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On one class of solvable boundary value problems
for ordinary differential equation of n—th order
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Dedicated to the memory of Svatopluk Fué&fk

Abstract. New sufficient conditi of the exist and uniq of the solution of a

boundary problem for an ordinary differential equation of n-th order with certain func-
tional boundary conditions are constructed by the method of a priori estimates.
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Introduction.
In the paper we give new sufficient conditions for the existence and uniqueness
of the solution to the problem

) u™(t) = £(t, u(t),...., u D)),
(2) $0i(ul V) = gi(u,ot,...,u™ V) (i=1,...,n),
where f : (a,b) x R — R satisfies the local Carathéodory condition and for each
i € {1,...,n} the linear nondecreasing continuous functional ¢o; on C({a, b)) is con-

centrated on (a;, b;)c(a, b) (i.e. the value of ¢o; depends only on functions restricted

to (ai, b;) and the segment can be degenerated to a point) and ¢; is a continuous

functional on [C({a,}))]". In general ¢oi(1) = ¢;(i = 1,...,n). Without loss of

generality we can suppose ¢g;(1) = 1(i = 1,...,n), which simplifies the notation.
The formulation (1), (2) contains boundary value problems e.g.

#oi(ulV) =ul-I(t)) (i=1,...,n)
where t; = a; = b; ( = 1,...,n) or the problem
. b
boi(u~D) = / WD) doi(t) (i=1,...,n).
a
The integral is understood in the Lebesgue—Stieltjes sense, where o; is nondecreasing
in (a;, b;) and oi(b;) — 0i(a;) > 0(i = 1,...,n).
In [2), the equation (1) with the conditions in the special form

3) uDt)=¢; (i€R) (i=1,...,n)
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is investigated by means of one-sided estimates, mean while two-sided estimates
are needed to treat the problem (1), (4) with

b¢
(4) [0t =a @er) G=1m),

as it was done in [1].
In this paper we deal with the more general problem (1), (2) using two-sided
estimates. Our results without proofs were communicated in [5].

Main results.

We adopt the following notation:
(a,d) — a segment, —c0 < a < a; < b < b< 400 (i =1,...,n) R" — n—dimensional
real space with points z = (z;)%, normed by ||z}| = ¥ %, l=il,

Ri={z€R":2;20,i=1,...,n},

C""!({a, b)) - the space of functions continuous together with their derivatives up
to the order n — 1 on (a, b) with the norm

n
lullon-1(e,byy = max{d_ [u~(2)| : a < t < B},

i=1

C™=1((a, b)) - a set of all functions absolutely continuous together with their deriva-
tives to the (n — 1)-order on (a, b), the spaces LP({a,b))(p € (1,00)) are defined
in the usual way. According to [3], inequalities between vectors are understood
by components, a functional ¢ : [C%({a,b))]® — Ry is said to be homogeneous iff
#(Az) = Ag(z) for all X € Ry, = € [C°({a,b))]" and nondecreasing iff ¢(z) < ¢(y)
for all z,y € [C°({a,b))]",z < y. Let us consider the problem (1), (2). Under the
solution we understand the function with absolute continuous derivatives up to the
order (n — 1) on {a, ), which satisfies the equation (1) for almost all ¢ € (a, b) and
fulfils the boundary conditions (2).

To solve (1), (2), we specify a class of auxiliary functions g, hy, ..., hn,%1,...¥n.

Definition. Let 4; : [C°({a,}))]" — R4 (i = 1,...,n) be the homogeneous contin-
uous nondecreasing functionals and h;,g € L*((a,b)),k; > 0(i = 1,...,n). If the
system of differential inequalities

O ol t€ (@) G=1,...,n-1),

®) 1Ps(8) - ()oa(®] < 3 Ai(Dlei(8)l, ¢ € (a,b)

)=1
with boundary conditions

(6) min{|pi(t)| : a; <t <bi} < Yilloy),---5lenl) (E=1,...,n)
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has only trivial solution, we say that
(7 (9, b1, hni¥1,...,¥n) € Nic({a,b);a1,...,8n,b1,...,bp).

