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ARCH. MATH. 2, SCRIPTA FAC SCL NAT. UJEP BRUNENSIS 
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SOME RESULTS ON THE OSCILLATORY 
AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS 

OF NONLINEAR DELAY DIFFERENTIAL 
INEQUALITIES 

PAVOL MARUSlAK, Zilina 
(Received December 5, 1980) 

We consider the following nonlinear delay differential inequality 

(r) {(r__.(0 (...(r2(0 (r,(t) /«))')' . . . ) ' + p(0f0>(0, y[h(tj])} sgn y[h{t)] __ 0, 

where n _£ 2. 
The following conditions are always assumed: 
(i) rf 6 C[<0, oo), (0, oo)], i - 1, 2 , . . . , n - 1, 
(ii) h e C[<0, oo), R\, h(t) £ t for t ^ 0 and lim h(t) = oo, 

«-*oo 

(iii) p e C[<0, oo), <0, oo)] and p is not identically zero in any neighborhood 
O(oo)9 

(iv) fe C[R2, R], yf(x, y) > 0 for xy > 0 and nondecreasing in x(> 0), y(> 0). 
We introduce the notation: 
(Dt) D°(y) = y, Dl(y; r,) = r , / , Dl(y; rl9..., rt) = rl(D ,-1(y; r1 ? . . . , rf_,))', 

i = 2, 3, ..., n, with r„ = 1. 
Moreover, if Dl(y; r1 ? . . . , r*) is defined as a continuous function on <r, oo),. 

then the function y is said to be /-times continuously r-differentiable on <T, oo). 
Then in view of (Dx) we can rewrite the inequality (r) as follows: 

{Dn(y;rl9...9rn„l9 I) (t) + p(t)f(y(t),y[h(t)])} sgn y[h(t)]£0; 

(D2) fit) = max {rfc): t/2 £ s S t}, i = 1, 2, ..., n - 1, *//) = max {f/s): 
I/2""-*"1 g s ^ r}, where j e { l , . . . ,n - 1}; 

s»~- ds 
1 ^ — / 7 1 x ds,-2 . . .ds i , i = 1,2, ... ,n - 1, 

w 



Io = 1, 

* 1 
h(U t0, rik$..., rh) = J —j-r- Ik-.x(s, t0f rik_t, ...9rh)ds9 

to rik\s) 

i k e { l , 2 , . . . , « - 1}, fee {1,2, . . . , n - 1}, 

(£>3) y(/) = sup {s ^ 0; h(s) < /} for t ^ 0. 
Denote by W the set of all solutions y(t) of (r) which exist on a ray <t0, oo) c= 

c <0, oo) and satisfy 

sup{|j?C?) \:s *z t} > 0 
for every t = t0. 

A solution X 0 e W is called oscillatory if it has arbitrarily large zeros. Otherwise 
the solution y(t) e W is called nonoscillatory. 

Definition 1. We shall say that the inequality (r) has the property A, if every 
solution y(t) e W is oscillatory for n even, while for n odd is either oscillatory or 
\Di(y;rl,...,ri)(t)\]r0as ff oo ( /=-0 , 1, . . . , it - 1). 

Definition 2. We shall say that the inequality (r) has the property A0, if every 
solution y(t)eW is either oscillatory or | Di(y; r t , . . . , rt) (t) \ j 0 as t f oo 
(/ = 0, l , . . . ,w - 2). 

In this paper we shall prove sufficient conditions for the inequality (r) to have 
either the property A or A0. The oscillatory properties of solutions of functional 
differential equations of n-th order, involving general differential operators of the 
form (DL) are studied for example in [3, 4, 6 — 9]. 

To obtain our results, we shall need the following lemmas which are extensions 
of two lemmas due to Kiguradze [ l ] , [2]. 

