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ARCH. MATH. 1, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XUI: 55—64, 1977 

CERTAIN HIGHER MONOTONICITY 
PROPERTIES OF BESSEL FUNCTIONS 

JAROMlR VOSMANSKt.Brno 
(Received September 6, 1976) 

1. INTRODUCTION AND NOTATION 

In my earlier paper [4] there are derived certain higher monotonicity properties of 
i-th derivatives of solutions of 

(1.1) / + a(t)y' + b(t)y = 0 te (0, oo) 

in the oscilatoric case. This paper contains certain applications of the above-mentioned 
results to the Bessel equation 

(1.2V) y" + \y' + U- ~\y = 0, te(0, oo). 

By a Bessel function of order v we mean any nontrivial solution #v(0 (t > 0) of (1.2V). 
All functions and quantities considered here are real. 

Let the functions a0(t) = a(t\ b0(t) == b(t) ̂  0 in (1.1) be continuous and suf­
ficiently smooth on (0, oo). Let at(t% bt(t) be defined recurrently for i = 1, 2 ;3 , . . . 
by formulas 

ai(t):=ai„l - b't-Jb^, 
( " i} bit) := 6M + a\.t - a^b^jb^. 

Suppose that bt(t) / 0 for t e (0, oo) and all needed i. Let the function ft(t) be defined 
for / = 0, 1,2,... by 

dA) / ( / ) : = 6, - 4/2-at?/4. 

Consider the sequences {R^k^o* where the quantities R^ are defined for fixed 
X > — 1 and any sufficiently monotonic function W(t) by 

,(0 

r&+i 

(1.5.) RP = R?(W,X): = \ ^ ( o l e x p f l J a ^ d A ^ p , , 
*> 
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whereat)is an arbitrary (non-trivial) solution of (1.1), {*£°}£-o denotes any sequence 
of consecutive zeros of i-th (i == 0,1, 2,...) derivative of any solution z(t) of (1.1) 
which may or may not be linearly independent of y(t). Ja(/)dl denotes any func­
tion A(t) satisfying A'(t) « a(t). The condition X > - 1 is required to assure con­
vergence of the integral (1.5) and the function W(t) is taken subject to the same 
restriction. By special choice of W(t)9 A, i and z(t) in (1.5) we can obtain R{

k\W9X) 
having different geometrical (or other) meaning. 

The function/(t) is said to be n-times monotonic or monotonic of order n in (a9 b)9 

if there exist continuous derivatives/0 s / , / ' , / " , ...,/(w>, satisfying 

(1.6) ( - i y / ^ 0 2 0 for t€(a9b);j « 0,1, . . . ,« . 

For such a function we write f€Mn(a9 b). In case n = oo / i s said to be completely 
monotonic in (<i, 6), ->#-, denotes Mn (0, oo). If the strict inequality holds throughout 
(1.6), we write f€M*(a9 b) as it was defined in [2]. 

The sequence {-*}**-o s {h} *s s^d to be n-times monotonic if 

(1.7) ( - O ' A ^ f c O ( I « 0 , 1 , . . . , I I ; * « 0,1,2,...). 

Here A°tk « t*, Af* = rft+1 — ik, A% == A(An"ltk). For such a sequence we write 
{tk} €Mn.lf strict inequality holds throughout (1.7), we write {tk} eMn. 

2. PRELIMINARY RESULTS 

In the paper [4] for the quantities R^9 defined by (1.5) and concerning the solutions 
of (1.1) there are derived the following assertions, presented here as Lemmas 2.1 and 
2.2 in rather different formulations. Lemma 2.2 is in certain sense a consequation 
of Lemma 2.1. 

2.1. ([4] Theorems 3.1,5.1). Let n ;> 1, i? Jj 0 be arbitrary but fixed integers 
and W(t) > 0 be any function of class Mn. For the function ffa) defined by (1.4) 
suppose that 

(2.1) f!(t)€M:9 /l(oo) = © > 0 . 

Then 
{R(^oeMn. 

If W(t)€Mt or n fc 2, then {R?}?^€Mt. 

