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ELEMENTARY THEORY 
OF DIFFERENTIAL INVARIANTS 

DEMETER KRUPKA, Brno 

(Received September 12, 1977) 

In this note, the objects such as covariants, invariant tensors, generally invariant 
functions, concominants, or invariants of fibre bundles and natural maps, etc., are 
considered. We generally call them the differential invariants. These are equivariant 
maps of left L^-spaces, where Un is the group of r-jets of local diffeomorphisms of the 
real, ^-dimensional euclidean space with source and target at the origin. 

Many examples of the objects of this kind can be given. A well-known one is 
provided by the map of the second jet prolongation of the bundle of the second order, 
symmetric, co variant tensors on a manifold to the bundle of the fourth order, covariant 
tensors on the same manifold same manifold, defined by the Levi—Civita curvature 
tensor considered as a function of the components of a metric tensor and their first 
and second derivatives. 

We present a straightforward geometric approach to the theory of differential 
invariants which makes use of the categories of fibre bundles and the Lie derivatives 
of maps. 

Several discussions of the differential invariants from this point of view have been 
given [2—8]. We continue these discussions to clarify the relation between the 
differential invariants and some classes of the morphisms of fibre bundles. 

We state a one-to-one correspondence between the set of the differential invariants 
and the set of the natural transformations of certain lifting functors in a category 
of fibre bundles. In particular, this allows to alternatively define the differential 
invariants as the maps transforming geometric objects to geometric objects; in this 
sense the differential invariants are geometric objects themselves. As an immediate 
consequence we obtain a description of the differential invariants by their behaviour 
under the local one-parameter transformation groups of the underlying base 
manifolds. 
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1. FUNDAMENTAL CATEGORIES 

All manifolds, considered in this paper, are real, finite-dimensional, Hausdorff, 
and second countable. Our considerations belong to the category (€m. The real, 
^-dimensional euclidean space is denoted by Rn, and we write R1 = R. If ^ is 
a category we denote by Ob (€ the set of objects, and by Mor <$ the set of morphisms 
of^. 

Q)n denotes the category formed by ^-dimensional manifolds and their injective 
immersions. If G is a Lie group, then ^^n(G) denotes the category, consisting of 
all principal G-bundles over ^-dimensional manifolds, and their G-homomorphisms 
over the morphisms of Bn. It is the purpose of this section to describe a category 
of fibre bundles ^Mn(G), which will be needed later. 

Let neOh0>Mn(G) be a principal G-bundle, n : Y~> X, let P be a left G-space. 
The fibre bundle with fibre P, associated to the principal G-bundle n, will be denoted 
by nP or nP : YP -» X. Recall that the points of the manifold YP are equivalence 
classes of pairs (y,p)e YxP, typically denoted by [y,p], with respect to the equi
valence relation defined by the right action G x (YxP) a (g, (y,p)) -» (y . g, g"1 . y)e 
e YxP of G on YxP. The projection np is defined by 

M[y>P]) = nOO-

The objects of the category 3FMn(G) are all fibre bundles associated to the principal 
G-bundles belonging to the set Ob 3PMn(G). 

To define the morphisms of the category tF38n(G), consider a principal G-bundle 
nx : Yi -> Xi9 nt e Ob&3n(G), and a left G-space Pi9 i = 1, 2. Denote by niPi : YiPl -» 
-» X( the fibre bundle with fibre Pt associated to nt. Now a pair (q>, (p0) of maps 
cp : Y1Pl -+ Y2p2, <p0 : X! -> X2 is a morphism of the category !F3n(G) if there exist 
a morphism <P e Ob @>Mn(G), <P : Yx -» Y2, and a G-equivariant map F : Pt -* P2 

such that (p0 is the projection of <P, 

n2o$ = <p0onl9 

and for every ze Y1Fl, z = [y,p], 

<p(z) = l<P(y),F(p)l 

These objects and morphisms obviously form a category with respect to the com
position of maps which we have denoted by !F0in(G). 

2. DIFFERENTIAL INVARIANTS 

Let Ln be the Lie group of r-jets of local diffeomorphisms of Rn with source and 
target 0 e ^ n [1], Our aim is to study the subject, introduced in the following, 
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Definition. A differential invariant F: P -> Q is an Lr-equivariant map of a left 
Lr-space P to a left Lr-space Q. 

