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Uniform bounds for solutions of a degenerate
diffusion equation with nonlinear
boundary conditions

JAN FiLo

Dedicated to the memory of Svatopluk Fuéfk

Abstract. This paper deals with solutions u(z,t) of the degenerat boli ti
(A(u)): = Au in the cylinder D x (0,T),D C RN bounded B(u) = lul"' ngnu under
the assumption, that on the lateral boundary dary conditions of the form

8u/8v = f(u), f(u)u < L(ju|*+! +1), @ > 1, L > 0, are imposed. It is shown that the
value of the integral

sup f Ju(s, )N =Da=1)+e g,
0<t<T Jp

for positive ¢ is crucial for obtaining the L°°-estimate of the soluti

Keywords: Parabolic equations, 1 boundary ditions, L% -esti
Classification: 35K55, 35K60

Let u(z,t) be a smooth function satisfying the heat equation u¢ = u, in the
rectangle 0 < z < 1,0 < ¢t < T and assume that u(z,0) = up(z)(0 < z <
1), u,(0,t) = 0, u,(1,t) = f(u,(1,t))(0 £ t < T), f € C(R). Multiplying the
equation by u" for positive odd r and integrating we immediately derive

1 1
[ s < [ luo@)+ o+ 1) sup SDCTe
() o lz1<C
for C = ox<na<xT|u(1,1')|. Taking the (r + 1)-th root of both sides and passing to the
limit as r — oo we obtain
(1) fu(e, 1 < gmax v (&) + g fu(t, o)

for all (z,t) € [0,1] x [0,7], i.e., the solution u can be pointwise estimated by its
maximum value at the beginning (¢ = 0) and on the boundary (z = 1).

In this note we shall prove a result similar to (1) for more general parabolic
equations in several space variables. To begin with, let us consider the problem

us = Au forzeD, t>0
(2) g%=f(u) forzel, t>0

u(z,0) = uo(z), up € C*¥(D),
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where D C RY is a bounded domain with a smooth boundary T, du/8v denotes
the outward directed normal derivative of u on I" and let f be a smooth function
satisfying
flu)u < L(jul*+ +1)
for fixed constants a > 1, L > 0. For ug satisfying the compatibility conditions
Buo/Bv = f(uo) on I there exists a unique classical solution u(z,t) € C*'(D x
[0, T]) for some positive T (see, e.g. [2], [T]).
We prove that for
p>(N-1)a-1)

there exist positive constants M, v, independent of T', such that
®) lu(z, )] < M(1 + suplue(z)|)(1+ sup f lu(s, T)IP ds)*
z€D o<r<TJr

for all (z,t) € D x [0,T). The constants M, v depend solely on the data D, f and
on p.

Similar results for problems in which the nonlinearity occurs in the equation
rather than in the boundary conditions, e.g.

ue=A0u+f(u) (z,t)€ D x(0,T),
4) u(z,t) =0 (z,t) €T x(0,T),
u(z,0) = uo(z) z€D,
have been obtained using the same Moser type method by Alikakos (1], Rothe [12],
Nakao [8], [10], Filo [5] (the list is surely not complete). To point out the difference

between the value of the “critical” exponent (N — 1)(a — 1) for Problem (2) and
the analogical one for Problem (4), let us recall the result of [12]. Let

r>%(a—1) for N >3,

r>a-1 for N=1,2
and let u be a solution, saiy classical, to Problem (4). Then there exist positive
constants K, p, 0, independent of T', such that

lu(z, )] SK((I+:\exgluo(z)|)+(1+o§1:£r(l—;5l- /D (e, )yl

for all (z,t) € D x [0, T).

As follows from results of Friedman and McLeod [8], this result is sharp (except
for N = 1) in the following sense. For special choice of the domain D (D being a
ball) and initial states it may occur that

sup / ju(z,t)|"dz <00 for r< E—(a -1),
ogesT VYD 2
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but
lir:ls%xpllu(-,t)llm(m =

However, as far as we know, no similar results have been obtained for Problem (2).

In [8] Levine and Payne considered Problem (2) for f satisfying f(u) = |u|*h(u),
h increasing, a > 1. They proved that if ug is sufficiently large, the corresponding
classical solution u breaks down by becoming unbounded in finite time, say Tj.
Applying our result (3) we may conclude that also

hmsupf lu(s, t)|?ds =
t—To
for all p > (N — 1)(a — 1), whenever h is bounded.