Remark 2.1. In the same way as in [4], Remark iii p. 96 we may prove that (2.1) is 
implied by 

ai-t(t)€Mn+l9 b't„i(t)€Mm*+2, ft,-i(0>Q fprte(0,oo) 
1 } *i-i(oo) - a?„t(ao)l4 « © > 0. 
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Lemma 2.2. ([4] Theorem 7.2). Let n >. 1, /.«_; 1 be arbitrary but fixed integers and 
16 (0, oo). For the functions af_,(/), _•,_,(/) defined by (1.3) suppose that 

fli-i(/)6.4r.+l 

1 } 6 | - . ( O > 0 , AJ. 1(06ur.+ l 

a/id that 

(2.5) a i _ 1 ( O > 0 0r ^ - , = 0 and b\„x{t) > 0. 

Suppose also that the second part of (2.2) Ao/ds. 
JAe/a 

(2.5) {ly'-'Wttr-o-.*:, 
wAere XO denotes any solution of (I J ) awd {r[°} #.*/>> sequence of consecutive zeros 
of its i-th derivative. 

Lemma 2.3. Let v ^ 0 be any number and let (pv(0 be for t > v defined by 

,2 

«*-Ц"&)-
Let <xn denote the unique zero of the equation 

(2.6B) Gn(s) = 3 - (Y^T)"1 " ( T T T T ' = °' 5 e ^ °°)' " = °' ! ' 2 ' •• 

(2.7) <pv(/)e.<(va_,oo). 

Proof. The function <pv(/) can be expressed in the form 

<p v (/)=3r 1 - (/ + v)"1 - (/ - v)"». 

Its n-th (n = 0, 1, 2,...) derivative has the form 

(2.8,) <p?Xt) = ( - 1)V (3/_<"+1) - (/ + v)-<"+1> - (/ - ,)-<"+ 1 )]. 

It is evidently seen that for / > v and n = 0,1, 2,... <j»tB)(/) is continuous. yv

B) changes 
therefore the sign only in the zeros of equation qfifXt) -= 0. Put / — _ v. The equation 
<ptB)(/) = 0 is then equivalent to (2.6„) and (2.6„) is independent of v. 

The function Gn(s) defined by (2.4„) has the following properties: 

(2.9) lim Gn(s) = - oo, lim G„(s) - 1 

s-*1+ «-»oo 

(2.10) G'„(s) = (n + 1)_"[(_ _ l)-<»+-> _ (_ + i)-<"+->] > 0 

for _-e(l,oo). 
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(2;9) and (2.10) imply that for n = 0, 1, 2, . . . (2.6n) has the unique zero in (1, oo). 
Let aB denote this unique zero so that we have 

(2.11) 

< ) K ) = o 
sign qffXt) = const for t e (va„, oo) 

lim ç>(
v
n)(.) = 0. 

The Rolle's theorem implies that there exists at least one number £ e (van, oo) such 
that 

(2.12) 
dí 

0 On the other hand since (2.6n+1) has in (1, oo) the unique zero an+1, <p("+1)(t) 
has in (v, oo) the unique zero van+1. So ^ = van+1 and we have 

(2.13) an + 1 = an for w -= 0, 1, 2, ... 

The assertion (2.7) follows directly from (2.8n), (2.11) (2A2) and (2A3). 

Remark 2.2. The zeros an of (2.6) for n = 0, 1, 2, . . . , 40 were computed by the 
student of J. E. Purkyne University J. Tryhuk. Their values for n = 0, 1,..., 29 are 
as follows: 

0 1,732051 15 17,296313 

1 2,757816 16 18,335307 

2 3,793285 17 19,374306 

3 4,830752 18 20,413311 

4 5,868924 19 21,452319 

5 6,907419 20 22,491331 

6 7,946078 21 23,530347 

7 8,984858 22 24,569364 

8 10,023695 23 25,608384 

9 11,062576 24 26,647406 

10 12,101489 25 27,686429 

11 13,140426 26 28,725455 

12 14,179380 27 29,764481 

13 15,218347 28 30,803508 

14 16,257326 29 31,842537 
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3. H I G H E R M O N O T O N I C I T Y P R O P E R T I E S O F R'„ V* 

As mentioned above, ^v(t) denote any Bessel (cylinder) function of order v, i.e. 
any nontrivial solution of the Bessel equation (1.2V). For simplicity it seems to be 
usefull to consider v ^ 0. But this condition is not essential, it has the formal 
character only as it follows from the familiar properties of Bessel equation as well as 
from the analytic theory of linear differential equations in general. 

