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CATEGORIES OF SYSTEMS OF X-RELATIONS

JIRf RACHUNEK, Olomouc
(Received October 19, 1978)

In[1], M. Armbrust studies the category of congruence systems, i.e. the category
whose objects are sets with systems of equivalence relations which are closed with
respect to arbitrary intersections and under unions of directed subsystems and which
contain the identity relation. The above properties are characteristic for the set of
all congruences of any partial algebra. (See [3], [7].) Moreover, some other types
of relations compatible with a partial algebra have those properties. (For the quasi-
orders see [5].)

This paper investigates the categories X whose objects are sets with systems of
X-relations (e.g. the equivalences, the quasi-orders and the tolerances, respectively,
are the special types of X-relations) satisfying the same properties as congruence
systems.

It is proved that such arbitrary category X is bicomplete and concrete and in X
there are characterized the injective and projective objects. Moreover, there is shown
a connection between the category of congruence systems and the category of quasi-
order systems.

For the notions of the universal algebra and the category theory used in the paper
see [3], [4] and [2], [6], respectively.

Let X be a system of relational quasi-identities of the type (2) with the
signature {423). Let us suppose that X contains the identity of reflexivity and that
each other quasi-identity of X (if it exists) is in the form v

VX VX & ... &, > o),

where o, ..., o,, & are primitive formulas and the following conditions are
satisfied:

a) for each x, (i = 1, ..., n) there exists at least one of &, ..., &, containing x;,

b) if p > 1, then each &, (k = 2, ..., p) contains at least one of the variables
containing in &, _,,

c) it holds o = A}(x,, x) (r, g€ {1, ..., n}).

Defiaition. An X-relation on a set 4 is any relation on A satisfying all quasi-
dentities of X .
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Note. It is clear that the equivalences, the quasi-orders (i.e. the reflexive and
transitive relations) and the tolerances (i.e. the reflexive and symmetric relations) are
X-relations, respectively.

Let # be a formula of the signature (43) which variables are contained
in {x;,...,x,}, let A be a set, o< AxA and a,,...,a,€ A. Then the symbol
#(a,, ..., a,) means the value of the formula & in A for the substitution of g instead
of A} and of g, instead of x;, for each x; containing in %.

Lemma 1. a) The intersection of any system of X-relations on A is also an X-rela-
tion on A.

b) The identity relation id, is an X-relation on A.

Proof. a) Let ©,(y € I') be X-relations, © = (") @,. Then evidently O is reflexive.

vel

Let I' # 0 and let Vx, ...V x,(of & ... &, = o) be a quasi-identity of X. Let
a,, ..., a, € A. Let us suppose that #(a,, ..., a,) & ... &#%(a,, ..., a,) holds. Then
#%ay, ...,a) (i = 1, ..., n), therefore also #&(a,, ..., a) forallye I'(i = 1, ..., n).
Since O, is an X-relation, #®"(a,, ..., a,) for each y € I', thus #%(a,, ..., a,), i.e. the
implication #{(ay, ---,a,) & ... &AL (ay, ..., a,) = #%ay, ..., a,) is true.

IfI' =0, then ® = 4 xA is an X-relation on A.

b) It is clear that the identity relation is an X-relation on A4.

Corollary. The set X(A) of all X-relations on A ordered by inclusion forms
a complete lattice. The smallest element is id,, the greatest element is A x A.

Lemma 2. Let {©,; y € I'} be a directed system of X-relations on A. Then | ) 4, =

yel
= VXo(A) o,.
yel

Proof. Let Vx;...Vx,(o;& ... &/, = of) be a quasi-identity of X, o =

= A3(x,, x;). Letus denote ¥ = |} ©,. Letay, ..., a,€ 4, @{", a}"), ..., (@, aP) e
yel
e¥, aV, e, ...,a?, a¥ € {a,, ...,a,}. Then there exist y,,...,7,€ I such that

@V, ae0,, ..., (@, af) e ©,,. Then by the assumption there exists O e
€{0,;yerI} such that @, ..., ©,, = 0. But this means (g, a)) € O, therefore
(ax,a)eV?.

