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A note on nowhere dense sets in OJ* 

PETR SIMON 

Dedicated to the memory of ZdenSk Frolik 

Abstract. Every nowhere dense set in flut \ w is a 2w-set if and only if every nowhere dense 
set in flu> \ w is a nowhere dense subset of another nowhere dense set. 

Keywords: 0u>, MAD family, almost disjoint refinement 

Classification: 54D40, 54G05, 04A20 

The aim of this short note is to show that the famous Hechler's conjecture is 
equivalent to a statement concerning the natural order of the family of all nowhere 
dense subsets of (3u) \ u>. 

Let X be a topological space, r a cardinal number. A set Z C X is caUed to be 
a r-set provided there is a pairwise disjoint family {Ua: a € r } consisting of open 
subsets of X such that Z C UQ for every a € r . In [He], S. H. Hechler studied the 
nowhere dense sets in the space 0u> \ u>, the Cech-Stone remainder of a countable 
discrete space u>. His conjecture, every nowhere dense set in /5a; \ w is a 2"'-set, 
presents an open problem up to now. Hechler proved it assuming MA. Since then, 
a lot of set-theoretical assumptions implying Hechler's conjecture is known (see 
IBS]). 

During the last Winter School on Abstract Analysis, V. I. Malykhin turned the 
author's attention to the following problem. (Malykhin attributes it to A. I. Vek-
sler.) Denote by N W D the family of aU nowhere dense subsets of ftu> \ u). For K, L 
in N W D , let us write K < Ly if K C L and if moreover the set K is nowhere dense 
in L. Malykhin's (or Veksler's) problem reads simply as foUows: Is there a maximal 
element in the partial order ( N W D , <)? Here we shaU prove the following. 

Theorem. Every nowhere dense set in P<J\U) is a 2"-set if and only t / ( N W D , <) 
has no maximal element 

Before giving the proof, let us fix some notation and recall the necessary auxiliary 
facts. The symbol u> stands for a countable discrete space, flu> is its Cech-Stone 
compactification, u>* = $w \ u> is the space of all uniform ultrafilters on u>. For 
A C w, A* = A \ A. Notice that for A, B C w, A* C B* iff A \ B is finite, 
A* n B* = 0 if A H B is finite. A family A of subsets of w is called almost disjoint, 
if all its members are infinite and the intersection of any two distinct members of 
A is finite, a MAD family is a maximal almost disjoint family. If A and B are two 
families of sets, then B refines A (B -< *4), if for each B € B there is some A € A 
with B CA. 
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A family M of subsets of u> has an almost disjoint refinement, if there is an almost 
disjoint family A such that for each M € M there is some A € A with A C M. If 
.4 is an almost disjoint family, then J* (A) will stand for the collection 

J+(A) = {M C u>: |{A € .4: \A 0 M| = a>}| > a;} . 

The forthcoming three lemmas will provide us with combinatorial facts useful for 
the proof of the Theorem. 

Lemma 1 ([BV], Theorem 1.5). Let 71 be a countahly infinite almost disjoint 
family on u>. Then J+(R) has an almost disjoint refinement B such that B nR is 
finite for allRzK, & € 0. 

Lemma 2 ([BDS], Proposition 1.9). The following are equivalent: 
(a) Every nowhere dense subset of u* is a 2W-set; 
(b) for every infinite MAD family A on u, J*(A) has an almost disjoint refine

ment. 

Lemma 3. The following are equivalent: 

(a) There is no maximal element in (NWD, <); 
(b) for every infinite MAD family A on w there is some MAD family B on u 

such that B refines A and for every M 6 J* (A) there is some A € A with 
AnM€j+(B). 