In [4] it is shown that any global classical solution of Problem (2) with 1 < a <
N/(N —2) (if N 2 3) is bounded in H!(D) uniformly with respect to t > 0. (By a
global solution we mean one which exists on D x [0,00).) From our result it follows
that it is also bounded in C(D) for ¢ > 0.

As in the several past years nonlinear diffusion problems have been intensively
studied, we shall consider Problem (2) in which the heat equation is replaced by
(B(u))e = Au for the exact power law nonlinearity A(u) = |u|™ signu, m > 0. This
equation is for 0 < m < 1 well known as the porous medium equation and for m > 1
as the fast diffusion equation. (see, e.g. [3] and references therein). Nevertheless,
this nonlinearity does not change the value of “critical” exponent and we shall prove
the analogy to (3) whenever m is sufficiently small for N > 3.

The method of our proof consists in modifying suitably the Moser type technic
(1], as appearing in [12], [9], [10].

Assumptions and Statement of Results.

We start by introducing some notation. For 0 < T < oo let Q = D x (0,T), S =
I'x (0,T). The norms in the spaces L>°(D), H(D) will be denotet by ||+ |lco, || |}1,2
and we shall write u” := |u|" sign u, [, u(t)p(t) := [pu(z, t)p(z, t) dz, & [u(t)]" :=

§r lu(s, )" ds
Now we consider the initial and boundary value problem
(B(w)): = Au (=) eQ,
®) =W (t)es,

u(z,0) = ug(z), uo € L=(D) N H'(D).
Throughout the paper we will make the following assumptions, on 8 and the bound-
ary datum f.

(H1) B(u) = |u|™ sign u,
where m is a positive constant, which may be arbitrary if N = 1, 2, bu’ must satxsfy
0<m<(N+2)/(N-2) forN2>3.
(H2) f € C(R) is a given function such that
flu)u < L(Jul** +1)
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for some L > 0 and a > 1.

It is known that in general we can not expect of Problem (5) to be solvable in
the classical sense even if the data are arbitrarily smooth. Therefore, it is necessary
to deal with a suitable class of weak solutions.

Definition. By a weak solution of Problem (5) we mean a function u € L*(0,T;
HY(D)) N L>(Q), such that (u(™+1/2), € [2(Q), satisfying

[, st - [ [ @ - vuv) =

[ § 5w+ [ suoreto

for all ¢ € H'(Q) and a.e. T € (0,T).

We note that if u is a weak solution of Problem (5) with f € C'(R), then from
the results of DiBenedetto [3] it follows that u € C(D x (0, T]). If in addition uy(z)
is continuous in D, then u € C(Q). We can now state our main result.

Theorem 1. Let u be a weak solution of Problem (5) and assume that (H1), (HE)
hold. Let

(6)

B(u) := sup flu(t)I(N'—l)(a—lyfc
0<t<TJr

for some € > 0.
Then there ezist positive constants M, v depending solely on the data m, D, f and
on & such that

(M lluGyt)lloo < M(1 + Jluolloo) (1 + B(u))* for all0<t<T.

Remark 1. One can prove an analogous statement if du/8v = f(u) holds only over
a part I'y of the boundary with positive (N — 1) dimensional Lebesgue measure and
if we require, e.g. u =0on [;,I; =T\ T,.

Let us now state a series of assertions, which contain all elements for the proof
of Theorem 1 and say more about the dependence of M, v on the data and on €.

Proposition 1. Assume that (H1) holds, and suppose that the (appropriately
smooth) function u(z,t) satisfies the inequality

o % [ O+ Lo, <
< La(m + ¥ WO + Lam 47

for allr > 2 and a.c. t € (0,T) with some constants Lo >0, L,, Ly, £ 2 0. Let

Up := sup('DI/ |u(t)lm+l)l/(m+l)
0g1ST
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Then there exist positive constants C, ¥ depending on D,m, £, Lo, L2, indepen-
dent of T, such that

9 sup [u(t)lleo < (1 + L1)°C max(1, |ju(-,0)lleos Vo).
0<t<T

Proposition 2. Let u be a weak solution of Problem (5) and let (H1), (H2) hold.

Then there ezist positive constants O, u,§, depending only on the data D, f,m
and on € such that u satisfies (8) with Lo = 1/4m, Ly = [T|n-1(L + 4Lo) and
(10) Ly = 6(1 + B(u))*.