Let A = (4, F) be a partial algebra of the type 7, where 4 # 0 is the support
of A and F # D is a set of partial operations on A. If f€ F, then n, denotes the arity
of f and D(f, A) denotes the definition domain of f. Let @ be an X-relation on A.
Then O is called an Z-relation on U if for each fe F it holds:

X) If (ay, ---, ay,), (by, ..., b,,)eD(f, A) and (a;,b)€ O, i = 1,...,n, then
@y ... ay,f, by ... b, f)€O.

Lemma 3. The intersection of any system of X -relations on W is an ¥ -relation on .

Corollary. The set Z(¥) of all Z-relations on U ordered by inclusion is a complete
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lattice which is a closed A-subsemilattice of the complete lattice X (A). The smallest
element in (W) is id,, the greatest element is A x A.

Lemma 4. Let {6,; y € I'} be a directed system of % -relations on a partial algebra
A= (A, F). The" v’(u) 97 = U 97-
yel

yerl

Proof. By Lemma 2, U O, is an X-relation on A. Let fe F, (X1, ..., X ),
yell

G1s oo Yo, ) €D, A), (xi, y) € ) ©, (i = 1, ..., n,). Then there exist ¥y, ..., Yo, €T
yel

such that (x;,y)€®,, (i =1,...,n). Thus there exists © € I' such that ;< @
(i =1,...,n). Therefore (x, ... X, f, ¥ --- ¥a, /) € O,.

. yel

Lemma 5. The set X,(A) of all X-relations on a set A ordered by inclusion is an
algebraic lattice.

Proaf. Follows from the algebraicity of the lattice Ry(A4) of all reflexive relations
on A and from [7, Folgerung 4.7].

Let A = (4, F) be a partial algebra, ¢ = A4 x A. Let us denote the smallest element
of (W) containing ¢ by ©,. Then it is clear that the mapping 4 : Xo(4) = Xo(4)
defined by g4 = O, for each g € Xo(4) is a closure operator on X,(4).

Theorem 6. If W = (A, F) is a partial algebra, then the lattice () is algebraic.

Proof. By Lemma 5 and by [7, Lemma 4.7], the closure operator 4 : Xo(4) —
— X,(A) is algebraic. Thus by [7, Lemma 4.2], (™) = (Xo(4)) 4 is an algebraic
lattice.

Definition. An x-system is an ordered pair (4, &), where 4 is a set and & < X,(A)
a system which is closed with respect to arbitrary intersections and under unions
of directed subsystems and which contains the identity relation id,.

Let (4, o), (B, %) be x-systems, ¢ : A — B. Then we say that ¢ is an x-morphism
from (4, &) to (B, %) if gp ™! € & for each ¢ € %. Now, we denote by X the category
whose class of objects is exactly the class of all x-systems and whose morphisms are
precisely the x-morphisms between these x-systems. Evidently, always (4, Xo(4)) € X.

Theorem 7. Let W = (A, F) be a partial algebra, ¥ = X (N) the set of all X-relations
on U and let (B, %) be an x-system. Then a mapping @ : A - B is a morphism from
(A4, &) to (B, %) in X if and only if for each f € F there exists an n (-ary partial opera-
tion g on B such that (xy, ..., x,,) € D(f, A) implies (x,9, ..., x, ) € D(g, B) and
Xy e X fO = X109 ... X, 98-

