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FUNCTIONS OF THE FORM l/.(x)g.(0 IN L2 
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FRANTIŠEK NEUMAN, Brno 
(Received December 12, 1980) 

We write A = (a, />)x(*y, d) cz R2, the cases a = -ao , /? = oo, y == — oo, and 
S = oo are not excluded. Let 

L2 = {h :AR;$Ah2 < oo}. 
N 

For a fixed positive integer N9 let PN
 : = { ^ L 2 ; k(x91) = ]£/i(x)Si(0}- In this 

< « i 

paper we shall show that for any N, the functions of PN do not provide a good 
approximation in L2. 

Theorem 
For every positive integer N and every positive e, there exists heL2 such that 

II h - k ||L2 > 6 
for all kePN. 

The proof of the theorem will be based on the following observations. 

Proposition 1. Let / and / be arbitrary subsets of R. A function h : / x / -» R 
can be written in the form 

fc(x,0 = £/*(*) g.(0, 
< - - i 

with linearly independent f and gt (i =* 1, ..., N) if and only if the maximum of 
the rank of the matrices ^ 

(k(xi9tj))9 ( /= 1, . . . , ' r ;y - 1, . . . , 0 

is N when xf e /, r, e / , r and 5 being arbitrary integers. 
If the assumption is satisfied, then all such ft and gt can be constructed from k 

in the following way. Let 

( k(xi,ti), ....AríXi.ř^V 

Џ 



be any (fixed) regular n by n matrix, C any regular n by n matrix. Then 

(fi(x), ..,Mx)) . (k(x, /,), ..., k(x, t„)) . C, 

and 

l8l(t)\ i i lk(Xi,t)\ 
\gN(t)) \k(xN,t)J 

for all x e /, / e /. 
Proof was given in [ l ] . 

Proposition 2. To each c e R+ and N e N, there exists a constant N by N matrix 
M = (m^) and a c0 > 0 such that, for every matrix M = (ffiij) satisfying 

I ™ij ~ w f y | < c, 

we have 
det M > c 0. 

Proof. Take an AT by N matrix D = (d0), det Z) == ct > 0. Then, due to the 
continuous dependence of det D on dl7, there exists an e0 such that det D > ct/29 

whenever | 3U - dij\ < e0. 

M -(І*) 
satisfies our requirement, since, if M = (wy) and 

c 
•*, < c , 

— « i j - d  < e 0 -

then 

Hence 

det ( — m y J > cjl, or det (m0) > - ^ * ( y - J = = : c 0 > 0 , q.e.d. 

Let /i denote the Lebesgue measure in R2, ^i be the Lebesgue measure in R. 

Proposition 3. Let S* be a measurable subset of the square (0, a)2 <= R2, (i(S*) > 
> a2 - 82> 0 < 5 < a. Let X « {x 6 R; #i&{>; (A:, 0 e ,5*} £ a - 5}. Then 

liy(X) Za-5. 

Proof. Suppose /it(Jr) < a - 5. Then*i(S*) -* Mi(*). a + (a - M * ) ) . (a - <5) = 
« a2 - 5(a - /^(.JO) ^ a2 - 52, which is a contradiction. Hence ^(.Af) ^ a - 5. 
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Proposition 4. For any e 0 eR + and d2 > 0, there exists a c0 such that, if A, 
k e L2 , Dom A = Dom * => (0, a)2, and || A - k || < s0 then 

/i{(jc, 0 e (0, a)2; | A(x, /) - *(*, 0 | < c0} > a1 - *2. 

Proof. Let c0 = 80/5. If the last relation is not satisfied, then 

/*{(*, 0 e (6, a)2; | h(x9 r) - *(*, 0 | = c0} = 52, 
and 

II h - * ||2 = V{ J (* - *)2} = V{<52 • <*} = *o, 

contrary to our assumption. 
Now, we prove our theorem with given N and e. 
Without loss of generality, let A = [0, a(N + l))2. For l ^ U ^ i V + 1 , 

define 
Sis = {(*> 0; *(' - 1 ) ^ < ai, a(j - 1) £ t < aj}. 

Using the determinant M from Proposition 2 for c = e/5 = ea/(2N)9 define A 
on J\5N+i,iv+i by A(x, r) = m^ for (x, 0 e Su. Consider each StJ cz A\SN+itN+l 

separately. Due to Proposition 4, there exists 

a2 ' a 
SjjcSu, KSfj) > a2 - - — j , ð: = 

(IN)2 ' 2N 

for k € L2, || h — k || < e, so that we have 

| A - k | < c on 5,*. 

Let 
*,,- = {x e (a(/ - 1), ai); f/i.{/; (x, 0 e S*} > f l - 5} 

and 
JM = {t € « ; - 1), aj); / . ,{*; (x, t) e S*} > a - 8} 

for all 1 g i,j £ N + 1, SN+ltN+1 being s*+i,jv+i for this definition. Since 
8 - a/(2JV), for 

AT + l w + i 

we have, from Proposition 3 and de Morgan's rule, 

UtiXf) > all and /..(J,*) > aJ2, i,j £ N + 1. 

Fix x, e A? for 1 £ i ^ JV and *, e Tf for 1 ̂  j g .V. Let x 6 X$+l, t e 7$ + 1 . 
N 

Let it e L2 be also of the form k(x91) = £/*(*) £i(0-
1*1 
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In accordance with Proposition 1, 
A(xi50) 

(1) k(x, 0 - {k(x, tx)9..., k(x, tN)) .K'\.[ 
\k(xN, t)f 

forxeXN
t
+l,teTN

:
+i, 

( k(xi, tt), ...,k(xt, tN)\ 
... 

k(xN,tx), ...,k(xN,tN)f 

Since JC, e X* and tj e T*, we have 

\h(xi,tj)-k(xi,tJ)\ <eal(2N). 

Hence det K > c0 > 0. 
We can conclude that k(x,t), satisfying (1) on XN + ixTN + icz SN+itN+i, is 

expressible as a polynomial of order N + 2 in k(xt, tj), k(x, tj), k(xt, t) divided 
by det K > c0 > 0. 

On X*r +1 x TN + i we also have 

!*(*„*,) - w i y | <ea/(2N), 
\k(x,tj) -mN+itJ\ <ea/(2N) 

and 
l * ( * i , 0 - " t i . N + i l <^/(2N). 

Hence ifc(x,0eL2 is bounded on the set zl* : = X%+1 x J*,+1 with JI(-4*) ^ 
;> a2/4 > 0: A:(;c, 0 < i , where L depends upon h on A\SN + ltN+i (i.e. upon m,7, 
but not upon mN+itN+i), and upon 6 and N. However, h is not defined on 
SW+i.tf+i yet. If *(*) := * here, 6 being a constant, b> L + 4e/a2, h remains in 
the class L 2 , nothing from our construction is changed and 

II h - k nL2 ^ V ( J (h - * ) 2 } - ll * - * I I L ^ * ^ 

J* 

fe I II A IIWJ* - II * WU/A* I *- I *M0«*) ~ M-4*) I > C a contradiction Q.E.D. 
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