Lemma 1. Let rt: < J 0 , oo) -+ (0, oo), / = 1,..., k be continuous functions and 

(1) I ^ = a ) > i = l,2,...,fc-l. 
r i W 

Let w(# 0) be fc-times continuous r-differentiable function on <J 0 , oo). If 

(2) Su{t) D\u\ r t , . . . , rk) (t) = 0, (S = ±1) for / = T0t 

and not identically zero in any neighborhood O(oo), then there exists an integer 
/ € {0, 1 , . . . , k}9 with k + / odd (even) if 8 = 1(S = - 1 ) and a t0 > T0 such that 

(3) u(t)DP(u;fl9...,ri)(t) > 0 on </0, oo) for / = 0, 1 , . . . , / , 

(A)(-l)l+iu(t)Di(u;ri,..9.ri)(t)>0 on </0, oo) for / = / + 1 , . . . , k - 1, 

This Lemma generalizes the well-known lemma of Kiguradze [1] and can be 
proved similarly. 

Lemma 2. Let rt: < r 0 , oo) -* (0, oo), i = 1 , . . . , n — 1 be continuous func
tions and 

*?8 



(5) J - A . = 00, *» 1,2, . . . , « - 2 . 

Let u(=f=0) be an n — 1-times continuously r-differentiable function on the interval 
<F0, oo). If for every t ^ F0, 

(6) « ( / ) i ) B - l ( « ; r 1 , . , . , r f l _ 1 ) ( 0 > 0 , 

(7) u(t)Dn(u;ru...9rn_l,l)(t)S0 

and not identically zero on any neighborhood O(oo), then there exist t0 *z T0 

and an integer Ie {0, 1 , . . . , n — 1}, n + / odd, such that (3), 

(4') (-l)l + iu(t)Di(u;rl9...9ri)(t) > 0 on < l0 , oo) 
for / = = / + 1 , . . . , / ! — 1 . 

hold, and 

(8) I D X u ; ^ , . . . , ^ ^ / ^ - ^ 1 ) ! ^ 

| íУ- 1 (и;г 1 , . . . ,г.- 1 )(0[ , _ , ^ ,„_,_,., 
^-,(0řn-2(í/2)...r- i+1(ř/2''-г-2) 

> a / - ' - 1 ^ _____________J_^ for f >. 2"-'-1.0, 

where 
2-(и-ř-l ) 3 /2 

fli = (n - ,' - 1)! ' i = U + l , . . . , » i - l . 

w i-rtc-. '»wi-(_)'" ' ' p < , ' , -;-; ' J ( ; 
W ( l - l ) l ' i . i « ) - ' i ( 

(10) |D i(u;r 1,. . .,r i)(OI-.A 

"><__. 
0) 

for í ;> 2г*0, / = 0, 1 , . . . , / - 1, 

ť-'- l |->"~1(и;r1,...,r__1)(OI 
f„.l(f)řn-г(tl2)... wir-1-1)... ľí+.Cí/г--1-1) 

2-(я-D(п2 + l) 

[(» - D _а 
f o r . ^ 2 " " 1 ^ , where -4 = — _T7T~' * « 0,1,...,/. 

Proof. By Lemma 1 in view of (6), there exist t0 g> r 0 and an integer /, /e 
e (0, 1,..., n - 1}, with / 4- n - 1 even such that (3) and (4') hold. 

Without loos of generality, we assume that u(t) > 0 for every t g> t0„ Next 
by virtue of (4') and (7) we obtain 

r y i - 2 . . „ r U / m > \ Dn~t(u;ri9...,rn„2)(s)ds 

-D (M, r l 5 ..., rn.2)(tjl) *> J -r-r g 
f/2 r

n __\S7 

^ D^Hw; r1 ?.... r.-O (0 /„_,(*, */2, r.-O, f £ 2t0, 
n - ^ . , r U#/_t_> f -P""^^!-"• ,r , -a)(*/2)dg D (u, r1? ...,rll__3)(f/4) ^ - J ^-— j -r^r j> 

f/2 zrn-2\slz) 