Proof.a) Let ¢ : (4, Z) - (B,%) € Mor X, fe F. Let us define an n ,-ary partial
operation g on B as follows: (yy, ..., ¥s,) € D(g, B) if and only if there exists
(%15 > %, )€D(f, 4) such that x,¢ =y;,....% @ =y, and Vi.-¥n &=
= Xy - X, f@. Let ¢ €¥. Then there exists T € Z such that t = gp~!. Suppose that
015 3 9ap), (215 ..., 2,) €D(g, B) and that (y1,2y), ..., O, Za ) € @- Lot X415 -oo,
Kngs U1s ooy ll,,!GA be such that x,¢ = yy, ..., Xn, P = Vnys 1@ = 21> ey Uy P =
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=z, , (F1s ooos Xy (g, ooy ta) € D(f, A). Then (x;, uy), ..., (Xo,5 ) €7
and thus X ... X, ftu, ... 4, f. But hence x, ...x, foou, ... u, fo, therefore
o Vn 80%1 -+ Zn,8-

b) Let ¢ : A - B be such mapping that for each f € F there exists an n ;ary partnal
operation g on B compatible with all ¢ € ¥ and satisfying the condmons from the
assumption of Theorem. Let CEY, feF, (x1,.-s %), by, -,y ) €D A),
(%15 ¥4)s > (Xn,» Vu,) € 0@~ . Then, by the assumption, (x, @, y,), .. ,(x,,,fp Yn,P) €
€ ¢, hence (X, ... %2 P8, 19 -  Ya,P8) € ¢. But this implies (x, ... x,,f, y: - X f)E
€ o™, Therefore g~ is compatible with all partial operations of F, i.e. 09~ 'eq.

Theorem 8. Let ¢ : (4, ¥) - (B, %) € Mor X. Then
a) ¢ is @ monomorphism iff it is injective;

b) @ is an epimorphism iff it is surjective.

Proof. a) Let ¢ : (4, %) » (B, ¥) € Mor X, a,,a,€ A, a, # a,, ;¢ = a,9.
Let (C, Z) € Ob X be such that C = {c}, & = {Cx C}. Let us suppose that y,
Y, : C = A are such mappings that ¢y, = a,, ¢y, = a,. If g€ &, then from the
reflexivity it follows gy7' = gy;' = {CxC}eZ. This means that ¥, {, are
morphisms from (C, Z) to (4, ), therefore ¢ is not a monomorphism in X.

b) Let ¢ : (4, ) = (B,¥)e Mor X and let B\Ap # 0. Let be B\Ap, d¢ B,
D = Bu{d}, % = {DxD, idp}. Let us suppose that x,, x, : B — D are defined
by By, = 15,0, X2 [(B\{8}) = 141 (B\{®}), bx, =d. Then (D x D) x'=(MDxD)y;'=
= BxBed, idpy; ! = idpy; ' = idg€¥, hence g4, x, are morphisms from (B, ¥)
to (D, %). Since @y, = @X2, @ is not an epimorphism in X.

Remark 1. a) The category X is not balanced.

b) The isomorphisms in X are exactly all bijective morphisms such that their
inverse mappings are morphisms, too.

Remark 2. Let us consider any subobject of an object (4, &) in X. Then it is
possible to choose as a representative of this subobject such a monomorphism
A, %) > (4, %) that (4", X)e0bX, A c4,F' 2{en A" xA";0eX}.

Remark 3. Let us consider any quotient object of an object (4, &) of X. Let
@ :(4,%) - (B,%) be a representative of this quotient object. Then evidently the
mapping @ : A — B is surjective. If we denote the natural mapping of 4 onto the
quotient set A/@@~* by v,, then there exists a bijection f,, : B — A4/p¢p~" such that
@f, = v,. Denote by /@' the set of all relations on. A/pp~" induced by such
relations o € ¥ for which there exist such g e % that ¢ = gp ™.

It holds (a,, a;) eidgp ™" if and only if a,¢ = a,¢ (4,, a, € A). Hence id/pe-1
is induced by idgp ™!

