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SOME PROBLEMS OF DIFFERENTIAL 
GEOMETRY OF ONE CLASS OF SPACES 

OF SUPPORTING ELEMENTS 

ABDURASUL SATTAROV*) 
(Received May 10, 1982) 

It is known that the space of supporting elements [1] represents a differentiable 
manifold which is a locally-topological product of this differentiable manifold 
(base) and a space of values of some differential— geometrical (supporting) 
object. It may be regarded in a well-known sense as an associated fiber bundle. 
This space belongs to the so called generalized spaces and each concrete definition 
of the supporting object gives a specific space with its own geometrical properties. 

This paper is concerned with the class of spaces of vector densities ul with an 
arbitrary weight p. The spaces represent a particular case of the space of supporting 
elements on one hand and generalize the space of linear elements on the other 
hand; in the metric case they generalize the Finsler spaces. At the beginning of this 
paper we present some fundamental notions of the theory of these spaces, e.g. the 
definition of the space, the construction of tangent spaces and their equipments, 
the covariant differential and the metric tensor. Then, using the Lie derivative, 
we shall examine some variational problems of these spaces. 

1. FUNDAMENTAL NOTIONS 

To each point of the differentiable manifold Xn9 n = dim Xn9 which is the base 
space, there is associated the space of values of a contravariant vector density 
with an arbitrary weight p. The received manifold is called the space of supporting 
vector densities. 

Transformations of the base space 

x1'~ xv(x\ ...,*") 

*) The present paper was written during the author's scientific activity at the Department of 
Mathematics, J. E. Purkyne* University of Brno, 1982. 
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induce transformations 

uv = A-'u'fl (i,j, .-; i'J', - = 1, ...,»), 
where 

dx1' 
ñ - ax1 

and 

Here, (x{, w1) is called a supporting element and the point x is called its centre. 
Constructing the tangent space of supporting elements we will follow the 

approach of Bliznikas [2], For a supporting element (x, u)0 consider the set of 
all differentiate functions f(x, u), defined in a neighbourhood of (x, u)0. Then 

fl
its differentials (df )0 form a vector space T(x, u)0, whose basis is called a natural 

# 
coframe. The dual basis of the dual space T(x, u)0 of T(x, u)0, is called a natural 
frame. 

It is easy to find that the matrices of the corresponding groups of the transforma
t

ions of spaces T and T have the forms 

(5i) and Col) «*"**• 
where 

4 - -Apu'ds(A-pfi')fj:, B\, - A%. 
and 

A^u'd^A-W), # * , « # . 
As to the equipment of these spaces there holds the following Theorem. 

* 
Theorem. The tangent and cotangent spaces Tand Twill be equipped invariantly 

if and only if there is given a field of objects r{ on the base Xn, satisfying the 
following transformation formulas: 

The objects of an affine connection on spaces of vector densities, introduced 
by Davies [3], will be denoted by UJk(x, u) and C]k(x, u). Recall that the functions 
l}Jk(x, u) are homogeneous, of degree zero in u, and Cjk(x, u) define a tensor density 
of a weight —p, and are homogeneous of degree minus one in u. We note that 

* 
given a field of objects l}jk we also obtain an equipment of the spaces T and T. 

The covariant differential of a tensor density 7$) = Tjl;;;fa having the weight q 
is defined by 

ar$ - dr«> + L*^j£d7+ c:kT«\ su
k 
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or, 
9Tfi - nikdx" + T%fif 

where 
p « 

n\.> - v a - ^ /v+LUT* , 

^ ^ ^ . . - ^ . . c v + c;^ . 
The tensor density r $ t k is called the covariant derivative of the first type, and 

T$):k is called the covariant derivatives of the second type. In these formulas the 
symbol of B. L. Laptev [4] defined by the form 

mu -1 ̂ ••'•••" - E «...,.,, - iiiifl. m=-l 

and the notations d, = —r, A = — are used. 
dxl dul 

A metric tensor of the considered spaces is defined in [3] by means of a scalar 
function L(x, w), positively homogeneous, of degree 1 in w, by the formula 

gí/x,«) = gPíyL2\ 
where 

g = det (gtj). 

2. THE LIE DERIVATIVE AND ITS APPLICATIONS 

In the considered space the Lie derivative of a tensor T$] with respect to the 
vector field v*(x) can be written as follows [5]: 

4 

*J§ = v'T?i, + T§y, J> - v\ „Tfó + 
4 P 

+ 2v'Q%Tfl - 2v'TñM%ur, 
where 

Qrs = Lr. — Lm "rs "-'rs 

is the tensor of torsion. 
Solving variational problems in the considered space we suppose that the 

supporting object u* has the same direction as the tangent vector to the curve 
x( = xl(t)9 i.e., u* = \lgp dx\ where \lgp is a scalar density of weight p. 
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Herewith, we take into account that the variation of the supporting object 
arises not only due to the displacement of the point. Then the Lie derivative of the 
supporting object will not be, in general, equal to zero; in connection with this fact 
we use the so called complete Lie derivative [6], which, for a tensor 7$)> ca& be 
written as 

2J§ - J2\,T$ + T{%>k#vu
k, 

where 

is a Lie derivative of the supporting object. 
If we examine the first variation with respect to a vector field v* = v*(x) of an 

integral 

0 ) s=fL(x ,u)dr , 
Mi 

which defines the arc length in the considered space, then 
M2_ 

Svs= $&vL(x,u)dt. 
Mi 

Thus, we get the equation of extremals of the form [5] 

(2) 5(1' + pA*) + A)k(l
J + pAJ) 5lk = 0, 

where 
A^-L^C^, A^gkiAlk> 

and 

represent the unit vector of the supporting object. 
In this way we can also obtain the invariant form of the second variation of the 

integral (1) of the arc length. If the extremals coincide with the autoparallels it can 
be expressed as follows: 

M2 

(3) S2
0s - J (g^otr/o - vVR^j - JgpLoioiv%) As, 

Mi f 

where "0" denotes the index k which is contracted with the unit vector /*, and R9L 
are tensors of curvature [4]. 

Let there be given a hypersurface 

x* =- x\t\ . . . . r 1 ) , u* =- u\t\ ...,tB~1). 

The mean curvature of this hypersurface is defined by 
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where 
g' '(.1 , . . . ) ."-1)«g«'XfX}\ 

and 

*.,«' ."-1)=/.(*:,+-4) 
are the first and the second fundamental tensors, respectively. 

Here we used the notation 

Yi — ^X Y* — d X Y* — ~ „*fiYk 

Now, we consider the variation of the mean curvature of the hypersurface, 
assuming that the supporting object has the orientation in the direction of the 
normal of the hypersurface. 

Then 
SVH -=- &0Hf 

but in view of HA5£u{ -= 0, we have 

S9H - &9H 

and thus we obtain the equation of the extremal displacement for minimal hyper
surface (i.e. H = 0) 

(4) g ' ^ C l . + »%J + W'Wr.. + -*°-# + P>% - 0-
Here F is also a tensor of curvature on the considered space [4]. 

The obtained expressions (2), (3) and (4) generalize the analogous equations 
in the Finsler space. 

Finally, we note that the results (2), (3) and (4) can also be obtained in the 
case when the supporting object is a covector density of weight —p. 
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