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ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XVIII: 205—218,1982 

ANOTHER APPROACH TO THE CLASSICAL 
CALCULUS OF VARIATIONS 

JAN CHRASTINA, Brno 

(Received November 15,1981) 

L Lagrange problem 

With a very few exceptions, a prevalent number of recent investigations devoted 
to geometric theory of the classical calculus of variations deals with the multiple 
integral problem under the fixed boundary condition. It seems that the true reason 
for this innatural limitation lies in an inappropriate setting of other classical 
problems, where the geometric content is suppressed by a hard analysis from the 
very beginning. We can remind the Lagrange problem as the most instructive 
example: Using the common approach, one must impose very strong, cumbersome, 
and for the most part unverifiable assumptions, compare [1]. 

Our aim is to outline a modified approach to all these topics which is equivalent 
to the classical one in all favourable cases but operates in full generality as well 
Of course, the true difficulties cannot be completely removed, but they appear 
gradually and acquire the much more simple linear character. Roughly speaking, 
the difference consists in employing the "virtual variations'* instead of the "actual" 
ones, the setting inspired by the famous D'Alambert principle from dynamics. 
We shall also use the current calculus of differential forms in a large extent together 
with certain elements of functional analysis and distribution theory on vector 
bundles. 

The main results of the present paper were derived in the year 1979* and were 
explained in a session of the Seminar on the calculus of variations in Brno, see 
also [2]. I wish to express my gratitude to D. Krupka, the leader of the Seminar, 
for his helpful and stimulating criticism, and to I. KoliF for his kind interest. 

1. The common approach. Let Fbe a manifold (we admit an infinite-dimensional 
Frechet manifold here). A tangent vector Zp of Fat a pointy e Fmay be determined 
by its action on an arbitrary ftinction Fe CW(V) (the space of all C^-smooth 
functions on V): 

nm-m ZJЄ = lim 
л-*o 
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where p(X), — e < X < e9 e > 0, is an arbitrary C°°-smooth one-parameter family 
of points p(X) e V with/KO) -= />. (We shall say that the mentioned family is related 
with the vector Zp.) Usually, the tangent cone of a subset P c V at a point p e P 
is defined as the set of all such tangent vectors Zp for which the related family p(X) 
exists with the property p(X)eP, —« < X < e. And the point peP is called 
P-critical point of a function F e C°°(F), if ZpF = 0 is true for all tangent vectors Zp 

from this tangent cone. 
It might be not easy to operate with the above families p(X) e P, and even to 

prove xtheir existence. This unhappy state does not change for better even in the 
nice and frequent case when the subset P is a level set of a C°°-smooth mapping 
G : V -> W, where Wis an auxiliary manifold.(That means, the set P consists of 
all peV which satisfy an equation G(p) = w, we W is a fixed vector.) A typical 
example follows: 

Let V =-= C^Py* be the space of all C^-smooth Revalued functions p(x), 
x = (JC1, ..., xn), defined in an open domain P c Rn. Endowed by its natural 
topology, V is a Frechet space and hence a manifold. Let P cV bt the subset 
consisting of all C°°-smooth solutions of a C°°-smooth system of partial differential 
equations Gt(x,p, ...,dmp/dx*9...) = 0 (i = 1,..., c, I « ( i t , . . . , ik), it, ..., ik = 
« 1, ..., n, fc a 0,1, ...). Clearly, P is a level set of the mapping G : V -• ftV = 
* C°°(P)C, G = (Glf ...,GC), namely P == G""1^). However, we cannot say 
anything more about the existence of any family p(X)e P, p(X) =£ p and, conse
quently, about the existence of a non-zero vector in the tangent cone of P at 
a given point peP. 