Let ©,€ Z/pp~"! (y€T), let O, be induced by 6, € & and let 5, = ,0” ! (¢, € ¥,
yel). Then ﬂd = (ﬂa,)tp . Let a,, a, € A. Then (2,909, a,p9p~ )€ ﬂ 8,

if and only if (aﬂPw , azW’ “!)e , for each y e I'. This is true if and only lf for
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each y eI there exist x} ea,pp™", X} e a,pe! such that (x], x})€o,. By tlfe

assumption, the last fact is equivalent to (4,9, a,p) €e, for each ye I, and this

holds if and only if (2,0, a,9) € [} e,. This is true if and only if (a1, a,) € ﬂra',.
ve

yel . _
Therefore (a,09 !, a,0¢ ~ ') belongs to the relation ( ﬂrcr,)/qw ~1induced on 4/pe 1
ve '

by the relation () g,.
yel

Conversely, let (2,007, 2,09~ ") € () 5,)/@e~". This is satisfied if and only
yel
if there exist x,€ad,09 ', x,€a,00 ! such that (x,, xz)eq_'a',. Therefore
o ye
(a,90907, 0,090 ") € ) ©,. Hence () 6, = () 0,)/99™".
yel yel yerl

Similarly we can prove that if (@,; yeI) is a directed subsystem in Z'/p@”~
and if O, is induced by g,€ & (y e I), then | J O, is induced by U o,.

vel yel

1

Therefore (A/pp ™", Z/pe~ ') e Ob X,

Let us show that f, is an isomorphism from (B, %) onto (4/pe~*, X/pe™').
Let pe Z/pe~* be induced by gp ™!, where ¢ e #. Let (a,, a,) € . Then there exist
(%1, x2) €00, x; €4dy, X, €d;, and hence (x, 0, x,p) € ¢. Therefore also (a,¢, 2,9) €
€, thus @,f;", a,f, ") €e. If (by, b;) € g, then (b, %, b0~ ") € 5. Hence of ;! =
= g€%, i.e. f, is a morphism from (B, ¥) to (A/pe~", Zlpp ™).

Leto €, (by, b;) €. Then (b0~ ", b,0™ ") €5.1f 1, y2€ B, (010~ ', y20™ ) €0,
then there exist z, € y,0~ ", z, € y,¢ ™! such that (z,, z,) € g¢~*, thus (z,0, z,9) € 0,
and so (y,, y,) € g. Therefore f, ! is a morphism from (4/p¢ !, Z/pe~*) to (B, ¥).

This means that for any quotient object of an object (4, &) in X it is possible
to choose as a representative of this quotient object such an epimorphism
¢ : (A, ¥) > (4, ¥) that 4 = A/~ for a certain equivalence relation ~ on A and
that & is a subset of the set of all X-relations on 4 induced by the elements of &
containing ~.

Specially, let us suppose that X contains the transitivity quasi-identity. Let
(4, )€ Ob X and let ~ be an arbitrary equivalence on 4. Let us denote by &/~
the system of all X-relations on the quotient set A/~ induced by such g€ & that
e2~.1fv.: 4 A/~ is the natural mapping, then we denote g = gv.. for any
such g. Let (@, a,) € p. Then there exist x, € d,, x, € a,, (x;, X,) € ¢. Thus (a,, x,),
(x1, x3), (x2, a,) € g, therefore also (a,, a,) € ¢. This implies gv_' = g€ &, and so
v : (A, &) - (A/~, I|~) € Mor X.

Theorem 9. If A = {a}, then (A, {A x A}) is a free object over X with the free
generating set {a}.

Proof. Let (B,%#)e Ob X, ¢ : {a} —» B. If g €%, then, by the reflexivity of o,
it follows ¢p~!' = AxA, hence ¢:(4,{AxA}) —» (B,¥)eMor X and this
morphism is the unique extension of the mapping ¢. ’
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Corollary. X is a concrete category.

Theorem 10. An object (A, ¥) € Ob X is injective in X if and only if A is a one-
element set (and & = {A x A}).