Proposition 3. Under the hypotheses of Proposition £ there ezist positive constants
K, such that

(11) Uo < max(|luolloo, K(1 + B(u))°).
The constants K and  depend only on the data and not on T.

Let us start with
PROOF of Proposition 2: Putting ¢ = u” for r > 1 into (6) we obtain, with the
assistance of (H1), (H2),

m_d mr 4r a+r)/2(4\(2
— <
m+4r dt /D lu(®)l + (1+r)? /D Vu ®F <
2L § u(®)l**" + LiTly-1
r

for a.e. t € (0,T). We note that it is possible to take u" as the test function also in
the case of m > 1, in which u, does not always exist. However, in this case (8(u)),
exists and (6) yields (12). First of all we estimate the first term on the right hand
side of (12). We shall distinguish two case. If N > 3 then for positive ¢ we obtain

f ’u|a+r < (f lul(l-{-r)#:—})}’(f |u|(N—l)(c—1)+t))Q_
T r r

(12)

(13)
('é Iu|l+r)R
where
po W=a=1) o a-1
T(N=1)(a-1)+e Y (N-1)(a-1)+¢
and

€
R= (N=1)(a—-1)+¢"
If N = 2 it holds that

atr u 2(a—=1+¢)(14r)/e\P ulo—1+e Q.
i+ < (f 1o )P(f tulo+)

(14)
('i lull-h-)i!
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where
P= e(a—1)
T (2a=-1)+e)a-1+¢)
Q a-1 and R €

Ta-1+e “2a-D+e

The above inequalities play a key role in our considerations. Now, let us come back
to (13). Put

p=(N-2)/(N-1)P and ¢=1/R.
By the embedding theorem, there exists a C. > 0 such that

f} lpPN=DIN=D < (Cellollf )N DN =D

for all € H'(D),

and as p~! 4 ¢~ =1, we arrive at
F 10l < PR 4

(15) o
+(__,;¢_)(N—l)(a—l)/t(.£‘Iu‘(N—l)(a-1)+¢))(a—l)/t é‘ lu|!+r

for any n > 0, where Young’s inequality has been used. Let Lq be a constant such
that 0 < Ly < r(m + r)/m(1+ r)? for all r > 1. Specifying n as mLo/2L(m + r),
(12) and (15) then yield

d m+r T
G [ O L), <
(16)

< CuBW)/e(m + 77 § [(OPH" + La(m +7)

where N -1 i
g=1+(__—_l£2:__l

and the nonnegative constant C; depends only on the data D, m, f and on .
Next, the following inequality is very useful

c
an) Fror <o [ ver+3 [ 1o
r D D

for all ¢ € H}(D) and all sufficiently small §, say 0 < § < 8y, 8 being given, where
the positive constant C does not depend on § (see, for example, [11, page 15)).
Now, with the assistance of (17), (16) gives

d
G || o 2Ll <
(18)

Ca(B)=~D/%(m + r)?* /D (O + La(m +7)
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8’

fora.e. t € (0,T) and all r > 1 (C; = CC}/Lo). f m > 1 (8) and (10) follow easily.
Thus, let 0 < m < 1. In this case, Holder’s inequality and Sobolev embedding
theorem immediately yield

/D '+ < (G2 )P ( [D fu|™+7)@

for
N1 -m)

N1-m)+2(m+r)
Now, applying Young’s inequality, we arrive at

C -m
/D |"|l+r < n||u(’+')/2||§'2 + (_'_71)‘{—“ vln+r ('/D |u|m+r).‘..'?;":

21+ 7r)
Nl-m)+2(m+r)

P= and Q=

for n > 0 and (8) follows.

If N = 2, considering (14), the proof is essentially the same. ]
PROOF of Proposition 1: Many, but not all, of the technical details used in our
proof were established by Alikakos in [1]. However, to make our work selfcontained,
we include the proof of Proposition 1 for 0 < m < 1 here. We note that the case
m > 1 can be proved using the same procedure. To simplify the notation, put

re =2* and qx =L1(m+rk)‘ for k=0,1,2,....

