(x,t)\rdx < oo for r < -—(a — 1), 

o$t£r JD 2 
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but 
limsup||u(-,t)||Jr,oo(D) = oo. 

However, as far as we know, no similar results have been obtained for Problem (2). 
In [8] Levine and Payne considered Problem (2) for / satisfying f(u) = |u|°7i(u), 

h increasing, a > 1. They proved that if u0 is sufficiently large, the corresponding 
classical solution u breaks down by becoming unbounded in finite time, say To. 
Applying our result (3) we may conclude that also 

limsup <p |u(4, i)!* <fc = oo 
t-To / r 

for all p > (N — l)(a — 1), whenever k is bounded. 
In [4] it is shown that any global classical solution of Problem (2) with 1 < a < 

N/(N - 2) (if N > 3) is bounded in Hl(D) uniformly with respect to t > 0. (By a 
global solution we mean one which exists on D x [0, oo).) From our result it follows 
that it is also bounded in C(D) for t > 0. 

As in the several past years nonlinear diffusion problems have been intensively 
studied, we shall consider Problem (2) in which the heat equation is replaced by 
(P(u))t = Au for the exact power law nonlinearity /?(u) = \u\m signu, m > 0. This 
equation is for 0 < m < 1 well known as the porous medium equation and for m > 1 
as the fast diffusion equation, (see, e.g. [3] and references therein). Nevertheless, 
this nonlinearity does not change the value of "critical" exponent and we shall prove 
the analogy to (3) whenever m is sufficiently small for N > 3. 

The method of our proof consists in modifying suitably the Moser type technic 
[1], as appearing in [12], [9], [10]. 

Assumptions and Statement of .Results. 
We start by introducing some notation. For 0 < T < oo let Q = D x (0, T), S = 

T x (0, T). The norms in the spaces L°°(D), Hl(D) will be denotet by || • H*,, || • ||1>2 

and we shall write u r := |u|rsign u, fDu(t)<p(t) := fDu(x, t)(p(x>t)dx} fp \u(t)\r := 
f,.\u(s,t)\rds. 

Now we consider the initial and boundary value problem 

(fi(u))t = Au ( M ) € Q , 

(5) t ; = / ( u ) ( M ) € S , 

u(x, 0) = u0(x), u0 € L°°(D) (T H\D). 

Throughout the paper we will make the following assumptions, on 6 and the bound­
ary datum / . 

(HI) (̂u) = |ur signu, 
where m is a positive constant, which may be arbitrary if N = 1,2, but must satisfy 

0 < m < (N + 2)/(N - 2) for N > 3. 
(H2) / € C(R) is a given function such that 

/(t-)u<i(iur+i+i) 
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for some L > 0 and a > 1. 
It is known that in general we can not expect of Problem (5) to be solvable in 

the classical sense even if the data are arbitrarily smooth. Therefore, it is necessary 
to deal with a suitable class of weak solutions. 

Definition. By a weak solution of Problem (5) we mean a function u € L°°(0, T; 
H*(D)) PI L°°(Q), such that (ti<m+1>/2)t € I2(Q), satisfying 

(6) 
/ č(«(r)Mr) - í Í (0(«)V. - VuVv>) = 

JD JO JD 

f lf(u)v+ í /J(u»M0) 
Jo JT JD 

for all <p € Hl(Q) and a.e. r € (0, T). 
We note that if u is a weak solution of Problem (5) with / € C1(R), then from 

the results of DiBenedetto [3] it follows that u € C(D x (0, T]). If in addition u0(x) 
is continuous in D, then u € C(Q). We can now state our main result. 

Theorem 1. Let u be a weak solution of Problem (5) and assume that (HI), (HI) 
hold. Let 

B(u):~ sup / |u(0l ( N~ 1 ) ( a~ l H c 

o<«т/г 

for some e > 0. 
Then there exist positive constants M, v depending solely on the data m, 2D, / and 

on e such that 

(7) IK, t)||oo < M(l -f |M|oo) C1 + #(«))" for dlO <t< T. 

