Archivum Mathematicum

Vincent Šoltés

Asymptotic properties of solutions of an n-th order nonlinear differential equation with deviating argument

Archivum Mathematicum, Vol. 17 (1981), No. 1, 59--63

Persistent URL: http://dml.cz/dmlcz/107091

Terms of use:

© Masaryk University, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCH. MATH. 1, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS

XVII: 59-64, 1981

ASYMPTOTIC PROPERTIES OF SOLUTIONS OF AN n-TH ORDER NONLINEAR DIFFERENTIAL EQUATION WITH DEVIATING ARGUMENT

VINCENT ŠOLTES, Kosice
(Received May 28, 1979)

The present paper is devoted to the investigation of an n-th order nonlinear differential equation with deviating argument

$$
\begin{equation*}
\left(r_{n-1}(t)\left(r_{n-2}(t)\left(\ldots\left(r_{2}(t)\left(r_{1}(t) y^{\prime}\right)^{\prime}\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}\right)^{\prime}+a(t) f(y(g(t)))=b(t) \tag{1}
\end{equation*}
$$

where $a(t), b(t), g(t), r_{1}(t), \ldots, r_{n-1}(t)$ are continuous on $\left\langle t_{0}, \infty\right)$ and $f(y)$ on $(-\infty, \infty)$. In [1], sufficient conditions are given for any non-oscillatory solution $y(t)$ of (1) to converge to zero as $t \rightarrow \infty$ (Theorem 3). We shall demonstrate that it is possible to prove this theorem under weaker assumptions. In addition, there will be given further sufficient conditions for a non-oscillatory solution of (1) to converge to zero asymptotically as $t \rightarrow \infty$.

We shall assume throughout that the following conditions are satisfied:
(a) $\lim _{t \rightarrow \infty} g(t)=\infty$;
(b) $y f(y)>0 \quad$ for $y \neq 0$;
(c) $a(t) \geqq 0, r_{i}(t)>0 \quad$ for $i=1, \ldots, n-1$.

Let us introduce the following notation:
(3) () $\quad \varrho_{i}(t)=\int_{t}^{\infty} \frac{\varrho_{i-1}(s)}{r_{i}(s)}-\mathrm{d} s, \quad i=1, \ldots, n-1,\left(\varrho_{0}(t) \equiv 1\right)$:
(b) $\quad \tau_{j}^{(i)}(t)=\int_{i 0}^{t} \frac{\tau_{j-1}^{(i)}(s)}{r_{n-i-j+1}(s)} \mathrm{d} s, \quad i, j=1, \ldots, n-1$.
$2 \leqq i+j \leqq n, \quad\left(\tau_{0}^{(i)} \equiv 1\right) ;$
(c)

$$
G_{0}(t)=y(t), G_{i}(t)=r_{i}(t) G_{i-1}^{\prime}(t), i=1, \ldots, n-1
$$

We shall consider solutions of (1) existing on $\left\langle t_{0}, \infty\right)$.

Theorem 1. Let
(4)

$$
\lim _{t \rightarrow \infty} \tau_{n-i}^{(i)}(t)<\infty \quad \text { for } i=1, \ldots, n-1
$$

If

$$
\left|\int_{t 0}^{\infty} b(t) \mathrm{d} t\right|<\infty
$$

then every non-oscillatory solution $y(t)$ of (1) is bounded on $\left\langle t_{0}, \infty\right)$.
Proof. Let $y(t)$ be a non-oscillatory solution of (1). Suppose that $y(t)>0$ for every $t \geqq t_{1}$. Because of (2a) there exists $t_{2} \geqq t_{1}$ such that $g(t) \geqq t_{1}$ for $t \geqq t_{2}$. Thus $y(g(t))>0$ for every $t \geqq t_{2}$. Using (3c) and integrating (1) from t_{2} to $t \geqq t_{2}$ we get

$$
\begin{equation*}
G_{n-1}(t)-G_{n-1}\left(t_{2}\right)+\int_{i_{2}}^{t} a(s) f(y(g(s))) \mathrm{d} s=\int_{i_{2}}^{t} b(s) \mathrm{d} s \tag{5}
\end{equation*}
$$

Since - because of (2b) and (2c) the first integral of (5) is positive and the second one bounded, there exists a constant $K>0$ such that

$$
G_{n-1}(t)=r_{n-1}(t) G_{n-2}^{\prime}(t) \leqq K \quad \text { for every } t \geqq t_{2}
$$

Dividing the last inequality by $r_{n-1}(t)$ and integrating from t_{2} to t, we get

$$
G_{n-2}(t) \leqq G_{n-2}\left(t_{2}\right)+K \int_{t_{2}}^{t} \frac{1}{r_{n-1}(s)} \mathrm{d} s \leqq G_{n-2}\left(t_{2}\right)+K \tau_{1}^{(1)}(t)
$$