Theorem 1. Let (¢,h1,...,hn;¥1,...,%n) € Nic((a,b); a1,...,an,b1,...,b,) and
let the data f,d1,...,9n of (1), (2) satisfy the inequalities

(&) [f(t,21,.-.,2a) — 9(t)zn] sign za £ Y hj(t)lz;|+
J=1

+w(t,zn: |zil) fort € (an,b),z € R"

=1
(82) [f(t 215+, Tn) = g(t)zal sign Tn 2 = Y hj(t)le;]~
J=1
o, Y le) forte (ab),z € R”
i=1
9 $iu, .., u™ D) < ilul,. ., D)) 41

forue C"'((a,b)) (i=1,...,n),

where r > 0 and w : {a,b) x R} — R, is a measurable function nondecreasing in
the second variable satisfying

.1t
(10) ,,.I_’.Too; /; w(t,p)dt = 0.
Then the problem (1), (2) has a solution.
To prove the theorem (1) we apply the following

Lemma 1. Let the condition (7) be satisfied. Then there ezists a constant p > 0
such that the estimate

(11) llullen-1¢aby) < A(r + llholl L (o)

lg)lda Jor each constant r > 0,hy € L'({a,})),ho > 0 and for each solution u €
C™1((a,b)) of the differential inequalities

(12,) [u™(t) - g(t)u™1(t)] sign u™~(2) <
< ihj(t)lu"""(t)l +ho(t) ifan<t<b
J=1
(12,) [u™(t) - g(t)u"(t)] sign u*-V(t) >

s- i?h:-(t)lu“"’(t)l ~ho(t) fas<t<b,

J=1
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with boundary condstions

(13) min{julV(t)|:a; <t < b} <
S ¢i(|“|1|ul|1 ey lu("-l)l) +r (l = 1, e ,ﬂ).

PROOF : By contradiction, let there exist rm € Ry, hom € L'({a,})) and up, €
C™~1({a, b)) for any natural m, such that

(14) lumlicn-1((a,sy) = m(rm + lhomllzr ((a,3)s
(181) [u&(t) - (G~ (t)] sign u(~V(2) <
< Z":h,-(t)lus,{“’(t)l + hom(t) ifan<t<b
(152) ’I:SI.'."(t) - g(tuln~V(1)] sign s~ V(1) 2
>- Z i) (t)] - hom(t) fa<t<b,
j=1
and

(16) min{jul-V(t)|:a; <t < b} <
S ti(lumb fupnly- . S +rm ((=1,...,n)

Denoting
P “m(t) T hom(t)
Um(t) = ————— hom(t) = ,
*® = Falomscomy” ™ = T+ Them o
we get
. - ~ 1
(17 IEmllon-r¢emn =1, llhomllLr(epy < -

On the other hand, according to (14) — (16), we have

(181) [ER(t) — g(1)aR~V(#)] sign T () <

S Y hOEYE V()] + Romlt) fan <t<D
\ j=1
(18,) TR - g(e)a ()] sign TEI(E) >

2 = Y hiOEY @) - Rom(t) fa<t<b,
=1
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and

(19) min{[@i V@) e <t <b} <

S Yi|Tml, [ @by TSN 41w (i=1,...,n).

For any i € {1,...,n} and a natural m we chose a point tim € {(ai, b;) such that

(20) [GED(tim0] = min{[@¢-1)(t)| :a; St < &} (i=1,...,n).

Let pam be the solution of the Cauchy problem

(20) Pam(®) = 9(t)pum(t)+
HY B O] + Bom(®)] - sign(t ~ tam)
(22) Prm(tam) = [# D (tnm)].

Then, according to [2], lemma 4.1 and to the conditions (18, 3),

i“'(n':-l)(t)l < an(t)v a<t<b.

Therefore, if we put
¢
(23) Pim(t) = |l7(,,';'"')(t.~m)' + I'[ Pl+nm(T)dr] (i=1,...,n),
we shall have
(24) [¢-D(t)] < pim(t) whena<t<b (i=1,...,n).

Formulae (21), (22) and (24) yield

(25) pam(f) < exp( [ o(r) dr i )+
+| ' ' s)ds nh-r"ﬁ'” +
[ et [ sty nierag e
Rom(7)] dr]
and
(26) an(t) < ﬂtp(/: g(‘r) dTan(tum)""

+ / fexp( / 9(5) 48] [3 h(r)psm(r) + Fom(r)] dr.