£ y D " - 1 ^ ; rl5 ..., ^ . 0 ( 0 ^ - 2 0 , */2, rw_2, r ^ ) , . _> 4r0, 
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( - i r " - 1 D , ( « ; r . , . . . , r l ) ( f / 2 " - , - l ) £ 

s (-1)"-'" r •O í + 1 (« ;r 1 , - , r ( + 1 ) ( s /2"- ' - 2 )ds ^ 

- 2"-'"2 ,/J2 r l+1(s/2"-'-a) 

= ~ < ^ i - W D "~' ( u ; r»« - ' r »- i ) (0 •/,+.(', t/2, r j+1 , . . . , r . - , ) , 

/ ^ 2 " - ' - 1 / 0 , i ^ / . 

From the last inequalities we get 

o.) ( - i r ' ^ ; , , ; . . . , ^ ^ 1 ) - ^ ; ; ^ x 
' / - s x l 7 ^ T ^ 7 J ' + 3(s' + 2.t/2, ri + 3 , . . . , r . _ 1 ) d s i + 2 ^ ... ̂  

</2 r i+2(s i + 2/2" ' 3) 

g"- 1 (« ;r l , . . . , r . - 1 ) (Q [ (/ - s)"-'-2 

= 2<"-'-1>^r-,.+ 1(//2"- i-2) ... r._ .(0 </J2 ( » - i - 2)! ' 

for / £ 2"- ' - 1 / 0 , i = l,..., » - 1. 

The inequality (8) follows from (11). 
Next, in view of (3) and (4') we have 

tf-Vг, г м ) ( 0 _ | D(u;r Гl)(s)ásŁ 

t r.*V 

__-!__ 
Ю Г < ( S ) 

ЬDl(u;rì9...9rl)(t)Ii(t9t09r,)9 

t rлl-lґ 
/>'-(„; r l f .... r,_a)(0 = J ^>" ( » ^ t , .... r . - ^ ^ 

fo ^ i - l W 

^ D\u;rl9 ...9rl)(t)I2(t9t09rl^l9 r,), 

-*«,r.,...,r,.)(o^ j D ' ( B ; r

r"-;;; r ," ) ( , )d,_. 
r0

 ri+lW 

_: 2>'(K; rj,..., r,) (/) /,_,(/, t0,ri+i,..., r,), 

for i = 0, 1,...,/- 1, / ̂  2/0. 

The last inequality implies (9). 
If we put //2"-'- 1 in place of / in (9) and use the monotonicity of the function 

/ > ' ( « ; r 1 , . . . , r l ) ( f ) > w e 0 btai n 

(12) D\u; r.,.... r() (/) _: D'(«; r.,..., r-) (//2"-'"1) £ 

^ t'-' D ' ^ ; ^ , . . . ^ , ) ^ ^ " - ' - 1 ) 

- (2»-<)'-. ( / _ 0!r- i+1(//2"-'-1) ... f.0/2"-'-1) ' 

Combining ( l 2 ) w i t h ( 8) f o r ,- = /? w e g e t (10) 
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Remark. If we use (D2), the inequality (10) can be rewritten to the following 
form: 

(10') \l*uirl,...trd{t)\±A ^ " ' ( " i ^ - ^ - i ) W I , . - . - . 

for t ^ 2B_1;0, i = 0, 1 /. 

Further, we assume that 

(13) | _ ^ L = o o , i = U » - 2 
riV) 

holds. 

Lemma 3. Let (i)-(iv), (13) hold. 
a) If 

00 At 
(,4) '-do—• 
then conditions (6) and (7) are satisfied for every nonoscillatory solution y(t) e W 
of (r). 

b) If for every T ^ f0 

t 

• Jp(-)ds 
(15) | X _ _ ^ d r = oo, 

then conditions (6) and (7) hold for every nonoscillatory solution y(t) of (r) with 
lim y(t) 7- 0. 
t-*co 

Proof. Let y(t) be a nonoscillatory solution of (r). Without loss of generality 
we suppose that y(t) > 0 for every t ^ t0, since the substitution y = — w transforms 
(r) into an equation of the same form subject to similar assumptions. 