To fix the notation, let us briefly recall some definitions. Let Xe OhQ)n, xe X. 
An r-frame at the point x of X is an invertible r-jet with source 0 e Rn and target x. 
The set <FrX of all r-frames at the points of X together with the natural projection 
map of !FrX onto X, denoted by nXtr, carries a natural structure of a principal 
Lr-bundle, and is called the bundle of r-frames over X. Denote by •# the composition 
of jets. Then the right action of Ln on :FrX is defined by the map 3FrXxLr

n e(y, g) ~> 
-+y*ge &rX. 

Let a 6 Mor 2n, a : Xx -> X2, x e A^, and letf̂ x denote the r-jet of a at the point 
x. a gives rise to the map 

&rXi 3y_ ^rra{y) = fnx^y)a *ye &rX2 

whose projection is equal to a, i.e., 

Kx2,r°^r* =*onXur. 

This map is obviously an element of the set Mor ^^n(L
r
n). The correspondence X -* 

-> J^X, a -> Jrra, where X e Ob 3)n and a e Mor £̂ w, defines a ///h>zg of order r [4] — 
a covariant functor from the category 2n to the category 0^n(L^). This lifting is 
denoted by 3Fr. 

If P is a left Lr-space, then the fibre bundle with fibre P, associated to the principal 
Lr-bundle nXtr : 3TX-+ X, Xe Ob #„, is denoted by 7r^r#p : J^X -* X. 

Let a e Mor ®B, a : Xt -> X2. Then J^a e Mor^^(L^), J^ra : &'XV -> J^X2. 
There arises a map 

(1) J^PX! 9 z -> J^pa(z) = [J^raO0, p] e ^r
PX2, 

where z = [y,p]. The pair (J^a, a) belongs to the set Mor ^Mn(Un) and is said to be 
induced by a. 

The correspondence X -> Fr
PX, a -» (J^a, a), where XeOb Q)n and a 6 Mor 3)ny 

defines a covariant functor from $)n to ^0Sn(Un) which is called the P-lifting associated 
to the lifting J^r. This P-lifting is denoted by J^p. 

Let P and Q be two left Lr-spaces and F : P -> Q a differential invariant. For every 
XeOb^w, the formula 

(2) Fx(z) = [y, F(p)l 

where z = [y,p], defines a morphism (Fx, idx) e Mor #"J^„(Lr) such that Fx maps 
^PX to Ĵ QX, We call the pair (Fx, /dx) the realization of the differential invariant F 
on the manifold X. 

If Xe Ob ^„ and if U is an open subset of X, then !Fr
PU is an open subset of J*pX. 

Obviously, 

-Pjr \*r
Pu = ^U-
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If aeMorS, , , a:Ux-* U2y where Ut is an open subset of X.eOb^, then 
Fv2 ° «^Pa - «^Qa ° Fvi which we also write as 

(3) F X 2 o ^ a - = ^ a o F X l . 

Our aim is to characterize the differential invariants as the natural transformations 
of the liftings, associated to &r. Recall that a natural transformation t of &*F to ^r

Q 

consists of a collection of morphisms (tX9 id^) e Mor &r$n(L
r
n)9 where Xe Ob 2n, 

such that for every a 6 Mor Q)n9 a : Xx -> X2, 

(4) r , 2 o ^ a = ^ a o ^ . 

Theorem 1. Lef P and Q be two left Ln-spaces9 F ;P -> Q a differential invariant. 
Then; 

I. The correspondence tF : X -> FX9 where l 6 0b®„, is a natural transformation 
of the P-lifting &r

P to the Q-lifting &r
Q. 

II. The correspondence F -± tF is a bijection between the set of differential invariants 
from P to Q and the set of natural transformations of !Fr

P to !Fr
Q. 

Proof. Let P, Q9 and F be as above. For every l 6 0 b § „ , Fx is obviously an 
element of Mor ^3in(L

r
n). To prove the first assertion it thus suffices to show that 

for every a e Mor @n9 a : Xt -» X2, the relation (4) holds. This is, however, a direct 
consequence of our definitions (1), (2). 