Jj=1
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According to (17), (21) and (25) we obtain

(27) Pam()l <70 fa<t<h (m=12,...)

and

(28) 1Pam®)] S Fom(t) + h(t) fa<t<d (m=1,2,...)
where

n b b
n=@+Y. [ hrdres( [ lotnldn

j=1¢
and n
R(t) = rolg(®)| + Y hi(t).
J=1

Formulae (17), (19), (20), (23) and (24) imply, that

n
(29) 3 loimllcoean 21

i=1
(30) |Pim(tim)| S 'l’l'(Plnn vee 7an) + "];_1 (1 = lv' caanim= 1’2) e )
and
(31) lpim(tim)I <1 (=1,...,n;m=1,2,...).

From (17), (23), (27), (28) and (31) it follows that the sequences {pim}} 2, (i =
1,...,n) are uniformly bounded and uniformly continuous. According to the lemma
of Arzela—Ascoli we can suppose without loss of generality that these sequences
uniformly converge. The sequences of points {tim}}X,(i = 1,...,n) can be taken
convergent as well. Denote

tio = m];ior-xi-loot'.m (i=1,...,n)

and

piot) = Lm pim(t) fa<t<b (i=1,...,n).
Clearly,
(32) tio € (ai,b;) (i=1,...,n).

Passing to the limit in the equations (23) and in the inequalities (26), (30), using
(17) we obtain

(39) pio(t) = pio(tio) + | /‘ pi+o(T)dr] (i=1,...,n),
(34) Pno(t) S Pu(‘) ifa S t S b’



On one class of solvable boundary value problems . ..
where
(39) pult) =exp( | o) rpuattuokt
+1 [ e[ o) 43 htr ol
and
(36) Ipiatio)] < $i(pr0,- .- rpm0) (i =1,...,m).

Let us introduce the functions
t

(37) p.'(i) = p.'o(t.'o) + l ./1 p.-+1(7')d‘r| (t =1...,n— 1).
i0

This together with (33) and (34) yields

(38) Pio(t) < pi(t), pi(tio) = pio(tn) (i=1,...,n).
Formula (35) gives

(39) P'(8) = g(t)pa(t) + [Y_ hj(t)pjo(t)] sign(t ~ tao)-

=1
From (32) and (36)—(39) it follows that (p;)}, is a solution of the problem (5), (6).
Therefore, according to the condition (7)
pi(t)=0 (i=1,...,n).
On the other hand, (29) and (38) imply

n
> leilicoaan 2 1,
=1
which is a contradiction and the lemma is proved. [ ]

PROOF of Theorem 1: Let p be a constant from Lemma 1. By (10) there exists
po > 0 such that

b
(40) o+ [ ott,m)dt) < .

Putting
1 if |s| < po
x(8) =1 2-s/po if po <|s| <2p0
0 if || > 2p0

571
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(41) ft,21,..,20) = x(laDlf 6215+ 20) - g(t)eal,
(42) i, 'y, u D) = x(lullon-1¢e )iy, ', ..., u 7)),
(i=1,...,n)

We consider the problem

(43) u™(t) = gV + Flt,u,... ul*),
(44) $oi(ul) = iu, o'y, D) (i=1,...,n).
From (41) and (42) it follows immediately that VE {a,b) x R® — R satisfies the

local Carathéodory conditions, ¢; : C*~*({(a,b)) = R(i = 1,...,n) are continuous
functionals,

(45) fo(®) = sup{|f(t,21,...,za)l : (z:)s € R} € L*({a, 1))

and

(48) ri = sup{|gi(u,u’,...,u" V) 1w € €7 ((a, b))} < +o0
(i=1,...,n).

We want to show that the homogeneou.s problem

(430) v™(t) = g(t)o*1(t)
(440) ¢oi(v(i_1)) =0 (i=1,...,n)

has only trivial solution. Let v be an arbitrary solution of this problem. Then
v(®=1)(t) = c-w(t), where c= const.
and w(t) = exp| f.' g(7)dr]. According to (44,)
cgon(w) = 0.

However, if ¢on i8 a nondecreasing functional and ¢o,(1) = 1, we have

b
bun(w) 2 expl= [ lo(8)]dldon(1) > 0.

Consequently, v("~1)(t) = 0. Referring to the equation (44o) and ¢pi(1) = 1(§ =
1,...,n—1), we come to the conclusion that v(t) = 0.

