Commentationes Mathematicae Universitatis Carolinae

Dalibor Fronček On graphs with prescribed edge neighbourhoods

Commentationes Mathematicae Universitatis Carolinae, Vol. 30 (1989), No. 4, 749--754

Persistent URL: http://dml.cz/dmlcz/106797

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

On graphs with prescribed edge neighbourhoods

DALIBOR FRONČEK

Abstract. Let G be a graph and let f be its edge. Then $N_G^e(f)$ is the subgraph of G induced by the set of all vertices adjacent to at least one of the end vertices of f.

In the paper some classes of graphs with the prescribed properties of $N_G^e(f)$ are studied.

Keywords: Local properties, neighbourhood of an edge, neighbourhood of a vertex

Classification: 05C99

1. Introduction.

All graphs considered in this article are finite undirected graphs without loops and multiple edges.

Let G be a graph, let f be its edge with end vertices x, y. By the symbol $N_G^e(f)$ or $N_G^e(xy)$ we denote the subgraph of G induced by the set of all vertices of G which are not incident to f and are adjacent to at least one end vertex of f. The graph $N_G^e(f)$ will be called the edge-neighbourhood (or e-neighbourhood) of f in G. By the symbol $\overline{N_G^e(f)}$ or $\overline{N_G^e(xy)}$ we denote a closed e-neighbourhood, i.e. the subgraph of G induced by the vertices x, y and the set of vertices of G which are adjacent to at least one vertex of the pair x, y. A graph induced by the vertex se M is denoted (M).

Zelinka [6] proposed the *e*-neighbourhood version of the well-known Zykov's problem [7] (concerning vertex-neighbourhoods):

Characterize the graphs H with the property that there exists a graph G such that $N_G^c(f) \cong H$ for each edge f of G.

The graph H with the above mentioned property will be called an *e*-realizable graph and G will be called the *e*-realization of H. The se of all *e*-realizations of H will be denoted $\Re_e(H)$, the class of all *e*-realizable graphs will be denoted \mathcal{N}_e .

Let P be some prescribed property of graphs. If the *e*-neighbourhood of each edge f of G has the property P then G will be called a graph with prescribed *e*-neighbourhood.

Zelinka [6], Nedela [5] and the author [2], [3], [4] studied some classes of e-realizable graphs and also showed some graphs which are not e-realizable.

In this article we study some properties of graphs with prescribed e-neighbourhoods and show some e-realizable and non-e-realizable graphs.

2. Some properties of graphs with prescribed e-neighbourhoods.

At first we shall prove some simple lemmas.

D.Fronček

Lemma 1. Let G have no triangles. Then both $N_G^e(f)$ and $\overline{N_G^e(f)}$ are bipartite graphs for each edge f of G.

PROOF: Suppose that $N_G^c(y_1y_2)$ of an edge $f = y_1y_2$ is not a bipartite graph. Then $N_G^c(y_1y_2)$ contains an odd cycle $C_{2n+1} = \langle x_1, x_2, \ldots, x_{2n+1} \rangle$ and there exists a pair of adjacent vertices x_i and x_{i+1} which are both adjacent either to y_1 or to y_2 . Thus G contains a triangle, which is a contradiction.

Hence, $N_G^c(f)$ of each edge f of G is a bipartite graph. Now suppose that the closed t-neighbourhood $\overline{N_G^c(y_1y_2)}$ of an edge y_1y_2 is not a bipartite graph. As G contains no triangles, no vertex of $N_G^c(y_1y_2)$ is adjacent to both y_1 and y_2 . Let $N_G^c(y_1y_2)$ have the parts $B_1 = \{x_1, x_2, \ldots, x_r\}$ and $B_2 = \{z_1, z_2, \ldots, z_s\}$. Then at least one of the vertices y_1, y_2 is adjacent to the vertices x_i and z_j belonging to this same component of $N_G^c(y_1y_2)$. Without loss of generality we can suppose that y_1 is adjacent to x_1 and simultaneously to z_j , which are the end vertices of the path $P_{2j} = \langle x_1, z_1, x_2, \ldots, x_j, z_j \rangle$. As G contains no triangles, and x_1 is adjacent to y_1 then z_1 has to be adjacent to y_2 and x_2 again to y_1 . Analogously for each $i, 1 \leq i \leq j$, if x_i is adjacent to y_1 then neither y_1 nor y_2 can be adjacent to vertices belonging to both parts of any component of $N_G^c(y_1y_2)$.