Dividing this by $r_{n-2}(t)$ and integrating from t_{2} to t, we get - using (3b):

$$
G_{n-3}(t) \leqq G_{n-3}\left(t_{2}\right)+G_{n-2}\left(t_{2}\right) \tau_{1}^{(2)}(t)+K \tau_{2}^{(1)}(t) \quad \text { for } t \geqq t_{2}
$$

After $(n-3)$ successive applications of this method we get

$$
\begin{aligned}
G_{0}(t)= & y(t) \leqq G_{0}\left(t_{2}\right)+G_{1}\left(t_{2}\right) \tau_{1}^{(n-1)}(t)+G_{2}\left(t_{2}\right) \tau_{2}^{(n-2)}(t)+\ldots+ \\
& +G_{n-2}\left(t_{2}\right) \tau_{n-2}^{(2)}(t)+K \tau_{n-1}^{(1)}(t) \quad \text { for every } t \geqq t_{2}
\end{aligned}
$$

Owing to the assumption (4) this means that $y(t)$ is bounded.
If $y(t)<0$ for every $t \geqq t_{1}$, the proof is analogous. This completes the proof.
Theorem 2. Let $\lim _{t \rightarrow \infty} \varrho_{i}(t)=0, i=1, \ldots, n-1$, moreover, let (4) and (6) hold,

$$
\begin{equation*}
\liminf _{|y| \rightarrow \infty}|f(y)|>0 \tag{6}
\end{equation*}
$$

If

$$
\int_{t 0}^{\infty} \varrho_{n-1}(t) a(t) \mathrm{d} t=\infty, \quad \int_{t_{0}}^{\infty}|b(t)| \mathrm{d} t<\infty,
$$

then every non-oscillatory solution of (1) converges to zero for $t \rightarrow \infty$.

Proof. Since the hypotheses of Theorem 1 hold, every non-oscillatory solution of (1) is bounded on $\left\langle t_{0}, \infty\right)$. The proof can continue on the same lines as that of Theorem 3 of [1].

Remark. One of the consequences of Theorem 2 is that the condition

$$
\int_{i 0}^{\infty} \frac{\mathrm{d} t}{r_{i}(t)}<\infty \quad \text { for } i=1, \ldots, n-1
$$

in Theorem 3 of [1] can be replaced by a more general condition $\lim _{t \rightarrow \infty} \varrho_{l}(t)=0$, $\lim _{t \rightarrow \infty} \tau_{n-i}^{(i)}(t)<\infty$ for $i=1, \ldots, n-1$.

Example 1. Consider the equations

$$
\begin{equation*}
\left(2 \sqrt{t}\left(t\left(t^{2} y^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}+t^{5} \sqrt{t} y^{3}(t)=\frac{61 \sqrt{t}}{t^{4}}, \quad t>0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(2 \sqrt{t}\left(t\left(t^{2} y^{\prime}\right)^{\prime}\right)^{\prime}\right)^{\prime}+\frac{1}{\sqrt{t}} y^{7}(\beta t)=\beta^{-1} \cdot \frac{\sqrt{t}}{t^{8}}, \quad t>0 \tag{8}
\end{equation*}
$$

where β is a positive constant. In this case

$$
\begin{aligned}
\varrho_{1}(t) & =\frac{1}{t}, \quad \varrho_{2}(t)=\frac{1}{t}, \quad \varrho_{3}(t)=\frac{1}{\sqrt{t}}, \quad \tau_{1}^{(3)}(t)=-\frac{1}{t}+\frac{1}{t_{0}} \\
\tau_{2}^{(2)}(t) & =-\frac{\ln t}{t}+\frac{\ln t_{0}}{t}-\frac{1}{t}+\frac{1}{t_{0}}, \\
\tau_{3}^{(1)}(t) & =-\frac{4}{\sqrt{t}}+\sqrt{t_{0}} \frac{\ln t}{t}-\frac{\sqrt{t_{0}}}{t}+\frac{\sqrt{t_{0}} \ln t_{0}}{t}+\frac{2}{\sqrt{t_{0}}}+\frac{\ln t_{0}}{\sqrt{t_{0}}}-\ln \sqrt{t_{0}}-1
\end{aligned}
$$

Since the hypotheses of Theorem 2 are satisfied, every non-oscillatory solution of (7) and (8) converges to zero as $t \rightarrow \infty$. The equations do have non-oscillatory solutions: $y(t)=t^{-3}$ for (7), $y(t)=t^{-2}$ for (8).