Remark 1. One can prove an analogous statement if du/dv = f(u) holds only over 
a part T% of the boundary with positive (N — 1) dimensional Lebesgue measure and 
if we require, e.g. u = 0 on T2,r2 = T \ T\. 

Let us now state a series of assertions, which contain ail elements for the proof 
of Theorem 1 and say more about the dependence of M, v on the data and on e. 

Proposition 1. Assume that (HI) holds, and suppose that the (appropriately 
smooth) function u(x, t) satisfies the inequality 

4/Kt)r+r+£oii«(l+r)l2(*)ii;,2< 
(8) dtJo . 

<JDi(m + l)<(/ \u(t)r+r)*& + L2(m + r) 
JD 

for allr > 2 and a.e. t € (0,T) with tome conttanU L0 > 0, i , , L2, f > 0- Let 

(m+J) l/0 := 8Up (± f |«.(t)Г+l)ll(в 

в<.<г W JD 
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Then there exist positive constants C,& depending on D,m,(,JDo»--'2i indepen­
dent of T, such that 

(9) *V M-M~<(l + Li)*Cm^lfM-M*ofVo). 
0<t<T 

Proposition 2. Let u be a weak solution of Probltm (5) and Itt (Ml), (St) hold. 
Thtn ihtrt exist positivt constants 8,f*,£, dtptnding only on the data D,/,m 

and on e such that u satisfies (8) with Lo = l/4m, Li = |r|/v-i(.£ 4- 4L0) and 

(10) Lt = e(l + B(u))v. 

Proposition 3. Undtr tht hypothtsts of Proposition ft there exist positivt constants 
K,C such that 

(11) U0 < max(||u0||oo,K(l + B(u))<). 

Tht constants K and C depend only on tht data and not on T. 

Let us start with 
PROOF of Proposition 2: Putting <p = ur for r > 1 into (6) we obtain, with the 
assistance of (HI), (H2), 

^ T 7 i I K')lm+r + nTr^ i lv«(1+r)/2WI2 < 
(12) m + r dt JD (1 + r)« JD 

2Lf\xi(t)\°+r + L\T\N-

for a.e. t € (0, T). We note that it is possible to take ur as the test function also in 
the case of m > 1, in which ut does not always exist. However, in this case (fi(u))t 
exists and (6) yields (12). First of all we estimate the first term on the right hand 
side of (12). We shall distinguish two case. If N > 3 then for positive e we obtain 

(13) 

where 

and 

l |u | n + r < ( í |u |< ł + г >*^) p ( í |U|<W-»H—»>+-))Q. 

•(jfl«l1+r)я 

(.V-2)(q-l) a - 1 
( .V-l)(a-l ) + e' V - ( i V - l ) ( a - l ) + e 

Д = 
( A T - l ) ( a - l ) + e -

If N - 2 it holds that 

/ l«r+ r < ( / |u|2<«-»+«><1+r>/')p( / |ur-,+«)«-
(14) / r / r / r 

•(/i-ii+r 
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where 

» c ( « - l ) 
( 2 ( a - 1 ) + *)(<*-1 + e)' 

<?= a 7 X and J* = * 
a - l + c 2 ( a - l ) + e* 

The above inequalities play a key role in our considerations. Now, let us come back 
to (13). Put 

p = ( N - 2 ) / ( N - l ) P and <j = l/l*. 

By the embedding theorem, there exists a Ce > 0 such that 

^ M 2 ( N - l ) / ( N - 2 ) < ( C | M | / - l ) / ( ^ ) 

for all ip € Hl(D), 

and as p"*1 + q""1 = 1, we arrive at 

/iurr<»?iiu^>/2ii?,2+ 
(15) 

+(^)(-V-l)(«-l)/«( i |y|(N-l)(«-l)+«)j(«-l)/« i |u|l+r 
*1 JT JT 

for any 17 > 0, where Young's inequality has been used. Let L0 be a constant such 
that 0 < L0 < r(m + r)/m(l + r)2 for all r > 1. Specifying 17 as mL0/2L(m + r), 
(12) and (15) then yield 

(iб) 
I jD Kor+ r+3i 0 i iu< i + r> l s(t)n? (2 < 

< Ci(B(ti))<—^(m + r)» j |u(ť)|1+r + I 2(m + r) 

where 
„,i+<"- >x«--) 

c 
and the nonnegative constant C\ depends only on the data D,m, f and on e. 