Thus $N_G^{\epsilon}(y_1y_2)$ is a bipartite graph.

If x is a vertex of G, then by vertex-neighbourhood (or v-neighbourhood) of x in G we mean the subgraph of G induced by the set of all vertices of G which are adjacent to x and we denote it by $N_G^v(x)$.

Proposition 1. Let G be an e-realization of some tree T. Let there exist a vertex x of G such that $N_{G}^{v}(x)$ contains a cycle $C_{r}, r \geq 4$. Then $N_{G}^{v}(x) \simeq C_{r}$.

PROOF: Suppose that $N_G^u(x)$ contains a cycle C_r with vertices y_1, y_2, \ldots, y_r and the chord y_1y_i , $3 \leq i \leq r-1$. Then $N_G^e(xy_r)$ contains C_i with the vertex set $\{y_1, y_2, \ldots, y_i\}$ which is a contradiction.

We can also see that $N_{\sigma}^{v}(x)$ contains no other vertex y_{r+1} . In the opposite case $N_{\sigma}^{v}(xy_{r+1})$ contains C_{r} with the vertices $y_{1}, y_{2}, \ldots, y_{r}$, which is again a contradiction.

Lemma 2. Let G be an e-realization of a path P_n , $n \ge 4$. Let an edge y_1y_2 belong to at least two triangles. Then at least one of the graphs $N_G^v(y_1)$, $N_G^v(y_2)$ is isomorphic to C_r , $r \le n+1$.

PROOF : As G is an e-realization of P_n , $N_G^e(y_1y_2)$ is isomorphic to $P_n = \langle x_1, x_2, \ldots, x_n \rangle$. Let y_1y_2 belong to the triangles $\langle y_1, y_2, x_j \rangle$ and $\langle y_1, y_2, x_k \rangle$, $1 \leq j < k$.

If k = j + 1, then either $N_G^{\epsilon}(y_1 x_i)$ (for any $i \neq j, j + 1$) contains the triangle $\langle y_2, x_j, x_{j+1} \rangle$ or $N_G^{\epsilon}(y_2 x_1)$ contains the triangle $\langle y_1, x_j, x_{j+1} \rangle$, which is a contradiction.

If k = j + 2, then the vertex x_{j+1} is adjacent to at least one of the vertices y_1, y_2 . Let it by y_1 . Then $N_G^{\epsilon}(x_j y_2)$ contains the triangle $\langle y_1, x_{j+1}, x_{j+2} \rangle$, which is again a contradiction. Now consider the case k > j + 2. Suppose that there exists an edge $x_i x_{i+1}$ with the property that j < i < k - 1 and the vertex x_i is adjacent to y_1 and x_{i+1} is adjacent to y_2 . Then $N_G^e(x_iy_1)$ contains a star with the center y_2 and the terminal vertices x_j, x_{i+1}, x_k , which is a contradiction. If x_i is adjacent to y_2 and x_{i+1} is adjacent to y_1 , we get a contradiction in the same way. Thus all the vertices x_{j+1}, \ldots, x_{k-1} are adjacent to the only vertex of the pair y_1, y_2 . Without losing generality we can suppose that it is y_1 . Then $N_G^v(y_1)$ contains C_{k-j+2} with the vertices $y_2, x_j, x_{j+1}, \ldots, x_k$ and according to Proposition 1 $N_G^v(y_1)$ is isomorphic to C_{k-j+2} . The inequality $k - j + 2 = r \leq n + 1$ obviously holds - in the opposite case $N_G^e(y_1y_2)$ contains at least n + 1 vertices.