Consider first the case N > 3. Using Holder’s inequality and Sobolev embedding
theorem, the integral in the first term on the right hand side of (8) can be estimated
as follows,

(19) [ < et yn [ uminege

where
Nry_y

P =
N1 -m)+2(m+re-1)+ Nrg—y

and
N1-m)+2(m+r)

Q= N1 -m)+2(m+rg—1)+ Nri_y '
Now, by Young’s inequality, (19) yields

@ (I <t o [ e
D D
where
14r:

S =

= _C_‘.Pu/Q
T m4rn and 6"—(61:) )
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The positive number ¢ will be determined later. Next, due to (20) and (8), we

arrive at
d
G [ O™ 4 (Lo - qien = DI, <
"Ek(/ Iu(t)l"'+")<‘+")/('"+")+L2(m+r,,)+

+eubu(1+ 2 / fu(g)|mFra-i )

forall k=1,2,... and a.e. t € (0, 7).
Now, if we choose
Ep = Eo/(m + Tg)e(l +L1)

for €y sufficiently small we obtain Ly — gxex — €3 > 0 for all k = 1,2,.
the differential inequality

y' +ey <eP  ae. on(0,7),
for € > 0, v > 1, we obtain
() < max(y(0), P*/*) for all t € [0, T],

and thus

O SO, G S FR R
(21
+(;(m + ,,))1—1:.* /\D})

forallt € [0,T] and k = 1,2,..., where

w(t) = l—}yl /D fu(t)| ™

and

U= mp (2 [ fu(gmempremson,
ogect |D|

Taking ¢o small, it is not difficult to verify that

(22)
S+ ILi)arg

. Solving

1< dy = mex((5h(1 + 22 T DI, (Z20m +r) T 1) <

for some positive x,a,0 (independent of k) and all k = 1,2,.... We note that
the constants x,0 depend only on N,m,¢ and a on Ly, Lz, D,m. Therefore, (21)

implies

(23) () S max(luol| %™, di(UFE™ +1))
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for all ¢ € [0,T]. Put K = max(1, ||uol|oo, Us), then (23) yields

(24) U; < (ﬁ(zdj)ll(mwi))x

i=1
for all : = 1,2,.... Now, with the assistance of (24) and (22), (23) gives

(/ Ju(t)|mtm )1/(m+r-) < |D|‘/("'+")(2(1 + L;)“a)s‘ 201 g
D

forall k =1,2,... and t € [0, T], where

0

=1 53 _¢
I—Zm+7‘.” 2_z:m+r.-'

i= i=1

Finally, passing to the limit as k — co we obtain (9).

If N = 2 we obtain (19) with P = ry_; /(1 —m+ri—;) and (20) with s as above. |
The rest of the proof is then the same. [ ]
PROOF of Proposition 3: To prove Proposition 3, we shall deal with the differential
inequality (16) for r = 1. Let us suppose that (N — 1)(a — 1) + € < 2 as otherwise
the proof is straightforward. In this case, using Holder’s inequality, the embedding
theorem and Young’s inequality, we arrive at

17 <l + (S fugn e/
r ' n r
for any n > 0, where

_(N-ne-(N-1@-1)-¢)

P (N-1)a-1)+¢

for N >3,
P= p3—a—¢)
(P-2)(a—-1+¢)
for N = 2, p > 2 being arbitrary, and C. > 0 originates from the embedding
theorem. Thus, (16) yields

4 /D (&)™ + 2Lollu(®)| , < Cs(1 + B(w))® a.e. on (0,T),

where the constants C3,w depend solely on the data D, m, f and on £. According
to (H1), L™+!(D) is embedded into H'(D), hence

¥a(t) + Cang’ ™ (8) < Ca(1+ B(w))/ID),
Cy = 2Ly|D|(1=m)/(m+1) /C, . Solving this differential inequality we obtain

C,C;s

Up < max(lluollom(-ZLO,DP(mm

P21+ B(w))*/?),

hence (11).
The proof of Theorem 1 is completed. L]
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Remark 2. The preceding theorem can be extended to problems, where the reac-
tion term occurs also in the equation, i.e.

(25) (B(u))e = Au + g(u) in Q,
Ou/dv = f(u) on S, u(z,0) =up(z) in D,
where g is sufficiently smooth, satisfying
g S COA™ +1)
for some C > 0, v > 1.
Theorem 2. Let u ba a weak solution of Problem (25). Put

F(u) = é‘.‘é’r /D fu(t)l”

for
r>%—(7m—-1)ifN23, r>ym—-14N=1,2, r>0.

Under the preceding hypotheses on uo, B, f and g, there ezists a constant M, inde-
pendent of T, such that
llu( Dl < M

for allt € [0,T). The constant M depends on D, f, g, B, ||uo||co, €, 7, B(u) and F(u).

Theorem 2 can be proved in a manner similar to that of Theorem 1 and analogical
one in [5].
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