Proof. Let (4, %), (B,%), (B',%)eOb X, ¢ : (B',%') - (B,¥), ¥ : (B',¥') -
— (4, ) e Mor X, and let ¢ be a monomorphism. By Remark 2 it is possible to
assume that B'< B, %' 2 {¢ " B'xB’; g%} and ¢ = lp 5.

Let us assume that (4, &) is injective in X. Let A =B =B, ¥ =%,%'>%
and let = 1,. Then y = 1, is the unique mapping of B to A for which ¢y = .
But, by the assumption, there exists ¢ € & such that gy "' ¢ &, i.e. y is not a morphism
from (B, %) to (4, ¥). Hence, if (4, &) is injective, then & = X,(A).

Let card A > 2. Let us suppose that B = B’ = {b,,b,}, ¥ = {Bx B, idg},
%' = Xo(B). Let a,,a,€ A, a, # a, and let Y : B > A be a mapping such that
b,y = a,, b,y = a,. Since a coimage of an X-relation is in any mapping also an
X-relation, ¥ is a morphism from (B, %) to (4, Z). Furthermore 15 5 is a mono-
morphism from (B’,%’) to (B,%) and x = y is the unique mapping of B to 4 for
which 1 5x = V.

Let us show that y ¢ Mor X. Let ¢ = id, U {a,, a,}. Then g € Xo(4). Butgx ™" =
= idy U {(b1, b,)} ¢ .

Finally, it is clear that (4, &) is injective for 4 = {a}.

Theorem 11. An object (A, X) is projective in X if and only if ¥ = X(A).

Proof. a) Let us suppose that (4, ¥)e Ob X is projective. Let 4 = B and
~ =idy. Let # = & and ¥ = ¥. Suppose that ¢ = = 1,. Then ¢ : (4, Z) —»
— (B, %), V:(B,%)— (B,¥)eMor X and ¢ is an epimorphism. Furthermore
x = 1, is the unique mapping of 4 to B such that yyy = ¢. By the assumption there
exists ¢ € ¥ for which gy~ ! ¢ &, therefore y is not a morphism from (4, Z) to (B, %).
Hence it must be & = X(A).

b) Let (4, %), (B, %), (B,#)cOb X, ¢ : (4, %) » (B, %), y : (B,¥) —» (B, ¥) e
€ Mor X and let § be an epimorphism. Let us suppose that B = B/~, where ~
is an equivalence on B, and that y is the natural mapping. Let us denote by y a map-
ping of 4 to Bsuch that ay € apgp ~! for each a € 4. Then yy = ¢ and y is a morphism
from (4, Z) to (B, %), because a coimage of an X-relation is an X-relation for each
mapping.

Remark. a) If (4, ) e Ob X, 4’ <€ 4, %' 2 {g n A" xA’; ¢ € X}, then a necessary
condition for 1, ,: (4, Z') - (4, ¥) being a sectionis &' = {g N A’ xA'; g € X}.

b If '={enA' xA; geX}, A" =A\A', then 1, ,: (4, X') > (4, %) is
a section if and only if there exists a mapping y : A" — A’ such that for each a,,
a,€ A" and for each ge & it is (a,,a,)eg n A" x A" if and only if (a,x, a,)) €
€on A xA.

Theorem 12. X is a complete category.
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Proof. a) We prove the existence of the kernelsin X. Let @, y : (4, ¥) =+ (B, ¥) e
€ Mor X. Let us suppose that A’ #® and let us consider the embedding
Lyg: (A4, 2)> (4, %), where ' ={enA'xA’; eeX}). Let x:(C,2)~
— (A, Z)e Mor X and let yp = yy. Then Cy = A’ and hence for the mapping
i :C — A such that ¢y = cp for each c € C there is uly. 4 = x. Let ¢’ € 2'. Then
there exists ¢ € & such that ¢’ = g N A’ x A’. But this means that ¢’u~! = gy~ '€ 2.
Hence p: (C, %) - (4', ') € Mor X, and therefore 1. 4 is a kernel of ¢ and y.