2. The modified approach. We retain the subset P to be a level set of the above 
mapping G, and we look for such tangent vectors Zpatpe P which surely do not 
touch P. They may be characterized by the inequality dG(Zp) # 0, or, if we wish 
to eliminate the tangent mapping dG, by the more elementary inequality ( d G ^ ) =-) 

A->0 X 

where p(X) e V is a family related with Zp. Now, the other tangent vectors at p 
will be automatically counted in the new tangent cone. As a result, the modified 
tangent cone of P at the point pe Pis identified with the null-space of the mapping 
dG at p. This result suggests the following fundamental 

3. Definition. Let G: V -* W be a smooth mapping between manifolds V9 W. 
The point p e V is called a G-critical point of a function Fe Cm(V), if dF(Zp) = 0 
for all tangent vectors Zp of V at p with the property dG(Zp) -= 0. This may be 
expressed by more elementary t^rms, as follows: A G-critical point p e V is chara
cterised by the implication: 
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(1) if to * ( * ' » • < * * > , ft then l i m ^ ^ ) ) - ^ ) , Q , 
a-»o * A-*O A 

for every C°°-smooth family of points p(X) e F, ~ e < X < e, e > 0, with p(0) -» ^ . 
It can be seen tha t bo th ment ioned approaches are equivalent provided a suf

ficiently powerfull implicite function theorem for the mapping G is t rue. We shall 
no t deal, however, with such, generalities. Instead of thajt we intend to consider 
certain concrete applications of the new approach in the field of the classical 
calculus of variations. Here , the manifold V appears as an infinite-dimensional 
manifold of mappings, the point p e P is realized as a mapping p ; P -* M be-

. tween the given (finite-dimensional) manifolds P, M. However, since a rigorous 
theory of such manifolds is not simple, we shall avoid any ment ioning it and the 
preceding Sections will be considered as a merely motive for the following develop
ment . Fortunately, the crucial concept of the Cr-critieal point is qui te clear, owing 
to (1). As far as the terminology is concerned, functions FBC°°(V) are called 
functionals, tangent vectors Zp are known under the name variations (of the map
ping p), and the critical points p are usually called extremals. 

4. Setting the problem. We shall operate in real domain and besides the explicitly 
stated exceptions, with C°°-smooth maps between C°°-smooth and finite-dimensional 
manifolds. We shall also freely employ locally-finite and countable coverings by 
coordinate systems, par t i t ions of unity, non-vanishing densities, and other nice 
objects. 

Thus , let P be an /i-dimensional compact and oriented manifold with boundary Q 
(which may be empty). We shall denote by 3 : Q -* JP the natura l inclusion of the 
boundary. Let M be a manifold, a1 , ...,ac,fjl

9..., p*f <p, \}t be certain exterior 
differential forms on M. We admi t also 0-forms (i.e. functions) and it may be 
c = 0 or d = 0 ; q> is an fi-form, \j/ is an (n - l ) -form. 

Let V be the space of all embeddings p :P ~* M, with the natural topology (of 
uniform convergence with every finite number of derivatives calculated in appro
pr ia te local coordinate systems on P and M ) , and q*=pod:Q-+Mbc the 
mapping p restricted to the boundary. Let P be the subspace of V consisting of all 
peVwhich satisfy 

(2) p*oil = ... = p*ac m 0, 

(3) q*pl - ' . . . - q*fi*•- 0. 

(The asterisks mean the pull-back of forms.) Now, P will be represented as a level 
set: 

Denote by ?l the C°°(M)-module of all exterior differential «-forms from the 
ideal of exterior forms generated by a1,..., a*. (In other words, 91 consists of all 
n-forms a representable as a ** Eay A ys

9 for certain yJ.) The system (2) is equivalent 
to the condition p*a s 0 ( a e 91), see [3] p. 26. And, by using the "Fundamental 
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lemma of the calculus of variations", the last condition is equivalent to J/>*a s 0 
p 

(a € tl). Analogously, denote by -8 theC°°(M)-module of all exterior differential 
(n — Informs contained in the ideal of exterior forms with generators f$l

9..., fpm 

Then the system (3) is equivalent to the condition J q*P s 0 (ft e S). Introduce 
Q 

the linear topological space 

the direct product of real axes R indexed by all couples (a, jt?), where a e 91, j? € S. 
Let G : IV -* PF be the mapping determined by the components 

W M - J **«+ /«*-*• 

It is a consequence of the above equivalences that P is a level set of this mapping: 
It consists of all points p e V with the property G(p) = 0. 