Next by (ii) there exists a tt ^ t0 such that y[/*(0] > 0 f° r every t ^ 'i • Thus 
from (r), in view of (iv) we have 

(16) (Dn~Hy; rl9..., r . . t ) (0)' = ~P(0/(y(0,y[/*(0]) £ 0, r 2s r,. 

Moreover, since />(*) is not identically zero in any neighborhood O(oo), 
the same holds for (Dn~i(y; rl9 ..., rn-.t) (t))' and cojisenquently either 
JP-i(y;rl9...9rm-1)(t)>09 or Dn-l(y; rl9..,, r ^ ) (0 < 0 for all large (t). 

We shall prove that the last assumption cannot hold in both cases, provided 
that in case b) we have lim y(t) # 0 as t — oo. 

a) We assume that for some t2 £j t1 we have 

Dn~x(y\rl9 ...9rn^)(t2) ^ K <0. 

The inequality (16) yields 

Dn-i(y;rl9...9rn.l)(t)^Dn-\y;rl9...9r^1)(t2)^K<09 t £ t2, 
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and consenquently 

(D"-Hy; r.,.... r„_2)(0)' _s r"- l (^K = - % • 

Integrating the last inequality from r2 to t (t2 ^ t), we obtain 

D»-2(y; rl9 ..., _•„___) (0 g DM"2(y; rx, ..., rn_2)(r2) + Kt J —-* 
r2

 r n - l W 
Then, in view of (14), we have 

limDn-2(j! ;r1 , . . . ,rn_2)(0= -oo, 
r->oo 

which contradicts the positivity of y. This contradiction proves the case a). 
To prove b) we remark that the assumption lim y(t) > 0 implies the existence 

f-+oo 

of a constant L > 0 and t3 ^ t2 such that y(t) ^ L, y[h(0] __; £ f° r every t ^ f 3 . 
Then by (iv) we have 

j(y(0, y[/*(0]) ^ / (£, L) = M > 0 for / £ r3 • 

This, by (r), leads to the inequality 

(D"-'0>; r,, ..., r.-O (/))' ^ MF(0 for / £ /3. 

Integrating the last inequality from T (T |> t3) to /, we get 

Dn"1(y ;r1 , . . . ,rn_1)(0_i - M j p W d s , ^ T, 
r 

and consenquently 

{D«-\y; r., .... r,_a)(0)' _i —----- }p(s)ds. 
r n - l W T 

Integrating again from T to t (^ 7), with regard to (15) we have 

l im/)n"2(^;r1 , . . . , r l t_2)(0= -co , 
f-+00 

which contradicts the positivity of y. 
The proof of Lemma 3 is complete. 

Theorem 1. Suppose that (i), (iii), (iv), (13) are satisfied and, in addition, suppose 
that 

(v) h € C*[<0, oo), R], h(t) _i t, h'(t) £ 0 for t^ 0, lim h(0 = oo, 
f-*oo 

07) ^7 (M)- < 0 0 -
If 

08) 1P(0J4—S-di-oo, 
T r A n- i ( s ) 
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for every T :y(T) ^ r0, then 
a) under the condition (14) the inequality (r) has the property A. 
P) under the condition (15) the inequality (r) has the property A0. 
Proof. Let y be a nonoscillatory solution of (r) with limj>(0 # 0. Without loss 

of generality we assume that y[h(0] > 0 for t _> .j ^ t0. From this, by (r) and 
(i), (iii) it follows that 

(B i"1(y;ri V i ) ( 0 ) ' S 0 for t£tt. 

This last function is not identically zero in any neighborhood O(oo). Now, under 
the one of the conditions (14), (15) we have by Lemma 3 

&l-l(y;ri,...,rH-i)(t)>0 for t ^ t2 i> tt. 

By Lemma 1 there exists a r3 ^ t2 such that either 

Dl(y; r,) (t) > 0, or D\y; rx) (t) < 0 for t £ *3, 

Further we shall use the analogous method as in the proof of Theorem 1 in [10]. 