Lemma 3. Let G be an e-realization of a path P_n , $n \ge 4$. Then G has no triangles.

PROOF: Suppose that G contains a triangle (x_0, x_1, x_2) . Then $N_G^e(x_0x_1)$ contains some vertex x_3 which is adjacent to x_2 and simultaneously to at least one of the vertices x_0, x_1 . Let it be x_0 . Thus the edge x_0x_2 belongs to two triangles, and according to the assertion of Lemma 2 the *v*-neighbourhood of at least one of the vertices x_0, x_2 is isomorphic to a cycle. Without los of generality we can suppose that $N_G^v(x_0) \cong C_r = \langle x_1, x_2, \ldots, x_r \rangle$.

Now we shall distinguish two cases. We begin with the simpler case r = n + 1. As $G \in \mathcal{R}_e(P_n)$, then $N_G^e(x_1x_2) \cong P_n$ and thus at least one of the vertices x_3 , $x_{n+1} = x_r$ is adjacent to some vertex x_{n+2} . Let it be x_{n+1} . Hence $N_G^e(x_0x_{n+1})$ contains n + 1 vertices $x_1, \ldots, x_n, x_{n+2}$, which is a contradiction.

Now let us investigate the case r < n + 1. As we supposed that $N_G^v(x_0) \cong C_r = \langle x_1, x_2, \ldots, x_r \rangle$, $N_G^c(x_0x_r)$ must contain a vertex z_1 which is adjacent to at least one of the vertices x_1, x_{r-1} . Without loss of generality we can suppose that it is x_{r-1} . As z_1 is from $N_G^c(x_0x_r)$, it has to be adjacent to x_r (if it is adjacent to x_0 , then $N_G^c(x_0z_1)$ contains the cycle $\langle x_1, x_2, \ldots, x_r \rangle$). Thus the edge $x_{r-1}x_r$ belongs to two triangles and the *v*-neighbourhood of at least one if its end vertices is isomorphic to C_s . Let $N_G^v(x_r) \cong C_s$. This cycle is induced by the vertices $x_1, x_0, x_{r-1}, z_1, \ldots, z_{s-3}$ because the cycle $\langle x_1, x_2, \ldots, x_r \rangle$ has no chord. But hence $N_G^c(x_0x_r) \cong C_{r+s-4} = \langle x_1, \ldots, x_{r-1}, z_1, \ldots, z_{s-3} \rangle$, which is again a contradiction.

Lemma 4. Let a connected graph G belonging to $\mathcal{R}_{e}(H)$ for a graph H be not regular. Then G is bipartite if and only if it has no triangles.

PROOF : (=>) is trivial.

 $(\langle =)$ Let G have no triangles. Then the equality

$$deg x + deg y = k$$

holds for each pair of adjacent vertices x, y and k is the number of vertices of $N_G^e(xy) \cong H$.

As we suppose that G is not regular, there exists a pair of adjacent vertices x_0, x_1 , such that deg $x_0 \neq \text{deg } x_1$. It follows from (1) that deg $x_i = \text{deg } x_1$ for each vertex x_i adjacent to x_0 and, analogously, deg $x_i = \text{deg } x_0$ for each vertex x_i adjacent to x_1 . Because G is connected we can easily see that each vertex of G is either of degree deg x_0 or of degree deg x_1 and no vertices with the same degree can be adjacent to each other.

Thus G is a bipartite graph.

Corollary 1. Let a connected e-realizable graph H have an odd number of vertices, let $G \in \mathcal{R}_{e}(H)$. Then G is a bipartite graph if and only if it has no triangles.

PROOF : (=>) is trivial.