At last, let F be the functional on V, where 

(4) *(P)-J|^-+J«V-
P Q 

Following the line of the Section 3, an embedding/? 6 Fis called a G-criticalpoint 
of the functional F9 if the implication (1) is true for every C00 -smooth family p(k) e F, 
- e < X < e, e > 0, with p(0) == p. 

The Lagrange problem consists in investigating the mentioned G-critical points. 
It is determined by the data P9 M9 St, <p, -B, ^ and will be denoted by 
X0>(P9 M9 % q>9 93, ̂ ), briefly &&. 

5. Notice. Another level maps can also be used, instead of G We mention the 
most natural example here: Denote by CQ0(AF*P), C°°(Ar*6), the space of all 
exterior differential forms on P9 Q9 respectively. Let 

W' = (C°°(A T*P))C © (C°°(A T*Q))d
9 

and let the mapping G': V -• FF' be given by 

G'(p) ~ (j?V © ... © z>*ac) © (^JS1 © ... © ?*/5d). 

Then the equations (2), (3) exactly mean that P is a level set of the mapping <?'. 
However, it may be easily proved that a point pe V is ^-critical if and only if it is 
C-criticaL 

6. Theorem. An embedding pe V is a G-critical point ofF if and only if for every 
vector field Z on M there exist forms ot e 91, $ e & satisfying 

(5) \p*Z ^d((p~a)+jq*Z-t(<p--& + d(ilt--p))**0. 
P Q 
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Proof: Letp(X) eVbe one of the above families withp(0) •». p. For every point 
t eP9 we obtain a tangent vector Zp{t) e TpWM (the tangent space of M at thl 
point pit))* where 

V s l i m M ! » i M (/6C«(M)). 
A-*0 ** 

Then, using the common technique of partitions of unity, local coordinate systems, 
and the fact that p is an embedding of a compact manifold, one can prove the 
existence of a vector field Z on M with the property Zp(t) m Zp(t) (t e P). (In other 
words, the vector field Z' along the subset pP a M is extended into a vector field Z 
defined on all M.) 

Conversely, every vector field Z on M may be obtained from an appropriate 
family p(X) following the mentioned procedure. 

We may employ the Lie derivative operator J? z . Using the well-known identities 

p(X)* C = JP*C + Xp*^^ + higher order terms in A, 

q(X)* C = q*£ + %q*&z£ + higher order terms in A, 

.S?ZC = Z-i dC+ dZ- i C, 

Jp*dC = J^*C, 
P Q 

(C is an exterior form on M), one can easily see that 

A-*0 >* P Q 

» J p*Z -J d<p + J «*Z -J (<p + d f̂), 
P Q 

A-*O * p a 

=- J p*Z -J da + J q*Z -i (a + dj8). 

Thus, introducing the brief notation 

( Z | C ) = J p * Z ^ C , [ Z | C W € * Z - J C , 
P Q 

we may express that p is a G-critical point of F if and only if 

(6) (Z|d<p) + [Z|<p + d£] = 0 

for all vector fields Z on M9 whiclj satisfy 

(Z|da) + [ Z | a + d ^ ] s 0 ' ( « e « , ^ 8 ) i , . 

and the condition (5) may be written as 

(7) (Z|d(<p - «)) + [ZI 9 - '*• + d(* - j ) ] 5 0 . 
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The rest of the proof is easy: If the forms a e 21, ft e 2t exist, then/? is a G-eritical 
point by (7), (6). Conversely, let p be a G-critical point and Z be a vector field 
on M. Denote (Z | dq>) + [Z | <p + d^] = C. If C # 0, then there exist forms 
a e 21, fi € ® such that (Z | da) + [Z | a + dj8] = D # 0, and we may choose 
& = Ca/£>, ft » Cj3/Z>. If C = 0, then we may choose a = 0, ft = 0. 

