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On a generalization of 
a Prufer-Kaplansky-Procházka theorem 

LUIGI SALCE 

Absiract. A criterion for freeness of torsion-free modules over a discrete valuation domain 
proved by Prochazka, which generalizes classical results by Priifer and Kaplansky, is gen
eralized to torsion-free modules over an almost maximal valuation domain. 
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Theorem A (Priifer). Let R be a complete discrete valuation domain. Any count-
ably generated torsion-free reduced R-module is free. 

This theorem was explicitely stated by Kaplansky in [3] where the following ge
neralization to modules over maximal valuation domains was also given : 

Theorem B (Kaplansky). Let R be a maximal valuation domain. Any torsion-free 
R-module of countable rank is completely decomposable. 

Theorem A can be derived from theorem B since, for torsion-free modules over 
discrete valuation domains, "No-generated" and "of countable rank" are equivalent, 
and the only isomorphism classes of submodules of Q, the field of quotients of R, 
are Q itself and R. 

Theorem A can also be viewed as a consequence of the Pontryagin criterion for 
freeness of modules over PID's in [6] (see also [1]). 

A generalization of the Priifer-Kaplansky theorem was given by Prochazka in [5], 
where both the completeness condition on R and the countabiiity condition on the 
module are dropped. 

Theorem C (Prochazka). Let R be a discrete valution domain. A torsion-free R-
module A is free if and only if R <g>R A is a reduced R-module and A belongs to the 
Baer class /3(R). 

To explain this result, we recall that R denotes the completion of R in the ideal 
topology, and that the Baer class B(R) is the class of torsion-free H-modules given 
by : B(R) = \jTa(R), where a ranges over the ordinal numbers and Ta(R) is 

a 
defined by transfinite induction as follows: 
ro(#) is the class of countable rank torsion-free H-modules . 
Fa(-ft) is the class of torsion-free ^modules A with a pure submodule of finite rank 

B such that A/B = ©*€/>-•» w n e r e Ai € Fa.(jR) and o^ < a for all t € I 
(o > 1). 
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The proof of Prochazka's theorem in [5] is elaborate and it is based on the notions 
of p-basis and p°°-basis (p is a uniformizing element of R). 

The goal of this note is to give a simple proof of the Prochazka's theorem in 
the more general setting of modules over almost maximal valuation domains, ge
neralizing also theorem B by Kaplansky. Our generalization of Pmfer-Kaplansky-
Prochazka theorem states : 

Theorem. Let R be an almost maximal valuation domain and let A be a torsion-
frte R-module. Then A is free if and only if R®RA is an R-homogeneous R-module 
and A G £ (R) . 

Here too R denotes the completion of R in the ideal topology; moreover, R -
homogeneous means that every rank-one pure submodule is isomorphic to R. For 
general facts on modules over valuation domains we refer to [2]. 

R e m a r k 1. The necessity in the theorem is clear, because A = (BR implies 
R %R A =. ®R , which is trivially R-homogeneous; it is also evident that a free 
module belong to Fi(R ) C B(R). Therefore in the proof of the theorem only suffi
ciency is needed. 

R e m a r k 2. If R is a discrete valuation domain, then the condition that R®R A is 
R-homogeneous ie equivalent to the condition that R ®R A is a reduced R-module, 
since a rank-one torsion-free R-module is isomorphic either to R or to Q. 

The proof of the theorem is based on the following two results; the first one is 
the analogue of the Pontryagin criterion, whose proof can be repeated "mutatis 
mutandis" (see [4]). 

Lemma 1. Let Rbe a valuation domain and A a torsion-free R-module of countable 
rank. Then A is free if and only if every pure submodule of finite rank is free. 

Lemma 2. Let R be an almost maximal valuation domain and B a torsion-free 
R-modult of finite rank. Then B is free if and only if R®R B is a R-homogeneous 
R-module. 

PROOF : The necessity is trivial. Assume That R <8>A B is R-homogeneous. By 
[2, XIV.L4.]. B has a basic submodule Bo and B/B0 is divisible. Moreover the 
pure-exact sequence 

0 — > R ® R B 0 — > R ® R B — > R ® R ( B / B 0 ) —»0 

splits, being R®RB0 pure-injective; by hypothesis R®R(B/B0) = 0, thus B — B0. 
But Bo is free, because R%RB0 is also R-homogeneous and so B0 is R-homogeneous; 
therefore B is free. • 

PROOF of the Theorem: By induction on a, if A € VQ(R). If a = 0, then A has 
countable rank so, by lemma 1, it is enough to show that any pure submodule of 
finite rank B is free. But H^RB, as a pure submodule of R(&RA is R-homogeneous, 
hence B is free by lemma 2. 
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Assume now that a > 0 and that the claim is proved for modules in Tp(R) for 

all f$ < a. Consider the pure-exact sequence 

(1) 0 —> B — • A — > i ® i A i — • 0 

where B is a pure submodule of A of finite rank and A, € r , (R ) , a, < a. From (1) 
we obtain the exact sequence 

0—> R®RB—>R®RA—• 0 ( R < g > R A . —>0 

which splits; R ®R B is R-homogeneous, hence, again by lemma 2, B is free. For 

each i € I, R <8>R A, is also R-homogeneous, hence, by induction, Ai is free. Thus 

(1) splits, being ® Ai a free R-module, and A is free. • 
t 
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