Next, the following inequality is very useful 

(17) iM**sJDl*tf + 7fDW 
for all if € Hl(D) and all sufficiently small 6, say 0 < 6 < 60, 60 being given, where 
the positive constant C does not depend on 6 (see, for example, [11, page 15]). 
Now, with the assistance of (17), (16) gives 

(18) 
I j^ |«(i)|m+r + ax.|«<1+r)'»(ł)Й1, < 

С^ßOOГ^-WҶm + r) 2 ' / W 0 l 1 + г + - . , (" . + -) 
JD 
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for a.e. t 6 (0,T) and all r > 1 (C2 = CCj/LQ). If m > 1 (8) and (10) follow easily. 
Thus, let 0 < m < 1. In this case, Holder's inequality and Sobolev embedding 

theorem immediately yield 

JD JD 

for 

P . ^ X - m ) and Q - 2£l±li . 
JV( l-m) + 2(m + r) V N(l - m) + 2(m + r) 

Now, applying Young's inequality, we arrive at 

/ H i+r<i7||u( i+r>/2iif2+(%^^(/ i_r+o^ 
JD 1 JD 

for 17 > 0 and (8) follows. 
If N = 2, considering (14), the proof is essentially the same. • 

PROOF of Proposition 1: Many, but not all, of the technical details used in our 
proof were established by Alikakos in [lj. However, to make our work self contained, 
we include the proof of Proposition 1 for 0 < m < 1 here. We note that the case 
m > 1 can be proved using the same procedure. To simplify the notation, put 

rk = 2* and qk = L_(m + rk)* for k = 0,1 ,2, . . . . 

Consider first the case N > 3. Using Holder's inequality and Sobolev embedding 
theorem, the integral in the first term on the right hand side of (8) can be estimated 
as follows, 

(19) / |u|m+r* < (C.||_(1-fr*)/2||? 2)p( / |u|m + r*-1)9 

JD ' JD 

where 

and 

Яrk 

N(l - m) + 2(m + r*__) + І V Г Ы 

Q^ N(l~m) + 2(m + rfc) 
N(l - m) + 2(m + rk^) + Nrh-i' 

Now, by Young's inequality, (19) yields 

(20) ( / | t , | m +*-*)^ < ek\\u^r^mt2 + Sk( f |t<p+'*-i)** 
JD JD 

where 

3 t = _______ „„! 4 t _ ( __. ) P .V9. 
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The positive number ek will be determined later. Next, due to (20) and (8), we 
arrive at 

| jD w v r ^ + ( x . - *k*k - 4)ii^(1+r*)/2(oii h < 
-e*( / |ti(t)|m+r*)<1+r*)^m+r*> + L2(m + rk)+ 

JD 

+ek6k(l+ **.)([ \u(t)\m+r>-*Y> 
ek JD 

for all k as 1,2,... and a.e. t € (0,T). 
Now, if we choose 

«* = W(™ + nO*(l + £i) 
for eo sufficiently small we obtain Lo - qkek ~e\ > 0 for all k = 1,2, Solving 
the differential inequality 

V* + eyv < eP a.e. on (0, T), 

for e > 0, v > 1, we obtain 

y(t) S max(y(0), P1'") for all t 6 [0, T), 

and thus 

**(*) < ma%(y*(0), (6k(\ + ^)ffi \D\**^ UZ+r> + 
(21) £ * 

&k 

for all i € [0,T] and k =* 1,2,... , where 

Ct»* sup ( j l f / K « ) I " + , » ) 1 / ( ' 
o<<<T W\ JD 

and 
<w+r*>. 