7. Standard critical points. The Theorem 6 is rather imperfect, and it will be 
analysed in the Appendix. However, we cannot expect some advanced results 
for our enormously general case. If we demand a theory comparable with the 
classical one, we must either restrict the class of problems, or choose a particular 
type of critic&l points with certain favourable properties. We shall follow the latter 
approach. 

The embedding pe V is called a standard G-critical point of F, if there exist 
such forms a e 21, ft e 23 that (5) is true for every vector field Z on M. In this case, 
the condition (5) decomposes into the inner and the boundary component 

(8)itb (Z | d(<p - a)) = 0, [Z 1 - a + dty - ft)] = 0. 

Moreover, the integration process may be omitted here: 

(9),,b P*Z -J d(<p -J a) = 0, ? * Z j ( ^ a + d(i/r - ft)) = 0, 

for all vector fields Z on M. 
Without any exaggeration, the whole classical calculus of variations is covert 

in these simple relations. The equation (9){ is a concise expression of the fundamental 
Euler—Lagrange system, and (9)b gives the tranversality conditions. It may happen 
that the form <p — a is a fixed form on Af, universal for all G-critical point/?. Then 
we have a far going generalization of the Poincari—Cartan—Lepage form. The 
form ^ — ft may be considered as a boundary counterpart of it. The case c = 0, 
d = 0 (hence 21, 9$ trivial) is very interesting: All G-critical points are automaticaly 
standard ones. This case is not as special as it looks, every Lagrange problem can 
be transferred into it. This process appears as a generalization of the Hamilto-
nian theory. 

Usually, the main interest is concentrated only up the inner relations (8)i5 (9)j. 
Then the relevant definition to be used is: A G-critical point/? e IVis called an inner 
standard point, if there exists a form a e 21 for which (9)i is true. Or, following 
more closely the common terminology, we speak about the extremal, if p*a s= 0 
(a € 21), and (9){ is true for certain form a € 21. The space of all extremals depends 
on the data P, M, 2t, d<p and will be denoted I s £si(P, M, 21, d<p), briefly as £9C. 
In the case c = 0, every G-critical point is an inner standard one. This case will 
be considered in the following Part of the paper. 

As far as the non-standard critical points are concerned, they may be considered 
as a sort of generalised extremals, for which the Euler—Lagrange equations and 
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transversality conditions hold in certain approximative sense. Usually, they were 
excluded by imposing strong restriction on the Lagrange problem under con
sideration. 

In dealing with the relations (9), the following remark will be usefull: 

8. Lemma. Let Z be a vector field on M. If Zp(t) e dp(TtP) for certain t e P$ 

then (p*Z-y Ot « Ofor every (n -f l)-form f on M. If Zm e dq(TtQ) for certain 
teQ9 then (q*Z -J Ot = Ojbr every n-form ( on M. 

Here, dp(TtP) - Tp(t)M is the tangent space to the submanifold pPaX the point 
p(t), the image of the tangent space TtP of the manifold P at the point t by the 
tangent map dp. Similarly, dq(TtQ) c Tq(t)M is the tangent space of the sub-
manifold qQ. According to the Lemma, the vector fields Z tangent to these sub-
manifolds pP9 qQ9 are unessential for the relation (9)l9 (9)h$ respectively: It is 
sufficient to calculate only with such vector fields Z that the vectors Zp(t)9 Z9(t)f 

lie in a fixed vector subspace of Tp(t)M complementary to dp(TtP)9 dq(TtQ)9 

respectively. 

Proof: Let Zp(t) e dp(TtP)9 namely Zp(t) = dp(Z0) for certain Z0eTtP. Let 
Zl9 ..., Zn be arbitrary vectors from TtP. The (n 4* l)-tuple Z0 , ..., Zn is linearly 
dependent, hence (p*Z-J 0(Zl9 ..., Zw) = (p*0(Z09 ..., Ztt) = 0. The second 
statement of the Lemma is similar. 