Using 2.1 from [3], we obtain that the condition (45), (46) and the unicity of
trivial solution of the problem (43,), (449) guarantee the existence of solutions of
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the problem (43), (44). Let u be the solution of the problem (43), (44). Then for
t € (a,b)
() = g(epu(t)] signul(e) =
= Jt,u(®), ..., u"0()signuD(t) =
= X(zn: DD, u(t), ..., uD(2)) - g(#)ul"~1(t)] signu™~1(t) <

< [ u(t), ..., w7 (1) = g(t)u™=D(1)] - signul®~(2).

From here, taking in consideration (8,,2) and (9), we obtain inequalities (12, 2) and
(13), where

ho(t) = (Y WV (@)(t, (3 [uED(B)]) < w(t, 200)-

=1 =1

Therefore, by Lemma 1 and the inequality (40), we get

b
Jlullen-1((apy) < plr + / w(t,2p0) dt] < po.
a

Consequently

X(Z [u-D(#)]))=1 whena<t<band
=1
x(llullen-1((asn) = 1.
Putting these equalities into (41), (42), we obtain that u is a solution of the problem
(1), (2). .

Theorem 2. Let (g,hy,...,hn,%1,...,9¥n) € Nic({(a,b);a1,...,an,b1,...,b,) and
let the data f,d1,...,¢n of (1), (2) satisfy the inequalities

(471) {[f(ty Zy11y-. 7zln) - f(ta Z21y.- ’zZn)] - g(t)[zln - 121!”'
sign[zin — 20] < Y hj(B)ler; — w25
j=1

fOT te (anab)v Z1,22 € R"

(472) {lf(t 2115y 210) — f(}, 221, . -, T2n)] — 9(t)[Z1n — Z2n]}
- sign[zin — z2n] 2 - Z hj(t)lz1; — 22,1
. i=1

for t € (an,b), z1,z2 € R"

(48) I¢i(uau’7 ceey un—l) - ¢i('), U', ey v("-l))l S

< ¢i(|u - II', 'u' - U'I, (XX Iu(“—l) - v(”_l)l)
for u,v € C*"((a,b)) (i=1,...,n).
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Then the problem (1), (2) has unique solution.
PROOF : From (47;,2) and (48) the conditions (8, 2) and (9) follow, where w(t, p) =
|£(t,0,...,0)| and r = max{|$;(0,...,0)| : ¢ =1,...,n}. Therefore by Theorem 1
the problem (1), (2) has a solution. We shall prove its uniqueness.
Let u and v be arbitrary solutions of the problem (1), (2). Put
pi(t) =ul=(t) —v0=2) (i=1,...,n).
The assumptions (47;,2), (48) guarantee that the vector function (py,...,ps) is a
solution of the system of the differential inequalities 95) satisfying the conditions
[$0i(Pi)| < Wi(lpal;---slenl) (i=1,...,n).
However,
[$0i(pi)l > doi(1) min{|pi(t)] :a; <t < b} =
min{|pi(t)| : a; <t < b;}.
Thus, the inequalities (6) are satisfied and according to the condition (7) the equal-

ities
pi(t)=0 (i=1,...,n)

hold, i.e. u(t) = v(t). ]
Effective criteria.
Theorem 3. Let the inequalities
n n
(491) f(ty Tlyerey zn)Sign Tn .<.. Zhj(t),le + w(ti Z lzi')
j=1 i=1
for t € (an,b), z€R"
n n
. (492) f(t$ T1y.eny zn) signz,. 2 - Z hj(‘)l"j' - w(ta Z |¢i|)
J=1 =1
for t € (a,b,), z€R"
n
(50) I$iu, o', u™ )| < Z"-’i||“u°l)||1.-((.,s)) +r
i=1
forue C”"((a, b)), (=1,...,n),
hold, where r,r;j € R*(i,5 = 1,...,n),w : (a,b) X Ry — Ry is & measurable

function nondecreasing in the accomi variable aatufymg (10), h; € LP({a, b)), hi >
0,p>1,1/p+2/g=1 and

(51) E {- )l/' 2[2(5 a)]l(l—n)(H Ap)rjm+
' m=1 J=i k=i
n-1
+ [%’fﬂ]ﬂ"““’(n Ahom} <1 (i=1,...,n),

k=i
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where Apmax{(b—ax)'"%, (be —a)' "} (k=1,...,n 1),

hom = maX{[|lhmlLs (0 b)) IBmll Lo (aman } (M = 1,...,n).