Let us prove the second statement. Firstly, let us show that the correspondence 
F -* tF is injective. Assuming that for some differential invariants Fl9 F2, the 
equality tFl = tF2 holds, we obtain F1X = F2X for all Xe Ob 2in. For some Xe Ob 9n 

and zeJ^X , z = [j,p], we obtain Flx(z) = iy9F1(p)] = F2x(z) = [y,P2(P)] 
proving that the correspondence F -> tF is injective. Secondly, let us show that the 
correspondence F'-+ tF is surjective. Let us assume that we are given a natural 
transformation t of $Fr

P to ^Q. Choose Xe Ob Q)n and y e &rX. This choice gives 
rise to a map Ty : P -> Q defined by the relation 

(5) /,(z) = j>, T,(p)l 

where z = \y,p\ Note that for every open subset U oi. X such that y e J '̂o", 

(6) /p(z) = |>, r,o»)]. 
Let JTieObl?,,, jF.e ̂ T , , / = 1,2. There always exist an open subset Ut of Xt 

containing nXu,(yi), and i s M o r i ? , , a. :Ut~* U2, such that 

(7) ^ r«Oi) = j>a. 

For such an a and every p e P we obtain, using (5), (6), (4), (1), and (7) 

'x,(l>-' AD = L>a. 7V2(p)] = *p, o ^ ( O i > / > ] ) = ^ c « ° tVl (|>., ;>]) = 

- *a"(L>i, -*V.(p)]) = [^r«0,)> -",,(/>)] = |>a. r»0>)] 
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which implies that Tn = Tyi. There must exist a map T: P -> Q such that for every 
XeOb^andye^X, 

(8) T = Ty. 

Let us study the behaviour of this map under the action of Lr„ on P. Choose X e Ob <2i„, 
ze&pX, z = [y,p\, and geLr„, Then, by definition, 

tx([y, g-P\) = \_y, T(g. p)\ = tx(ly . g,p\) = 
= ly-g,T(p)\=ty,g.T(p)\, 

and 
T(g.p)=g.T(p). 

This shows that T is a differential invariant. On comparison of (8), (5), and (2) we 
obtain that the realization of the differential invariant T on X, TXi is equal to tx e 
e Mor !F3lln(Un). This shows that the correspondence F -> tF is surjective which 
finishes the proof of Theorem 1. 

Let P and Q be two left Z^-spaces, let f: P -> Q be any map. Denote by ln the 
Lie algebra of Un. Let £ e lr

n and let gt be the one-parameter group generated by £. 
Then the formula 

d,f(f(p)) = ^rg-,.f(g,.p)^o 

defines a vector field along f which is called the Lie derivative of f with respect to £ 
[9]-

Similarly let XeOb Sin9 let £ be a vector field on X, denote by cct the local one-
parameter group generated by £, and consider a morphism (G, id*) e Mor ̂ Mn(JJn)9 

where G : #"£X -> #"̂ X. For every z e ^ X , t -> (^r
Qoi^t o G o J^a,) (z) is a curve 

in «^QXpassing through the point G(z). The arising vector field along G, 

dfi(G(zj) = | A (jc^a_f 0 G 0 ^ ) ( z ) l 

is called the Lie derivative of G with respect to <!;. 
Recall that the group L„ consists of two components. The first one, LJi(+), the 

maximal connected subgroup of Un9 is formed by the r-jets of local diffeomorphisms 
of Rn whose Jacobian is positive. The second component, L^(""), is the complement 
of Un

{+) in U„. Every element g0 eUn
i~) gives rise to the diffeomorphism Un^~) sg -» 

-*g0*geuy\ 
Let P and Q be two left LJ-spaces, letf: P -» Q be a map. It is immediately proved 

that the following two conditions are equivalent: 

I.fis a differential invariant. 
II. For every £elr

n9 
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and there exists g0 eUn
i~) such that 

f(go-P) ^go-f(p) 
for all p e P. 

We shall state a similar result for the morphisms of fibre bundles, associated to the 
bundles of r-frames. 

Theorem 2. Let Xe Ob 9n be connected, let (G, \dx) e Mor ^^n(L% G : ^r
PX -> 

-> «^QX The following three conditions are equivalent: 
I. For every /oetf/ diffeomorphism cc of X, 

(9) 3~r
Qoi o G = G o J ^ a . 

II. For every vector field £ defined on an open subset of X, 

dfi = 0, 

and there exist a point x0 e X, a point yQ e K^KXQ), and a local diffeomorphism 
a0 of X defined on an open neighbourhood of x0 such that a0(x0) == x0, the 
element g0eUn defined by the relation ̂ ra0(yo) = yo^So belongs to Lr

n
{~\ 

and 
(10) ^ a 0 o G = Go.jFPa0. 