9. Example. We shall consider a simple problem as a mere illustration. Let P 
be a subdomain of the space Rw with variables tl (i = 1, ..., n)9 and set M = 
= RB+m+WM with variables xl

9 p
J
9 y{ (i = 1, ..., nj = 1, ..., m). We shall use the 

notation 

dr = dr1 A ... A dt\ dt{i) = - ( - 1 ) ' dt1 A ... A dr*"1 A dti+i A ... A dt\ 

and similarly for d;c, dx(l). 
The Lagrange problem will be determined by the forms a* = dy* — 2yf dx* 

(contact forms, j = 1, ..., n = c)9 p
k = bk (the functions, k = 1, ..., d)9 <p =-/d#» 

ty = S / 1 dx(i) (where we suppose that the functions fl do not depend on 
variables y{). 

We shall consider only such G-critical points p which are given by certain equa
tions of the type x* s t\ y1 s. f(tx

9 .*.»?*), y{ s p/(tl
9 ..., tB). Then, according 

to Lemma 8, we may use only special vector fields 

(10) Z « £ Z J J L + I 2 / . 8 

dy* . dy{ * 

without djdx1 terms. Moreover, it will be proved later on that every G-critical 
point p of the mentioned kind is an inner standard one'. SO we may find the form ot 
occuring in the relation (9)|. This form may be represented as a = Say A yJ, for 
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certain forms yJ, and we obtain 

T-i dfi - -ZzJ A dy> - Xz/ A dx' AjJ + (...), 

z-<dP = ( i y 2L + zz/ -|L)dx + (...), 

where the terms (...) involve certain forms ctJ or dot' as a factor. Now, the rela
tion (9)i looks as follows: 

(11) p* UzJ UL dx + d?'\ + Zzf i^j dx + dx(i) A yJ\) s 0, 

for all zJ, z{. Especially, choosing zJ s 0, z{ arbitrary, we obtain the relation 

K*r*,+*'*')-* 
which is satisfied by yJ = —dfldyj dx(0 + rJ, where rJ is an arbitrary form from 
the ideal generated by a1, ..., aB. Thus we obtain the famous Poincare —Cartan-
Lepage form [4]: 

(12) <p - a = / dx 4- X - ^ - V A dx(0 + Xa; A ai# A Fij', 

m 
where the forms TJi are arbitrary. 

(Note that this is not the most general solution. In fact, rJ may be an arbitrary 
sum of terms involving certain form ccJ orda J as a factor. Moreover, if the form 
q> — a may depend on the critical point/?, then we may even choose an arbitrary Fi 

with the property p*TJ = 0.) 
Using the form (12), the relation (11) reduces to 

"*(|r̂  + <"J)-»-
Since p* dyJ = dp*yJ = -d(dfldy{ o p) = -X d(dfldy{ o p)jdt\ we get the Euler-
Lagrange system 

£"-?£(•&")-° o=i m)-
Turn to the boundary relation (9)b, and suppose/to be nowhere wanishing on M, 

for simplicity. We will come out from the decomposition 

ф - â x J j Л ... лS,,, 
) i = / i " " ( / t f + ? ^ 4 

of an appropriate Poincare—Cartan — Lepage form. The forms p*9t, ...,p*9n 

are linearly independent at every point of P, so that there exists a 1-form a0 = 
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=- Xfl^i such that ip*oc° nowhere vanishes on ?, however q*«° a 0. Moreover, 
we may choose certain forms S \ . . . ,^ , ,"1 (linear combinations of 9i9 ...,$*); 
for which 

<p - a =* a0 AS1 A ... AS"*1 

is true. Using the new basis 9*\ <zJ\ dy{ (if ** 1, ...,n - 1,/' = 0, ...,m, / » 1, ...,n) 
the calculations became ver^ simple: 