Theorem 3. Suppose that (6) holds and that in addition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \tau_{j}^{(1)}(t)=\infty \quad \text { for } j=1, \ldots, n-1 \tag{9}
\end{equation*}
$$

If

$$
\int_{t_{0}}^{\infty} a(t) \mathrm{d} t=\infty, \quad\left|\int_{t 0}^{\infty} b(t) \mathrm{d} t\right|<\infty,
$$

then, for every non-oscillatory solution of (1),

$$
\underset{t \rightarrow \infty}{\liminf }|y(t)|=0
$$

Proof. Let $y(t)$ be a non-oscillatory solution of (1). Suppose e.g. that $y(g(t))>0$ for $t>t_{1}$, and that liminf $y(t)=c>0$. Then there exists $t_{2} \geqq t_{1}$ such that $y(g(t))>$ $>\frac{c}{2}$ for every $t \geqq t_{2}$. Since $f(y)$ is continuous on $(-\infty, \infty)$ and (2b) and (6) hold, there exists a constant $K>0$ such that $f(y(g(t)))>K$ for every $t \geqq t_{2}$. For every $t \geqq t_{2}$, (1) yields

$$
G_{n-1}^{\prime}(t) \leqq b(t)-K a(t) .
$$

Integrating this from t_{2} to $t \geqq t_{2}$, we get

$$
G_{n-1}(t) \leqq G_{n-1}\left(t_{2}\right)+\int_{t_{2}}^{t} b(s) \mathrm{d} s-K \int_{t_{2}}^{t} a(s) \mathrm{d} s
$$

By hypothesis there exists positive constant A_{1} such that, for every $t \geqq t_{3} \geqq t_{2}$,

$$
G_{n-2}^{\prime}(t) \leqq+A_{1} \frac{1}{r_{n-1}(t)}
$$

Integrating this from t_{3} to $t \geqq t_{3}$, we obtain the relation

$$
\begin{aligned}
& G_{n-2}(t) \leqq G_{n-2}\left(t_{3}\right)-A_{1} \int_{t_{3}}^{t} \frac{1}{r_{n-1}(s)} \mathrm{d} s= \\
& =G_{n-2}\left(t_{3}\right)+A_{1} \int_{i_{0}}^{t_{3}} \frac{1}{r_{n-1}(s)} \mathrm{d} s-A_{1} \tau_{1}^{(1)}(t)
\end{aligned}
$$

Owing to (9), there exists a positive constant A_{2} such that for every $t \geqq t_{4} \geqq t_{3}$,

$$
G_{n-3}^{\prime}(t) \leqq-A_{2} \frac{\tau_{1}^{(1)}(t)}{r_{n-2}(t)}
$$

By successive integrations (and using (9)), we finally obtain

$$
G_{0}(t)=y(t)<-A_{n} \tau_{n-1}^{(1)}(t) \quad \text { for every } t \geqq t_{n+1}
$$

It follows that $y(t) \rightarrow-\infty$ as $t \rightarrow \infty-$, a contradiction. Thus necessarily $\lim _{t \rightarrow \infty} \inf y(t)=$ $=0$.

For $y(t)<0$ the proof is analogous.
This completes the proof.
Example 2. Consider the equation

$$
\begin{equation*}
\left(\sqrt{t}\left(t \sqrt{t} y^{\prime \prime}\right)^{\prime}\right)^{\prime}+t y^{3}(t)=\frac{1}{2 t^{2}}, \quad t>0 \tag{10}
\end{equation*}
$$

In this case $\tau_{1}^{(1)}(t)=2 \sqrt{t}-2 \sqrt{t_{0}}$,

$$
\begin{aligned}
& \tau_{2}^{(1)}(t)=2 \ln t+\frac{4 \sqrt{t_{0}}}{\sqrt{t}}-2 \ln t_{0}-4 \\
& \tau_{3}^{(1)}(t)=\int_{t_{0}}^{t} \frac{\tau_{2}^{(1)}(s)}{r_{1}(s)} \mathrm{d} s=\int_{t_{0}}^{t} \tau_{2}^{(1)}(s) \mathrm{d} s
\end{aligned}
$$

Thus the assumption (9) is satisfied as well as the other hypotheses of Theorem 3. Thus liminf $|y(t)|=0$ for every non-oscillatory solution of (10), which does have $t \rightarrow \infty$
a non-oscillatory solution, namely $y(t)=t^{-1}$.

REFERENCES

[1] Kusano, T.-Onose, H.: Nonoscillation theorems for differential equation with deviating argument, Pacific J. Math., 63 (1976), 185-192.
V. Soltés

04187 Kosice, Švermova 9
Czechoslovakia