PROOF : (a)—>(b): Let A be a maximal almost disjoint family. By the maximal
l y of A, the set K = u>* \ [){A*: A € -4} is nowhere dense in u;*. Since K is not 
maximal, there is some nowhere dense set L with K < L. Find some almost disjoint 
family B, which refines A and such that B* n L = 0 for all B 6 B, and which is a 
maximal one having these two properties. B is a MAD family, because L is nowhere 
dense. If M € J*(A), then M* meets K. Since K is nowhere dense in X, there is 
a clopen set N* C M* satisfying N* n L ^ 0, N* n K = 0. Thus JV € J+(B), but 
JV $ J+(A). So there are only finitely many members from A, which meet N in an 
infinite set, but infinitely many such from B. Consequently, there is some A € A 
such that AnN € J+(B). Since N* C M*, we have AnM € J+(15), too. 

(b)—*(a): Let K be a nowhere dense subset of u). Choose a MAD family A 
such that for each A € A, A* n K = 0. Let B be a MAD family as in (b). The set 
I = w * \ U(-^* • & ^ B) is nowhere dense by the maximality of B; we need to show 
that K < X. Clearly K C L, because B -< A. Let M* be an arbitrary clopen subset 
of /$w \ u> which meets X. There is nothing to prove if M* n K = 0. Otherwise 
M € J+(-4) and by (b) there is some A € A such that AnM € J+(B). Now, A* 
obviously does not meet K, the same must hold for its subset (A H M)*. However, 
(i4 n M)* n X is non-void, because A n M € J*(B). This shows that K is nowhere 
dense in X. • 

PROOF of the Theorem: Assume that every nowhere dense subset of u* is a 2*-set. 
Let A be an arbitrary infinite MAD family on u. By (b) from Lemma 2, there is 
some almost disjoint refinement C of J+(A). We may assume that C is a MAD 
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family. For each C € C choose some infinite MAD family B(C) on C and define 
B = U{#(C) 'CeC}. Since C as well as all B(C)'s are MAD families, B is a MAD 
family. Obviously B refines .4 . Let M £ J*(A), Since C is an almost disjoint 
refinement of J+(A)> there is some C £ Cy C C M. Therefore all members from 
the infinite family B(C) are subsets of M, so C f) M £ J+(B). Clearly, the same 
holds for the set A D M, where A is the member of Ay which contains C. We have 
verified (b) from Lemma 3 . 

For the converse implication assume Lemma 3.(b), and choose an arbitrary infinite 
MAD family A == AQ on w. Our aim is to find an almost disjoint refinement of 
3+{A). 

Applying Lemma 3.(b) inductively, we shall find a collection {An: n £ w} of 
MAD families such that for all n € u;, -4n+i < An and for every M £ J*(An) 
there is some A £ An with A D M £ J*(An+i). For every decreasing chain 
C = {AQ D A\ D A2 D ...} with An £ An select an almost disjoint family B(C) 
using Lemma 1 as follows: Let RQ = u; \ _4o, Rn+i = An \ An+1, % = {Rn: n £ u}. 
Let B(C) he the result of an application of Lemma 1 to this particular almost disjoint 
family R. 

Notice that for distinct chains C, C'y if B £ B(C) and B' £ B(C')y then B C\ B' 
is finite. Indeed, there is some n £ u> such that An £ C and A'n £ C are distinct. 
By our definition and by Lemma 1 we have that both sets B\An and B' \ A'n are 
finite, and the set An f\ A'n is finite too. Hence \B (1 B'\ < u>. 

It remains to show that the family 

B = M{H(C): C is a decreasing chain meeting every An} 

is the desired almost disjoint refinement of J+(A). As already observed, B is almost 
disjoint. 

Let M £ J* (A) be arbitrary. For n £u>y find inductively An £ An such that 

Mr\A*nA1n-.nAn£j"r(An+i). 
Now it is clear that |Mf l(A„ \ A n + i ) | = w for all n, hence M £ J + ( f t ) , where 11 

is determined by the chain C = {An: n £ a;}. By Lemma 1, there is some B £ B(C) 
with B C M. This completes the proof. • 
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