For the form /5 * lbkSk e S, we have the differential dfi « E dfr* A 5* 4- (...), 
where the terms (...) involve certain function ft* as a factor. Moreover, taking into 
account the assumptions about the functions /*, there is a formula of the type 
d^ = Eg-V AS + (...), where 8 » 8 l A ..*A9B"1 and the terms (...) involve 
two or more forms ot/ as a factor. It follows: 

q*Z -J (cp - a) » g*a°(Z) 9, 

g * Z J d ^ - = ^ * E M z ) S , 
q*Z->dfi ~q*Zdbk(Z)5\ 

and the relation (9)b is as follows 

(12) q*((«°(Z) + I g'V'(Z)) 3 - £ db*(Z) <5k) • 0. 
r k 

We see that if ps V is a G-critical point of F, then 

(13) (a°(Z) + JT gV(Z)) o^ = 0 for all vector fields Z, 
T 

which satisfy dbk(Z) = 0 (fc = 1, ..., d); 

this is the famous transversality condition. 
At the same time, (13) serves as the compatibility condition for the linear 

system (12) with the unknowns q*8k (k.» 1,..., d). (We shall express these condi
tions explicitly supposing the differentials dft1,..., d#* to be linearly independent 
at every point of the subset qQ of M: There exist vector fields Z 1 , . . . , Zd on M 
with det (dbk(Zk9)) # 0 on the subset qQ9 not necessarily continuous. Then, owing 
to (13), the system (12) is equivalent to 

V (db\Zk) o q) q*5k m q*((a°(Zk) + £ /o/(Z*')), 
k * r 

(kf = 1,..., d); this system may be solved by the Cramer rule.) Determining the 
forms q*bk

9 one can easily find the forms Sk and, as a final result, we have proved 
the existence of the boundary counterpart of the Poincar6—Cartan- Lepage form 
^ - j 5 « £ / ' d x ( l > ^ I & * d * . 

At the end of this example we briefly sketch the proof that every Cr-critical 
point peV given by the. above equations x* ss **, / s y ^ s y{ is an inae.r 
standard one. To this end, it suffices to prove an existence of a form dee % such 
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that (9)j is satisfied only for the vector fields Z of the type (10) (a consequence of 
Lemma 8) vanishing on the subset qQ (continuity argument). Every such a vector 
field may be represented as Z = V + W, where 

f, v , e ezJ e w v f , ezJ\ e 
ey

J ex'eyi \ $* / dyi 

Here, the component V preserves the contact forms, &VOLJ S 0, hence ££y% s 0 
(a 6 21). (This decomposition is widely used in [4], in a slightly more general situa
tion.) The sought form a would satisfy (8)j, i.e. 

0 - ( 2 | d(q> - a)) - (V\d(q> - ot)) + (FF| d(<p - *))• 

The first summand does not depend on a : (V \ d(q> - a)) = \p*V -i d(<p - a) = 
JP 

** \p*&v(<p - #) = J p*&vq>, and hence it must vanish separately. (Formal 
p P 

proof: Theorem 6 applied on the case Z = V gives certain forms a6 91, ^ e 8 
for which (7) is true. However (7) is reduced to (V \ d(q> - a)) « 0 (= \p*&v<p\) 

p 

The second summand 0 = (HV| d(̂ > - a)) remains, and this is satisfied by the 
Poincar6—Cartan—Lepage form, which follows from the main text of this 
example. 

APPENDIX 

10. Sections of a vector bundle. At the end of this Part, we aim to outline 
a preliminary analysis of Theorem 6. For this purpose, we need some elementary 
facts from the distribution theory ([5] Chapter IX, [6] pages 302-303, [7] 
pages 246-248, [8]). 