Let A" =0. Then for @: A’ — A it holds 0 : (4', ') = (4, ¥) € Mor X and 0
is a kernel of ¢ and y.

b) We shall show that there exist the products in X. Let (4,, #,)e Ob X, yeT.
Let us denote 4 =[] 4,. If 3 =(...,0,,...) €[] %, (¢,€%,), we denote by ¢

yel

yel
a relation on A such that for each x = (..., x,,...),y = (..., y,, -..) € A (x,, y, € 4,,

y€I) it holds (x, y)eg if and only if (x,, y,) €@, for each y € I'. Evidently, ¢ is
an X-relation on 4. The fact that g arises from g by the above manner, we shall
denote by ¢ <> g. We denote by 2 the set of all relations on A arising from the elements
of [1%,. If ¢® € &, 6 € 4, then we shall write ¢ = () ¢®. Let ¢ & (..., ¢%?, ...),

yer de4

d€ 4. Let us suppose that x = (..., x,, ...), y = (..., »,, ...) € 4 and that (x, y) €.
But this is in the case if and only if for each ye I it is (x,, »,) € ﬂa"’) By the

assumption, %, is closed under intersections, hence () Q“" eX,. Therefore it holds
ded

o= (... ﬂ g(") ...), and so g€ Z. Hence & is also closed with respect to inter-

sections. ‘
Let, in addition, the system (¢®; & € 4) be directed. We shall write t = ) ¢
de4
Then for x = (..., x,, ... = (..., yy,...) it is (x, y) et if and only if (x,, y,) €

el)o!® foreachyer. Indeed for each y € I' it holds that the system (¢!; 6 € 4)
yel

is directed, hence Urg("’ € &,. Therefore 1« (... ,,U e, .., ie.1e k.
Y€ €4

Finally, it is evident that id, < (..., id,,, ...), hence id, € Z. .

Therefore (4, &) € Ob X.

Now, let ¢, : A — A, be the projection for each yeI'. Let yo €I, 1, € X,),. It
holds that t,.¢.,.' contains exactly all ordered pairs ((..., Xyos +-)s (:+v5 Vygs =)
where (x,,, 7,,) € ,,. But this means that 7,,¢,.! € Z, because 7,,¢,,' < ( > Qs ++)s
where ¢, = 4, x A4, for y # y,, and @y, = t,,. Thus @, is a morphism from (A, %)
to (4,, &,) for each yeT.

Lety, : (B,%) - (4,, &,) € Mor X for each y € I. Let us show that the product y
of the mappings ¥, (y € I') is a morphism from (B, %) to (4, %). Let ¢e %, ¢«

S (es0y-0), (B4, by) € qup“ Then (b,¥, by¥) € @, i.e. (by¥,, ba¥,) € &, for each
y€TI.Thus (b, b,) € o,, * for each y € I', hence (b,, b,) € ﬂ oWy L. Since 0,'/’, ey
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for each yer, ﬂ oV, €¥. Let (c;,c,)e ﬂ oy, 1. Then (c1¥ys €2¥) € @, for

eachyerl, therefore (Coors e1¥ys 22, Gy czt/J,, ...)) € o, hence (cy, €2) € ey~ '. Thus

ey ﬂrt’y'/fy €%, and so ¥ € Mor X. But this means that (4, %), ¢,;yeI)
v€ : Co

is the product of the objects (4,, %), ye I

Theorem 13. X is a cocomplete category.

Proof. a) We shall denote the existence of the cokernels in X. Let @, ¥ : (A ) -

— (B, %) e Mor X and let ~ be the smallest equivalence on B containing all ordered
pairs (ag, ay), where a € A. Then the natural morphism v.. : (B, %) = (B/~,%|~)
is a coequalizer of ¢ and .