(<=) If G has no triangles and H has an odd number of vertices, G is not regular and our assertion follows from Lemma 4.

Now we shall present further simple propositions.

Proposition 2. Let a connected e-realizable graph H have an odd number of vertices, let $G \in \mathcal{R}_{e}(H)$ be regular. Then G contains a triangle.

PROOF: Let $N_G^c(y_1y_2) = \langle x_1, x_2, \dots, x_{2n+1} \rangle$. Then somevertex x_i has to be adjacent to both y_1 and y_2 and G contains the triangle $\langle y_1, y_2, x_i \rangle$ and also $\langle y_1, y_2, x_j \rangle$ for a neighbour x_j of x_i .

Proofs of the following trivial propositions are left to the reader.

Proposition 3. Let a regular graph G be an e-realization of H. Let t(e) be the number of triangles which contain an edge e. Then t(e) = t(f) for any edges e, f of G and if H is connected, then $t(e) \ge 2$.

Proposition 4. Let H be a hamiltonian graph and let $G \in \mathcal{R}_e(H)$ have no triangles. Then H is bipartite with parts P_1 , P_2 ; $|P_1| = |P_2| = k$ and G is regular of degree k + 1.

Proposition 5. The graph nK_2 is e-realizable by Q_{n+1} .

3. Which paths are e-realizable ?

Now we turn our attention to the *e*-realizability of paths. From Lemma 3, Corollary 1 and simple considerations concerning the number of vertices of P_n we can easily see that the following Theorem holds.

Theorem 1. Let $G \in \mathcal{R}_{e}(P_{n})$, $n \geq 4$. Then

(i) if n = 2k, G has no triangles and it is regular of degree k + 1;

(ii) if n = 2k + 1, G is bipartite and bi regular of degrees k + 1 and k + 2.

Brown and Connelly [1] proved that all paths with the simple exception P_3 are v-realizable and on the other hand Zelinka [6] showed that P_2 and P_3 are e-realizable.

We shall solve the above mentioned problem for n = 4, 5, 6 in the next theorem.

Theorem 2. The paths P_4 , P_5 and P_6 are not e-realizable.

PROOF: Suppose that $G \in \mathcal{R}_e(P_4)$. Then the *e*-neighbourhood of an edge y_1y_2 is isomorphic to $P_4 = \langle x_1, \ldots, x_4 \rangle$ and without losing generality we can suppose that y_1 is adjacent just to the vertices x_1, x_3 , while y_2 is adjacent just to x_2, x_4 . Now investigate $N_G^e(x_3x_4)$. As it contains $P_3 = \langle y_1, y_2, x_2 \rangle$, there exists a vertex z of

.

G such that it is adjacent to x_2 (z cannot be adjacent to y_1 because it does not belong to $N_G^e(y_1y_2)$) and simultaneously to x_4 (z cannot be adjacent to x_3 because in this case G contains the triangle $\langle x_2, x_3, z \rangle$). But in this case deg $x_2 \ge 4$, which is a contradiction to the assertion (i) of Theorem 1. Thus P_4 is not e-realizable.

Now suppose that $G \in \mathcal{R}_{\epsilon}(P_5)$. Then $N_G^{\epsilon}(y_1y_2)$ is isomorphic to $P_5 = (x_1, x_2, \ldots, x_5)$ and without loss of generality we can suppose that y_1 is adjacent just to x_1, x_3, x_5 and y_2 just to x_2, x_4 . Note that y_2, x_1, x_3, x_5 are of degree 3 and y_1, x_2, x_4 are of degree 4. Now we shall investigate $N_G^{\epsilon}(y_1x_1)$ which contains the vertices y_2, x_2, x_3, x_5 and some other vertex z. Because $G \in \mathcal{R}_{\epsilon}(P_5)$, z is adjacent to x_1 and thus $N_G^{\epsilon}(y_1x_1) \cong P_5 = \langle y_2, x_2, x_3, x_5, x_5 \rangle$. As $\langle y_2, x_2, x_3 \rangle \cong P_3$ and x_5 is adjacent neither to y_2 nor to x_3, z has to be adjacent to x_5 and to just one of the vertices x_3, y_2 . But z cannot be adjacent to x_3 (in the opposite case deg $x_3 \ge 4$) and as z does not belong to $N_G^{\epsilon}(y_1y_2)$, it also cannot be adjacent to y_2 . Hence P_5 is not e-realizable.