III. There exists a differential invariant F : P ~> Q whose realization Fx on X is 
equal to G, 

Fx = G. 

Proof. Firstly, it is obvious that II follows from I. 
Secondly, let us assume that the second condition is satisfied. Let <J be a vector 

field defined on an open subset of X, ott its one-parameter group. Then our assumption 
leads to the relation 

(11) ^rtfLtoG = Go3Fr
Pat 

taking place for all t. 
Let x e X be any point. Every y e nx*r(x) defines a map Gy : P -> Q by the relation 

(12) G(z) = [>, Gy(p)l 

where z = [y,p]. Our aim is to study the map>> -> Gr 

Let #0 and y0 be as in the second condition of Theorem 2. Let at be any local 
one-parameter group of transformations of X, defined on a neighbourhood of x09 

assume that for all t, <xt(xQ) = x0. Then (11), (12), and (1) give 

which shows that the function y -* Gy is constant along the curve t -> e^XOo)- Let 
us clarify which points of the fibre 7txt

l
r(x0) can be joined with y0 by such curves. 
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Note that every such a local one-parameter group at defines a local one-parameter 
subgroup gt in U}+) by the relation 

yo*^1 = ^ ( y o ) . 

Conversely, let gt be a local one-parameter subgroup of Ln; obviously, gteUn
i+) 

for all t. Then there always exists a local one-parameter transformation group Xt in &* 
such that gt = j0xt . Xt maY be chosen in the form of appropriate polynomials with 
coefficients depending on t. Let cp0 be a local diffeomorphism from Rn to X, defined 
on a neighbourhood of 0 e Rn and such that y0 = f0<p0. Then the one-parameter 
system of maps 

°<t = <PoX-t<Pol 

is a local one-parameter transformation group, defined on a neighbourhood of 
x0 G X. Evidently, a,(x0) = x0 and 

y * gf * = Io(<PoZf *) = Jxo{(PoX7l9ol) *Jo<Po = ^ ar(yo) 

Since local one-parameter subgroups of a Lie group fill a neighbourhood of the 
identity of the group, this relation shows that 

( 1 3 ) Gyo ^Gyo*g 

for every geUn
(+). 

Let a0 be a local diffeomorphism of X, satisfying the second part of the condition II. 
Then for every z e fl*,i,p(*0)»

 z = [yo>P]> 

^r
Qa0 o G(z) = [^ra0(y0), G,0(p)] = G o ^ a 0 ( z ) = 

= [>r«o(yo), G*rao{yo)(p)\ = [^ra0(y0), G,0.Jpy] 

which shows that 

(14) Gyo =- G,0„0. 

(13) and (14) together show that the function y -» Gy is invariant under the action 
of !£ on nx\(x0)9 or, in other words, that the equality 

Gyi = Gyi 

holds for all yi, y2 e flx,U*0). Consequently, the map Gyo depends on x0 = nXtr(y0) 
only, and we may denote 

Gyo = G * o -

Let us now verify that Gx can be defined in the same way at every point xe X. Let 
*o>yo =Jo<Po> So =JoZo> and a0 be as before. ThenfoXo = M<Po ^o^oX by (10). 
Let x e l . Since X is connected we can join x0 with x by a curve. We can construct 
the tangent vector field to this curve, and prolong it to a vector field £ defined on 
an open subset of X. Let pt be the local one-parameter group generated by £. There 
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is t0 such that Pt0(x0) = x. Consider the point y = j0(fitQ<p0) e n^r(x\ and the map 
a — Pto^oPtQ1, defined on a neighbourhood of x. We obtain 

^ ( y ) - Imo*o/C) *fo(Pt0<Po) = Wt0<Po) *7o(Po W r ; % 9 o ) = y * go.-

Moreover, it follows from (9) and (10) that 

^r

QOL o G = G o J ^ a 

which shows that the second part of the condition II is satisfied at the point xe X. 
Consider now the maps GXQ, Gx. With the help of the local one-parameter group fit 

it is directly obtained that G^ -= Gx. We set 

(15) F = Gx. 

It follows from (15) and (12) that Fis a differential invariant, and (2) shows that 
JFX = G. We have thus seen that III is a consequence of II. 

Thirdly, if III holds then II must also hold, by (3). 
This completes the proof of Theorem 2. 
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