Let x: (B, %) — (C, %) e Mor X be a coequalizer of ¢ and . Let us consider
the equivalence relation yx ! on B. Evidently ~ < yx~'. Let usdenote by y’ : B/~ —
— B/yx~ ! the natural mapping. Let 7 : B/yx~' — C be a mapping such that byy ™!t =
= by for each be B. Then y = v.x't. Moreover, it is evident that x't € Mor X.
Hence v.. is the cokernel of ¢ and .

b) We shall show that there exist the coproducts in X. Let (4,, %,) € Ob X,

yerl, and let 4 = U A,. (The symbol U means always the disjoint union.) Let
— ver —
Icl, X, =[1%, foe=C(.,0, .-)eZs, 0, €ZX,, then we denote by g such

yel
relation on A that

Q=Ug¢() U A, xA,.
g€l y,e€M\Z
The fact, that g arises from g by this manner, will be denoted by ¢ ~ g. Now, let &'
be the set of all such relations ¢ on A. Further, we shall denote & = Q Zs.
' ICr

It holds # < X,(4). Indeed, let E< T, g = (..., 0, --) € X5, 0o € %, GEL,
¢ ~ p. Then for ae 4,, seZ, itis (a,a)€g,. For ac A,, yeI'\Z, it is (a,a) €
€ A, x A,. Therefore ¢ is reflexive. Further, let Vx, ...V x(o# & ... &, => )
be a quasi-identity from X. Let us suppose that a,, ..., a,€ 4 and that it holds
(@, ..., @), ..., #%(ay, ..., a,). Then the following cases are possible:

1. ay,...,a,€A4,,0€ZX;

2.a.€A4,,...,a,€A4, ,0y,...,0,€\Z.

In the first case it is #{" (a4, .-, @), .., 4% (a4, ..., a,), hence also A (ay, ..., G,).
And since g, € ¢, it holds &° (q,, ..., @,).

Let us suppose that o = A}(x,, x,),r,g€{l, ..., n}. Then in the second case,
(a,,a) € A, xA,, S ¢, thus Sa,, ..., a,).

Therefore @ satnsﬁes all quasi-identities from X.

Let us suppose that ¢®We &, 4. We shall write ¢ = ﬂa"’) Let ¢¥ ~

& (s 0P, ) € Ty, 0P € X, 0 € Z(9) S I'. We shall show that ¢ € &'y, where

X =) Z(9), and that g, = () o\ for each s € Z.
o€l : eeZ(%)
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It is clear that if y,, ¥, € I', then the component of ¢ in 4,, x 4,, is equal to the
intersection of the components of all relations ¢®Xé € 4) in 4, x4,,. If c€Z,
then this intersection on 4, is ¢, = N ¢, and hence (¥, is closed with respect

e ceX(d)
to 1ntersect10ns) 0, €X,. Let 60X, yeI', ¢ # y. Then at least for one 6, € 4 it
holds that the component g in 4, x 4, (in 4, x A4,) is void. Hence also the inter-
section of the components of all g; (6 € A) in A x4, (in 4, xA,) is void.

Finally, let y,, y, € '\Z. Then for each relation g(") e A) it holds that its com-
ponent in 4, X 4,, is equal to 4,, x4,,, and this is equal to the intersection of all
such components.

Therefore, & is closed under intersections. Let, in addition, the system (¢, é € A)

be directed. Let us write t = U 0®. Evidently, for each 7, y, € I', the component
ded
of tin A, x A,, is equal to the union of the components of all relations ¢ (5 € 4)

in A, xA,,. Let us write 2’ = (") Z(8). Let ye I'. If y € Z’, then for each J € 4, the
3€ed
component Q‘f’ of a relation ¢® on 4, is an element of %,. Moreover, from the

directedness of the system (0, § € A) there follows also the directedness of the system

(0P, 6 € 4), hence | J P € &,. If y,, y, € I'\Z', then there exists at least one &, € 4
. ded

such that the component of g@ in 4, x 4,, is equal to A, x A4,,, therefore also the
component of 7 in 4,, X A4,, is equal to 4, xA4,,. Let y, € X', y, € I'. Then the com-
ponent of each ¢ (3 € 4) in 4, x 4,, (in 4,, x A4,,) is void, hence also the component
of 7in 4, xA,, (in 4,,xA,) is void.