At last suppose that G is an e-realization of P_6 and $N_G^c(y_1y_2) \cong P_6 = \langle x_1, x_2, \ldots, x_6 \rangle$. Again without losing generality let y_1 be adjacent just to x_1, x_3, x_5 and y_2 to x_2, x_4, x_6 . $N_G^c(y_1x_3)$ contains $P_5 = \langle x_1, x_2, y_2, x_4, x_5 \rangle$ and thus G has to contain a vertex z adjacent to x_3 and to exactly one of the vertices x_1, x_5 which are terminal of the path P_5 mentioned above.

If z is adjacent to x_5 , then $N_G^e(x_5y_1)$ contains $P_5 = \langle z, x_3, x_4, y_2, x_6 \rangle$ and the vertex x_1 . Because x_1 cannot be adjacent to x_6 (in the opposite case $N_G^e(y_1y_2) \cong C_6$) it has to be adjacent to z. But hence $N_G^e(x_3y_1)$ contains C_6 with the vertices $x_1, x_2, y_2, x_4, x_5, z$, which is a contradiction and thus z is not adjacent to x_5 .

Therefore we shall suppose that z is adjacent to x_1 . Then $N_G^e(y_1x_1)$ contains $P_4 = (z, x_3, x_2, y_2)$ and the vertex x_5 . As y_2 is of degree 4, according to Theorem 1 it cannot be adjacent to any other vertex of G and thus y_2 is the terminal vertex of $P_6 \cong N_G^e(y_1x_1)$. Hence z has to be adjacent either to x_5 (but in this case $N_G^e(y_1x_3)$ contains C_6 with the vertices $x_5, z, x_1, x_2, y_2, x_4$), or to another vertex v of $N_G^e(y_1x_1)$. Because v does not belong to $N_G^e(y_1y_2)$ it has to be adjacent to x_1 . But we supposed that z is also adjacent to x_1 and then the vertices x_1, z, v induce the triangle. Therefore, according to the assertion of Lemma 3, G is not an e-realization of P_6 .

As for $n \ge 7$ no e-realizability of P_n is known and we are not able to prove its non-e-realizability by the methods used above, we propose our problem.

Problem. Which paths P_n for $n \ge 7$ are *e*-realizable?

References

- M.Brown, R.Connelly, On graphs with a constant link I and II., Proof Techniques in Graph Theory (F.Harary ed.), Academic Press (1969) and Dicrete Math. 11 (1975), 199-232.
- [2] D.Fronček, Graphs with given edge neighbourhoods, Czech. Math. Journ. 39 (1989), 627–630.
- [3] D.Fronček, Edge-realizable graphs with universal vertices, submitted.
- [4] D.Fronček, Graphs with near v- and e-neighbourhoods, Glasgow Math. Journ., to appear.
- [5] R.Nedela, Which cycles are edge-realizable ?, Czech. Math. Journ., submitted.
- [6] B.Zelinka, Edge neighbourhood graphs, Czech. Math. Journ. 36 (1986), 44-47.

D.Fronček

[7] A.A.Zykov, Problem 30, Theory of graphs and its applications Proc. Symp. Smolenice 1963, Academia Prague (1964), 164-165.

Katedra matematiky a DG VŠB, Vítězného února, 708 33 Ostrava, Czechoslovakia

(Received March 28,1989)

754

•

×.