Let {c$}£L i denote the sequence of consecutive positive zeros of the i-th derivative 
(i = 0, 1, 2,.. .) of some Bessel function ^v(t) and let {dvk} denote the analogous 
sequence of any Bessel function <$v(t) of order v, possibly ^v(t) again. 

Theorem 3.1. Let n ^ 0 be an integer and v g: 0 an arbitrary number. Let W(t) > 0 
denote any function of class Jtn(d, oo) and let Rvk be defined for t > v and X > —I by 

d'v,k+ 1 

(3.1) R'vk = R'vk(W,X): = f W(t)\t3'2(t2-v2yil2rXt)\xdt. 

Let m = max (3, v) and p be the smallest integer satisfying m £ dv'p. Then 

(3.2) {U.*}"-Pe.4r*. 

Proof. In case of Bessel equation (1.2V) the coefficients a0 and b0 have the form 

a0 = aov(t) = r 1 b0 = b0v(t) = 1 - v 2 r 2 . 

Let t > v. The formulas (1.3) yield after a little calculation 

1 2v2 

Яl = ßvl( t) 

h = Ьvl(t) = 1 -

Л=/vi(0 = i -

_ 1 -

t ř(í2 - v2) 
1 + V2J Ш 2v

2 

t2 Ѓ(t2 - v2) 

„ 2 _ l / 4 i VJ зv2 _] 

í- t2 - v2 (í2 - v2)2 

v2 + 3/4 v2 Зv2 

r t2(t2 - v2) (r 2 - v 2 ) 2 

We prove at first that f\(t) e ^T*(v, oo). Since t~2 e „ # * , (/ - v ) _ 1 €^T*(v, oo), 
( / + v) _ 1 e J ^ - v , oo) the general rules for calculation with higher monotonic 
functions (for such a rules see e.g. [4] p. 91) give 

(/ - v) - 1 . (t + v)"1 = (t2 - v 2 ) - 1 e M*(v, oo), 

( r - V2)"1 . (t2 - v2)"1 - (t2 - v2)-2 e M*(v, oo), 

rV-va)- 1
6uri(1 ,oo) . 
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This implies 
( - / v l ( 0 + 1 ) 6 ^ > , 0 0 ) 

and 
/;,(*) e.<(v, oo). 

In the case of Bessel equation we have 

exp |y j avl(t)dt\ = exp j y J [av0(.) - MO/MO] dti = 

- [ M 0 r " 1 « p { y J M O d t } - »3'2(.2 - V2)"1'2. 

The expression Rk defined in (1.5) is therefore of the form (3.1). Since/vl(oo) = 
= 1 > 0, it is evidently seen that the conditions of modified form of Lemma 2.1 are 
satisfied for any n = 2 if the interval (0, oo) is replaced by (m, oo). So, the assertion 
(3.2) follows immediately from Lemma 2.L 

It remains to prove the validity of (3.2) for n = 1, since the case n = 0 is obvious. 
In case W'(t) > 0 for t e (5, oo), i.e. W(t)eJt*(d, oo), (3.2) follows from Lemma 2.1, 
too. If W(t) s 1, Lemma 2.1 gives the unsharpened inequality AR'vk £ 0 only. The 
proof of nonpossibility AR'vk = 0 is similar to that in [2] p. 352. This completes the 
proof of Theorem 3.L 

Remark 3.1. It is not necessary to calculate the explicit form of/vl(0- The complete 
monotonicity of fvi(t) follows directly from the conditions 

b'v0(t) = 2v2r3 *Jt%9 M°°) > ° for r > v, 

due to Remark 2.1 as well as 

/vl(oo) « 6 (̂00 ) - — aJ0(oo) = 1 > 0 

is implied by the same Remark. 