Then the problem (1), (2) has a solution.
Theorem 4. Let the inequalities

(521) £t 211, ,210) = f(t, 221, ., 220 sigla10 — 220] <
< i:h,-(mz,,- — 45| fort€ (am,b), 1,22 € R
(522) [f(t.,:x, censZin) = f(4 221, -, Z20)] sig0([Z10 — 220] 2
> -i:h,-(t)m,- —~z35| fort € (an,b), =z,z, € R"
(53) j.I‘d‘-’(",u' u* V) - gi(v, ¢/, ..., vV <
< j:zlrullu("“)llm<-,m

for u,v € C*((a,b) (i=1,...,n)

hold, where the functions h; and constant r;; and s; satisfy the assumptions of
Theorem 3.

Then the problem (1), (2) has unique solution.
Proofs of Theorems 3 and 4 are based on the following assertion.

Lemma 2. Let g(t) = 0, hi,ho 2 0, h; € L?({a,b)), (i = 1,...,n), p 2 1,
1/p+2/g=1,

n
(54) Gilub 'l [0 = Y e luG | peany
J=1
(i=1,...,n),

where r;j € RY (i,5 = 1,...,n) and the condition (51) is satisfied. Then (7) holds.

PROOF : Let the assumptions of the lemma be satisfied. It is clear that the data
(g,h1y- ..y hni¥P1,...,¥a) are of the class Nic({(a,b); a1,...,8n,01,...,bn).

Let the vector function (p1(t), . .., pn(t)) be the solution of the problem (5), (6).
We shall prove that this solution is zero.

Let us choose t; € (a;, bi) so that

(55) lpi(t;)l = min{lpi(t)| : a; St S B} (i=1,...,n).
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Then integrating relations (5) and using Holder inequality we obtain
1
OIS 1)1+ [ ol drl <
i

t
< lpilti)] + [t - =20 / lpisa(8)]/* dr[?/s
t
(i=1,...,n-1),

and

Ioa)] < lon(ta) + 31 / hi(Plpy(r)l dr| <
=1

t
Slp»(tn)l+zl _/' lhj(r)IP dr|'/? .| /‘ los(r)I*/? dr[*/s.
j=1 n n

Consequently, using Wirtinger inequality (see e.g. [4], p.409), we obtain
leillzeqan < (b= a)*9lpi(ti)|+
2b-a .
DA salliaean G=1,eem 1),

Y 2(” 2(b—a) 20 )y
(56) loillLetapyy < (b~ a) 'Z[ J*Y HAHP;'(‘;')H
Jj=1 4
H22) 91500 T] Aulpelliscmy G =1ye.esn = 1)
k=1
and
(57) IIP-IIu«u»<(" a)"/1|pu(tn)|+
+3 hojl lej()I%/2 dr[? dr]'/1 <
; o[ 1 e arpanpin <
< (5= a/*lontta)] + 222D/ 3 b ey

=1

Substituting the inequality (57) into (56) we have

68)  lpillzeean S (- “)”'le(b “)]’(’-')(HA.)|,,,(:,)|+

”'
2(b — a). 2(ns1-3), TT
+[ ( )]q('H'l ')(H Ay)- Zho,"p,"l,q((. ")
k=1 =1

(i=1,...,n)
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Applying (6) and (54), we get

(59) np.u.«.m<2«b )""2[2(” 226-0(T] Anyrjm+

j=i k=i
2= y2001-0(TT A4)- homHpm oy
k=1
(i=1,...n).

Denoting po = max{||pillLe((apy) : ¢ =1,...,n}, we obtain
po < po-max{s;:t=1,...,n}.

Since s; < 1(z = 1,...,n), it follows that py = 0. Consequently, p,(1) = 0(i'=

.yn).
PrROOF of Theorem 3 and 4: The assertions of Theorems 3 and 4 immediately
follow from Lemma 2 and Theorems 1 and 2.

Remark. If h; € LPi({a,})),p; > 1,;,1—' +:11_' = 1,¢; < q,9 € L*((a,b)),po >
J] /]

1 .
1, 1 + — = 1,90 < g, then the corresponding conditions for s; generalizing the

Po
inequalities (51) can be derived by means of the inequalities of Levin (see e.g. 2],
Lemma 4.7).
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