Let E be a vector buncle over Af. We introduce the spaces C°°(£), Ck(E), Hh(E), 
Cm(E)* (the conjugate space), consisting of sections of the bundle E and a related 
bundle E* ® | A | M over Af. For this purpose, cover Af by a countable number 
of coordinate systems and take a partition of unity, -E/j = 1, subordinate to this 
covering. We may also suppose that the bundle £ is trivial over the support of 
every function ft of the partition. And ehoosing a trivialisation of E over this 
support, we may operate with the derivatives e^s/dx* of a section s in the cor
responding coordinate system x = (x1, ...,x?*) on Af. (Here, we use the multi-
index notation: / « (i lf ..., ik), | J | •» it 4- ... + ik, ex1 = dxh ... ex\) 

Then, Cm(E) is the linear topological space of all C°°~smooth sections over M, 
endowed by the seminorms \s\itJ » max\fid

{t*sldx?\. And 3. bounded subset 
QiCm(E) is given by the inequalities \s |* ,* £ Citt, with arbitrary constants on the 
right-hand side. Note that Cm(E) is a reflexive Frechet space. 

The following linear topological space 0(E) consists of all C*-smooth sections 
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over M; it is endowed by the seminorms | s \iti9 where | / | £ k. Unfortunately, 
but this is not a reflexive space, so we must introduce the space H*(£). 

Choose a nowhere vanishing density form | co | on M. The space H*(£) is the 
completion of the previous spaces with respect to the norm 

M»-(J I \M»miM2\\m\)%i'. 

We get a Hilbert space. ! 

The last space Cm(E)* is related to the. space C°°(£*) of sections of the dual 
vector bundle E*. Denote the duality form between fibers of.fi, E* as the ordinary 
multiplication of numbers. Then, s. 9 is a C^-smooth function on M for every 
seCm(E)9 9eCm(E*). Let Cm(E*) be the space of all sections 9 e Cm(E*) with 
compact support (i.e. vanishing outside a compact subset of M). Choosing a density 
form | co | on M, we get a well-defined integral | s. 91 G> | for every s € C°°(£), 

M 

9 € C*(£*). This fact suggests to introduce the linear bundle | A | M of densities 
on M. Then, using the natural pairing C°°(£) x C°°(£* ® | A | M) -> | A | M, we 
have the bilinear form 

<s\q>> - is.tp (seCm(E)f<peCm(E* ® | A | M)). 
M 

Owing to this form, the space Cm(E* ® | A | M) consists of certain continuous 
linear functionals on the space C°°(£), but not necessarily of all of them. This 
defect may be removed by a completion process applied to the space 
Cm(E* ® | A | M). The resulting space is exactly the sought space C°°(£)*< It is 
a very wide space containing the space Cf(E* ® | A | M) as a dense subset; it 
may be denoted C°°(£)* « C~"(E* ® | A | M)9 and its vectors are called distribu
tional sections with compact support of the bundle £* ® | A | M. 

There are two topologies used in the space Cm(E)*f for both it appears as 
a complete space: We identify 

C°°(£)* » (J C^(£)* (K are compact subsets of M)9 
K 

where q> e Cm(E)* if and only if <s | p > s O for all sections s e C°°(£) which vanish 
identically outside K. And the topology on C£(£)* is given by the seminorms 

|o-|s = sup|<5|<r>|, 
scS 

where S is either an arbitrary finite subset of C°°(£) (the weak topology)* or an 
arbitrary bounded subset of C°°(£) (the strong topology). 

After this necessary digression, we return to the main topic. We begin with 
a purely algebraic result : 
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11. Theorem. An embedding peV is a G-critical point of F if and only if for 
every finite set of vector fields Zt \\..., Zk on M there exist forms a e % /J e S 
satisfying the condition (5)forZ**Zif...9Z-Zk simultaneously. 

Proof: Let p be a Cr-critical point. Denote 
C**(Ct,...,Ck)eRk, Z - CtZt + ... + CkZk,/(C)-=(Zid<p) + [Z|<p + d£|, 
4tl*(C) *• (Z | da) + [Z | a + djS] (a e 91, p e 95). The condition (6) means that 
1(C) » 0, if 4.0(C) s 0(a € 21, 0 e S). It follows that / is a finite linear combina
tion: 

/ -= T,Cilgtifii -= Ize&iXafit' 

We may choose a == Ec^i, /? = Ic*/^. 
The converse statement of the theorem is evident. 