Remark 3.2. As a direct conclusion of Theorem 3.1 we receive 

(3.4) {A(c'vk)*}?~p€J(l 0 < « < n 

(3.5) { l g « k + i / c ; k ) } ^ ^ ^ : 

(3.6) {Clic^^eJtl. 

To prove (3.4) it suffices to put %(t) a. Vv(t% i.e. c'vk s dvk, k = 0 and W(t) = ut*~l 

in (3.1). 
(3.5) follows from (3.4) by using THospitaPs rule (see [3] p. 364), or directly from 

Theorem 3.1 if %(t) « <«v(t), X « 0 and W(t) - r *. 
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The assertion (3.6) follows from Lemma 2.2 for i = 1, if the interval (0, oo) is 
replaced by (m, oo). We can receive (3.6) also from Theorem 3.1, if we put #v(0 s 
s %(t), X = 2 and W(t) = 2(t2 - v2)"1 in (3.1). 

The assertions (3.4) for a = 1 and (3.6) were noticed in my preprint [3] in 1972, 
the assertions (3.4), (3.5) and (3.6) were published independently in [2] in the same 
year. The result (3.4) is rather unexpected for ve <0, l/2> since the sequence {cvk} 
for v 6 <0, 1 /2> satisfies the contrary inequalities 

Alcvk>0 ( /=1 ,2 ) ve<0,l/2) 

&cl/2,k = COnst = 7T 

and the sequences {cvk} and {cf
vk} are interlaced. 

Theorem 3.2. Let v *z 0 be an arbitrary number, let an denote the unique zero of (2.6n) 
and e = e(n) the smallest integer satisfying cve(II) > vaw. Then for n = 0, 1, 2, 3,... 
there hold 

(3-7) {| # v « t + ,) | + | tf,«t( |}r=e(») 6 Ml 

(3-8) {I #v(
Cv, 2k) l}k -̂[e(n)/2] € Jtn 

P-9) {I #v(cv,2fc+l)l}^[e(«)+l/2]e«^ii 
so the sequences (3.7), (3.8) and (3.9) are monotonic of order /?, if we omit the members 
for which c'vk is smaller than va„. 

Proof. Theorem 3.2 is a direct corollary of Theorem 3.1. Put {c'vk} = {dvk}> k = I 
and 

W(t) = Wx(t) := T 3 / 20 2 - v2)1'2 = e x p | - ~ f [ r 1 - 2v2(f2 - v 2 ) " 1 ] ^ ! 

in (3.1) Lemma 2.3 implies 

M O - *~lV - 2v2(r2 - v ^ J e ^ v a , , , oo). 

Using the general rules for calculation with higher monotonic functions (see e.g. [4] 
Lemma 2.3), we receive 

exp j - y avl(t)dtl = ^ ( O e ^ v a , , , oo). 

The expression (3.1) is in our case of the form 
C'v,k+l 

Kk{wt, l) = f l K(t) I dr - | <£.«*+,) I + I W , * ) I 
C'v,k 

and (3.6) follows directly from Theorem 3.1. (3.7) and (3.8) follows from (3.6) since 

A[ |^ V (C4 + 1 ) I + l # v « * ) 0 - l^v«*+2)l - l«v«*) l - A|<r(c;f2f)|. 

Here Ar2r = *2(r+1) - t2r. 
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Remark 3.2. The assertions (3.8) and (3.9) mean that the sequence of maxima as 
well as the sequence of absolute value of (negative) minima of any Bessel function 
are monotonic of an arbitrary order n if we omit a sufficiently great number of the 
first members. 

u Remark 3.3. In case of Bessel functions of order, zero ^Q(t) are (3.7), (3.8) and 
(3.9) valid for all k; in another words (3.7), (3.8) and (3.9) are completely monotonic 
for all cok > 0. 

Remark 3.4. It seems 
{\Cv(cvk)\}k^ein)e ^t 

to be valid, but I did not succeed in deriving it from above relations. 