Taking €Q small, it is not <iifficult to verify that 

(22) * < * ^ maX((**(1 + g))^PI^,(~(m + r* ) ?^p ) ~ 
<(l + Lx)*ar*k 

for some positive «,a,a (independent of ib) and all Jfe = 1,2,.... We note that 
the constants *,<r depend Only on N,m,( and a on .£0, £2, •&,"*• Therefore, (21) 
implies 

(23) y*(t) S mnx(||u,||S,+", dk(V?+T> +1)) 
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for all t € [0,T]. Put K = max(l, ||ti0||oo, lIo), then (23) yields 

(24) rIi<(fI(2di)
1/(m+r'))K 

; = i 

for all i = 1,2, Now, with the assistance of (24) and (22), (23) gives 

( / |u(t)|m+rfc)1/(m+r*) < |D|1/(m+rfc)(2(l + Li)'8a)Sl2irSaK 
JD 

for all lb = 1,2,... and t G [0,T], where 
oo 1 oo 

* - E - T + - ?
 s*=g,^+7? 

Finally, passing to the limit as fc —• oo we obtain (9). 
If N = 2 we obtain (19) with P = rjfc_i/(l — m-r r*_i) and (20) with a* as above. % 

The rest of the proof is then the same. • 
PROOF of Proposition 3: To prove Proposition 3, we shall deal with the differential 
inequality (16) for r = 1. Let us suppose that (N — l)(a — 1) -f e < 2 as otherwise 
the proof is straightforward. In this case, using Holder's inequality, the embedding 
theorem and Young's inequality, we arrive at 

/ l«|2 < iilli.li; 2 + (—)P ( / |«|C->M-»H.)í/((iv-i)(--i)+.) 
/r n Jr 

e) 
~i -s *fii-"111,2 « v „ / v r i - i J 

Jv n /r 
for any 17 > 0, where 

( J V - l ) ( 2 - ( J V - l ) ( a - l ) - £ ) 
( J V - l ) ( o - l ) + e 

for JV > 3, 
riS-q-e) 

( p _ 2 X o - l + e) 
for JV = 2, p > 2 being arbitrary, and Ct > 0 originates from the embedding 
theorem. Thus, (16) yields 

Jt J K<)lm+1 + 2Io||«(*)||.>2 < C,(l + B(u)r a.e. on (0,T), 

where the constants C$,w depend solely on the data D,m,/ and on e. According 
to (HI), £m + 1(D) is embedded into Hl(D), hence 

lAW + C4y
2
0
/{m+l)(t) < C,(l + B(u))w/|D|, 

C4 = 2.r/0|D|(1""m)/(m+1)/C,. Solving this differential inequality we obtain 

U0 < m a x ( | | u 0 | U , ( £ ^ 

hence (11). 
The proof of Theorem 1 is completed. • 
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Remark 2. The preceding theorem can be extended to problems, where the reac­
tion term occurs also in the equation, i.e. 

^ } du/dp~f(u) on 5, u(Xi0) = uQ(x) in D, 

where g is sufficiently smooth, satisfying 

g(X)X < CQXF™*1 + I) 

for some C > 0, 7 > 1. 

Theorem 2. Let u b\a weak solution of Problem (25). Put 

F(u) := sup / |«(ť)r 
0<t<TJD 9<t<TJD 

for 
N 

r > - - ( 7 m - 1 ) t/N > 3 , r > 7 m - l t/N = 1,2, r > 0. 

Under the preceding hypotheses on UO»F\/ and g, there exists a constant M, inde­
pendent of T, such that 

IK-><)IU<M 

for all t € [0, T]. The constant M depends on D, / , g, #, ||uo||oo, e, r, B(u) and f(u). 

Theorem 2 can be proved in a manner similar to that of Theorem 1 and analogical 
one in [5]. 
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