Therefore t€ &y, and 1, = () ¢{’X(o € Z'). Finally, it is evident that id, € %,

ceZ(d
hence id, e &. )

Then we have known that (A Z) e Ob X.

Now, we denote by ¢, the embedding of 4, in 4 (yerl). Let e ¥y, Z < T,
0~ (y04, ), 6EL, Q€ X,. If ye\Z, then 09, ' = 4,xA,€%,. If yeZ,
then g, ! = g, € Z,. Therefore ¢, is a morphism from (4,, Z,) to (4, &) for each
yeTI. Let us suppose that y,:(4,,Z,) = (B, Z) € Mor X for each yerl. Let
Y : A > B be the unique mapping such that ¢.¥ = y, for each yerI. If 1e%,
then 7y, 'e &, for each yeT, therefore w™' = (..., 7y, !,...)e Zy. But this
means that ™' e %, hence 7 is a morphism from (4, &) to (B,%). Therefore
(4, %), ¢,; y €I') is the coproduct of (4,, %), yeI.

If the system X contains exactly the identity of reflexivity and the quasi-identity
of transitivity (the identity of reflexivity and the quasi-identities of symmetry and
transitivity), then we shall denote the corresponding category of all x-systems and
all x-morphisms by Q (by C). It holds

Theorem 14. The category C is a reflective, full subcategory of the category Q.
The corresponding reflector preserves and reflects monomorphisms.
Proof. Let (4, 2) € Ob Q. Let us denote by 3 the system of all equivalences on A
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belonging to 2. Let us suppose that g, 3, f € J. Then ,(la,c-z and 1018' is an
equivalence on A4, thereforepols, € 3. Let g€ 3, BeJ, and let’L.)Je, € 3. Then}‘)le,
is evidently symmetric, hence (J e,e@. This implies that if {g,; Be J, gy € 3} is
a directed system, then | ) ¢, ep.@e‘.J And since id, € 2, (4, 2)e Ob C.

peJ
We shall show that C is a reflective subcategory of Q. Let us define a function

which assigns to each (4, 2) € Ob Q the object R((4, 2)) = (4, 2) € Ob C. Further,
let us define a function which assigns to each (4, 2)e Ob Q the mcrphism
Br((4,2) = 1,: (4, 2) > (4, 3) € Mor Q. Let (4, 9) € Ob Q, (B, F) € Ob C,
@:(4, 2) - (B, ) € Mor Q. Let us suppose that g € #, a,, a, € A4, (a;, a,) €
€ 09~ !. Then (a,9, a,¢) € ¢, thus (a,9, a,9) € ¢. Hence (a5, a,) e 0@~ ',i.c.gp ' € 3.
But this means that F¢~ ' < 3, therefore ¢ is also a morphism from (4, o (B, #)
in C. And since 1,. ¢ = ¢, the diagram

(4, 2) —2» (B, #)
DR((4, 2)
R((4, 2)

commutes.

Let ¥ : (4, 3) » (B, #) be a morphism in C for which #x((4, 2)).V¥ = ¢.
But then 1,.¢y = ¢, i.e. ¥ = o.

The corresponding reflector R : Q — C assigns to each morphism ¢ : (4, 2) -
— (A,, 2,) € Mor Q the morphism R(@): (4, 3) - (4,, 3,) e Mor C which as
a mapping of the set 4 to the set 4, is equal to ¢.

The statement concerning the monomorphisms is now trivial.
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