4. H I G H E R MONOTONICITY PROPERTIES OF R"vk 

Theorem 4.1. Let d, v g: 0 be arbitrary numbers. Let W(t) > 0 denote any function 
of class M„(8, oo) and ccn the unique zero of (2.4„). Let pn and R^k be defined by 

fiK = P„(v) := max {d; van; [v
2 + 1/2 + (2v2 + 1/4)1'2]1/2} 

d " v , k + l 

(4.1) JC = 1C(WU):= J W(t)\t\t2-v2yi2(t2-v2-\)-^'mX*t. 
&"vk 

Then for n = 0, 1, 2, . . . there holds 

(4.2) {Kk}?-rWeJt: 

where r — r(n) denotes the smallest integer satisfying ̂ vr > ^,+2(v). 

Proof. The direct calculation gives for t > (S0(v) 

e x p j l f av2(t)dt\ = expj- i f [avl(0 - MO/MOl<- '} = 

= [ M 0 ] " 1 / 2 e x p y J a v l ( 0 d . = t3(t2 - v2)ll2(t2 - v2 - l )" 1 . 

Thus the expression (1.52) has in the case of Bessel equation the form (4.1). We 
prove that the conditions of Lemma 2A are satisfied for i = 2, if the interval (0, oo) 
is replaced by (f}n+2> oo). 

The explicit form of avl(t) and bvl(t) is given in (3.3). Lemma 2.3 implies avi(t)e 
eJt*(van9 oo). By the same way as in the proof of Theorem 3.1 we can prove that 
6^(r)€^*(v, oo). By a direct calculation we can show that 

bvi(t) > 0 for t > [v2 + 1/2 + (2v2 + 1/4)1/2]1/2. 
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Validity of 
M » ) - «?i(oo)/4 = 1 > 0 

is obvious. Since «„ > 1, Remark 2.1 implies 

f;2(t)eJt*n(fin+2,co) 
( 4 3 ) /.-(CO) - 1. 

Thus the condition of Lemma 2.1 are satisfied for i = 2, if (0, oo) is replaced by (Pn+2> 
oo) and (4.2) follows from this Lemma for n = 2 as well as for n = 1 in case FV'(t) > 0. 
For n = 0 the validity of (4.2) is obvious. The proof in case n = 1, W(0 = 1 is 
similar to that of Theorem 3.L 

Corollary 4.1. Let yn be defined by 

yn = yn(v) := max {vart, [v
2 + 1/2 + (2v2 + 1/4)1/2]1/2}. 

If ^v(t) denotes any Bessel function and {c"k}k=0 denotes the sequence of consecutive 
positive zeros of^(t), then for n = 0, 1, 2,... there hold 

(4.4) {Mc:k)"}?=qWeJt*H 0 < a ^ l 

(4.5) {(cW}f-,(.)6^? « < 0 
(4-6) {H(c:,k+1Kk)}Ziq(n)eJ!:, 

where q = q(n) denote the smallest integer satisfying c'^q > y„+2(v). 

Proof. For a * 0 and <i?v(0 = <$v(t) we have 

KW1, o) =C r+1«ř"_1 d ř = á(c'^' 
If a e (0, 1], than afa x e . 4 ^ and (4.4) follows directly from Theorem 4.1. If a < 0, 
than [-a* a _ 1] eJt*^ and we have {-A(evfc)

a} e«̂ f* . Since 

-(-i)mAm[(c';kT] = ( - i r + 1 ^ " + 1 ( ^ 

and (<&)* > 0, there holds (4.5). 
To prove (4.6), it suffices to put W(t) = t~x and A = 0. 

Theorem 4.2. Let the conditions of Corollary 4.1 are fulfilled. Then 

(4.7) { [ « ) ] 2 } r = , w e X , 
Proof. Theorem 4.2 is the direct consequence of Lemma 2.2 for i = 2, if the interval 

(0, oo) is replaced by (y„+2, oo). The validity of conditions (2.3), (2.4) and the second 
part of (2.2) were proved in the proof of Theorem 4.L 
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