12. Theorem. An embedding peV is a G-critical point of F if and only if for 
every bounded subset Z of the space C°°(rM) there exist sequences al9<x2> ••• 6 3l> 
Pi>Pz> ...e-B satisfying 

(14) lim (\p*Z -1 d(<p - a() + J ?*Z -J (<p - af + d(^ - &)) - 0, 

/or et;er)> vector field ZeZ. 
Proof: Let p e V be a G-critical point of F. Denote by R the linear subspacc 

of the space C°°(rM)* consisting of all functional 

C , = (. I da) + [. I a + djS] (a e % p e »). 

The condition (6) means that the null-space of the functional 

Co«(.|dp) + [ . |9 + d*] 

contains the intersection of null-spaces of all functionals from R. This means 
exactly that Co lies in the weak closure of R, and hence also in the strong closure: 
In every neighbourhood of Co there exists a functional C«,/*. 

Such a neighbourhood may be determined by a bounded subset Z of the space 

Cm(TM)9 as the set of all C e C°°(rM)* satisfying |<Z | C - Co> I < y (Z e Z). 

There exists a functional lmttfit in the above neighbourhood, and we obtain 

1 > I <Z|Cai,» - Co>l - l(Zid(^ - a |) + [Z\9 - a, + dtf - ft)] I, 

which is the desired relation (14). 
The converse statement of the theorem is evident. 

13. Theorem. Let peV9 then the following statements are equivalent; i) There 
exist sequences a l f a2,... e % pu pl9... e S satisfying (14) for every ZeC\TM) 
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and every strfficiently large k. ii) There exist the above sequences satisfying (14)'$$'•' 
every ZeCm(TM). Hi) There exists such k (k » 0, l f . . .) that (6) is true for all 
ZeCk(TM). 

Proof: i) => ii) is trivial. 
ii) => iii): We retain the notation of the preceding proof, and one can observe 

that the functional £mifi9 Co are, well defined on every space Ck(TM). Now, ii) implies 
that the set of values <Z| £*.,$.> (/ =- 1,2,...) is bounded for every fixed Z e 
G Cm(TM). We deal with the Frechet space, therefore it is uniformly bounded for Z 
varying in an appropriate neighbourhood of the zero vector in the space Cm(TM). 
Such a neighbourhood is given by a finite number of inequalities \ Z\ittIt < C, 
and denoting k •*- max (| J, |) (where i varies in a finite set), we get the result that 

the sequence of functional C^,^, tm2tfi2> •••• *s uniformly bounded (and hence also 
uniformly continuous) on a neighbourhood of the zero vector in the space Ck(TM). 
This sequence tends to Co o n a d e n s e subset C°°(TM) of Ck(TM)f therefore, it 
converges to Co everywhere in the space Ck(TM). This is exactly iii). 

iii) ==> i); There is C*(ZAf) - Hk'(TM), for an appropriate kf (Sobolev embedding 
theorem). Therefore, (6) is true for every Z e Hk'(TM). The latter space is a reflexive 
one, and we may follow the preceding proof: The functional Co (considered on the 
space Hk'(TM)) lies in the closure of the subset R of the space Uk'(TM)$ and there 
exists a sequence from JR which converges to Co- This is i). 

14. Notice. At this stage, it is not difficult to observe that the standardness 
property may be expressed as a certain closeness property of the subspace R in 
a space of sections. Namely, we may expect that the limit of the sequence 
C«i,#i> C«2,02. ••• *

s exactly C5.7 with the forms £, /5 required in (8). We shall not 
follow these lines, because the used notions (the forms (|), [|], <|>, and the bundles 
over M) are not adequate for the problem: They contain unnecessary ingredients, 
the whole problem is in the fact concentrated along the subset pP of M. We postpone 
these questions to other place. 

(The part II Hamiltonian theory follows.) 
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