Case 1. Let Dl(y; r,) (t) > 0 on <t3, co). Let z be the function defined by the 
formula 

n<n * * - ir-Uv-T r utU lh(s)T"2hf(s)ds 
(19) z(t)=--D (y9ri9 . ..,rB__)(0 J -~ • • — , * _> f3. 

;, R„-i[/i(s)]/(Ks)>y[Ks)]) 
We obviously have 

(20) z(0 ^ 0 on <*3, oo). 
From (19), in view of (r) we get 

-TO _ K O / W 0 . .WO]) J p r ^ i ^ w t , . ^ ^ ~ 
_ -_-_[*(*)]/(K*)..vW-.]) 

D"-1(.;r1 , . . . ,r_.1)(t)[A(»)]-a*'(0 
«.-i[*(0]/0<0,.y[A(0]) 

Since the function/, y are nondecreasing and £y~1(y;ri,...,r„_i)is nonincreasing, 
we have 

_ ff"1^' r-» - . r -o wo)[fe(or Mo for, k , 
-ViW0]/GW0],.v[*(0_) - 3-

Thus applying (10') for i — 1, u = y, h(t) in place of t and using i_[A(0] _ 
g _!_A(0]» w e obtain 

zX0 j . K 0 } J________Lds _ l #<y.\___(«„__<___ _ 
„ _„-.[/.(*)] _ __W0]/(y[*(0_,>_*(0])~ 
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^ . . / w x"~2 , i y'[*(0]*'(0 r ^ ^ 

Integrating the last inequality from /4 to / ( = /4) and taking into account (17) and 
(18), we obtain lim2(/) = oo, which contradicts (20). 

f~»00 

Case 2. Let Dl(y; rx) (t) < 0 on </3, oo). Let w be the function defined by the 
formula 

(2D ^ - n ; r , u w i - S S - - , <*t3. 
t3

 Kn-lL"Wj 

We obviously have 
(22) w(t) = 0 on </3, oo). 

From (21), in view of (r) and the monotonicity of Dn~1(y; ri9..., r„_t), we have 

(23) w'(0 = P(t)Hy(0, yWtWJ " ^ " " ^ f ds ~ 

g"~ ' ( j ' ; r 1 , - ,^- 1 ) ( / t (0)[h (or~ 2 l i ' (0 
*.-l[*(0] 

Moreover, since y[h(0] > 0 for / g; /3, there exists a positive constant C such 
that 

/(y(0,y[/*(0]) = C for / = /3. 

From (23), by applying (8) with / = 0, / = 1, h(t) in place of / and using 
r^KtW2-] = *i[*(0], we get 

u^s, , w *n~2 dx /[*(0/2""2] *'(0 w'(0 = Cp(t) J - — j — + yL-"n ~ for t = /4. 

Integrating the last inequality from /4 to / ( = /4), by (18) and the fact that the 
solution y is bounded, we obtain lim w(t) = oo, which contradicts (22). 

f-»oo 

We have just proved that for every nonoscillatory solution y of (r) lim y(t) = 0 
t-*oo 

and y(/)y'(0 < 0 f° r aU large t. If condition (14) is satisfied, then by Lemma 3 
and Lemma 2 n must be odd. 

Moreover, as it is easy to see, lim y(t) = 0 implies that 
t*-+oo 

in a) | Df(y; rx , . . . , rt) (/) | | 0 as / f oo for / = 0, 1,.. . , n - 1, and 
in P) \Di(y;r1,...,ri)(t)\ JO as / f oo for / = 0, l , . . . ,n - 2. 

Remark. If the functions r, (/ = 1, 2 , . . . , n — 1) are nondecreasing, then the 
condition (18) can be replaced by 

Hi) s*~2 

JJKO f —r-. r v d s = ac-
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Theorem 2. Let the conditions (i)—(iv) (13) be satisfied. Let 

(24) | f(g(t) u, g(t) v) | £ G(g(t)) | f(u, v) | for u . v > 0, 

where g e C[(0, oo),*(0, K)], G e C[(0, K), (0, oo)] and 

* ds 

' oJG(5)<CO-
If 

then a) under the condition (14) the inequality (r) has the property A. 
P) under the condition (15) the inequality (r) has the property A0. 

Proof. Let y{i) be a nonoscillatory solution of (r) with lim y{t) # 0. We assume, 
f-*QO 

without loss of generality that 

(26) l im;K0>0. 
t->oo 

Then, in view of (ii), we can choose tt such that y[h(0] > 0 for evefV t j> tx. 
Similarly as in the proof of Theorem 1 we have Dn~l{y\ r1 ? . . . , r ^ J (0 :> 0 for 
* ^ t2 =.ti- Then by using Lemma 2 for w = j , from (8) with i = / == 0 and 
from (10') with i = 0 < /, we get 

- i D л _ 1 ( y ; r 1 , . . . , r ř l _ 1 ) ( 0 , ^ , . - 1 , 
3 (27) y{tl2n-1) £ a0f~

l " v / , ; i , , ; i , ' - 1 / w , * fc -2- l t0 = * 

and 

(28) J K O - . ^ - - ^ ' ^ ^ - ^ - - ^ ^ , «fcr3. 

Integrating (r) from r (^ tx) to oo, we obtain 

(29) GO >D" - 1 (y ; r 1 , . . . , r M _ 1 ) ( t )^ *(0, * £ ' i , 
oo 

where $(0 = J p(s)f(y(s), ylh(s)])ds. 
t 

Then, with regard to the monotonicity of Dn~"i{y; ri9..., rn^.x)9 We have 

(29') Dn^{y; ri9..., rn„x) {h(t)) £ #(0 for evefy / £It « y^ ) . 

I. Let / e (1, 2 , . . . , n - 1}. Then (28) and 

(28') y[K0] ^ A[f t (0r 1 D" 1 ( y R ; : ; [ ^ l ) ( W ) » ' f e ' * * * s ) 

hold. 
From (28) or (28'), in view of (29) or (29'), we get, 
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n~í 

(30) ť~lФ(û 
y(0 __ A ——-£f for ř £ T = max {/_, r4}, 

or 
l n - 1 

(30') J O ( 0 ] __ -4 [ t ( 0 ] B r ^Ai 0 f o r t = T> respectively. 

In view of the monotonicity of the function/, (30), (30') and (24) we have 

^'i&s-mk)-
Multiplying both sides of (31) by p(t)/G(A<P(t)) and then integrating from Fto /, 

we obtain 

_ _ f ______d = 1 C ( T r ) ) dM < — 1 ~^~ 
\ G(A<P(s)) $ " A CUL,) G(«) = A I G(u) < °°* 

which contradicts (25). 
II. Let / = 0. Then (27) implies with regard to (26) 

y(t) _ y(tl j<_/2--) _ M0t->
 D"~1(y; »">• - • » ' - t ) « 

Kt/2"-1) . *-- i(0 

where M0 = inf < — , >a0. 
. - .olK*/-" - 1)] 

Further, using the analogous method as in the case I, we get a contradiction 
with (25). 

If (14) holds and / __ 1, then in view of (3), (26) is fulfilled. In all other cases 
(i.e. either (14) holds and / = 0, or (15) holds and / i> 0) we have to assume that (26) 
is satisfied. But, as shown above, this leads to a contradiction with (25). Then 
lim y(t) = 0 for every nonoscillatory solution y(i) e W. Hence it follows that in 
* - * o o 

a) \D\y\rl9 ...,r___)(0l \ 0 as t f oo, i = 0, 1,... , n - 1, and in 

P) \Dl(y;ri9...,rH-l)(t)\iO*sttao9i = 0,l9...9n--2. 

The proof of Theorem 2 is complete. 
Theorem 2 is extension of Theorem 1 in [5]. 
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