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CYCLICITY OF A COMPLETE 
3-EQUIPARTITE GRAPH 

B O H D A N ZELINKA, Liberec 
(Received January 25, 1981) 

Abstract. The cyclicity of a graph G is the minimal number of circuits in G which cover all edges' 
of G. In the paper the cyclicity of a complete 3-equipartite graph is studied; this is a graph whose 
vertex set can be partitioned into three classes of equal cardinalities so that two vertices are ad
jacent if and only if they belong to different classes of this partition. 
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In [1] J. Akiyama, G. Exoo and F. Harary suggested the problem to de~ 
termine the cyclicity of a complete tripartite graph. We shall determine it for 
a special type of such a graph — a complete 3-equipartite graph. 

A complete tripartite graph is a graph G for which there exists a partition & = 
= {A, B, C} of its vertex set V(G) such that two vertices of G are adjacent if and 
only if they belong to different classes of this partition. If | A \ = | B \ = | C | = m, 
such a graph will be called 3-equipartite and denoted by K(m, m, m). 

The cyclicity o(G) of a finite undirected graph G is the minimum number of 
circuits in G which cover all edges of G. 

We shall prove two theorems. 

Theorem 1. Let m be a positive integer with the property that there exist orthogonal 
Latin squares of the order m. Then for a complete 3-equipartite graph K(m, m, m) 
there is 

o(K(m, m, m)) == m. 

Proof. The number of edges of K(m, m, m) is 3m2 and any circuit in this graph 
has at most 3m edges. Hence o(K(m, m, m)) ^ 3m2/3m = m. Therefore it suffices 
to construct m circuits which cover all edges of K(m, m, m). 

Let R, S be two orthogonal" Latin squares of the order m. The number in the i-th 
row and thej-th column in R (or in S) will be denoted by ri} (or stJ respectively). 
Consider a multigraph M whose vertex set V(M) =- U u V, where U n V, « 0, 
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U = {ul9 ..., um}9 V = {t^, ..., vm} and in which each vertex of U is joined with 
each vertex of Vby two edges (one red edge and one blue edge) and no two vertices 
of U and no two vertices of V are joined by an edge. 

For each k = 1, ..., m we construct a circuit Fk in the following way. A red edge 
joining vertices ui9 Vj belongs to Fk if and only if ru = k. Further if a red edge 
joining ui9 v} belongs to Fk9 then also the blue edge joining vj9 ui+1 belongs to Fk9 

where i + 1 is taken modulo m. In this way we obtain the circuits Fl9 ...9Fm which 
cover all edges of M. To each red edge we assign a label equal to sij9 where ui9 vs 

are the end vertices of this edge. Thus we obtain a labelling of red edges of M such 
that two different red edges belonging to the same one of the circuits Fl9 ..., Fm 

have always different labels. Also no two edges of the same label have a common 
end vertex. 

To each Ft we assign a circuit F\ in K(m9 m, m) in the following way. Denote 
A = {al9 ..., am}9 B = {bl9 ..., bm}9 C = {cl9 ..., cm}. If Ft contains a blue edge 
joining ui9 vj9 then F\ contains the edge afij. If Ft contains a red edge joining ui9 vj9 

then F\ contains the edges atck9 ckbj9 where k is the label of the mentioned edge. 
In this way we obtain the circuits F\9 ..., Fm which cover all edges of K(m9 m9 m). 

It is well-known that if m is odd or is divisible by 4, then there exists a pair of 
orthogonal Latin squares of the order m. Thus we have a corollary. 

Corollary. Let m be a positive integer such that m =}= 2 (mod 4). Then for the 
cyclicity of a complete 3-equipartite graph K(m9 m9 m) there is 

o(K(m9 m9 m)) = m. 

Theorem 2. For a complete 3-equipartite graph K(m9 m, m)9 where m is an arbitrary 
positive integer, there is 

m ^ o(K(m9 m9 m)) ^ m + 1. 

Proof. For m odd the assertion follows from Corollary. For m = 2 there is 

o(K(29 2, 2)) = 3 = m + 1, because after deleting edges of a Hamiltonian circuit 
from K(29 2, 2) we obtain a graph consisting of two disjoint triangles. Therefore 
we may suppose that m is even and m = 4. Consider a complete graph Km with m 
vertices. In [1] it was proved that o(Km) = m/2. There exist mjl circuits in Km which 
cover all edges of Km9 moreover all of them are Hamiltonian. Let the vertex set of 
Km be {ul9 ...,Mm}, let the mentioned circuits be Fl9 . . . ,F m / 2 . In the graph 
K(m9m9m) let A = {al9...9am}9 _B = {bl9 ...9bm}9 C = {cl9...9cm}. To each 
circuit JF*, we assign two circuits F'i9 F" in K(m9 m9 m) in the following way. If Ft 

contains an edge UjUk9 then F\ contains the edges apk9 bkci+j9 c^flk and F] contains 
the edges bflk9 akcJ-i+l9 cJ-i+1bj9 where / + jand J - i + 1 are taken modulo m. 
It is easy to prove that each F\ and each F" are Hamiltonian circuits im K(m9 m9 m). 
The circuits F\9 ..., Fm/29 Fl9 ..., Fm/2 cover all edges of K(m9 m9 m) except the 
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edges atbi, ...,ambm. Evidently there exists a circuit F0 which contains all the 
edges afii, ...,ambm. Then F[, ..., Fm/2, F'{, ..., Fm/2, F0 cover all edges of 
K(m, m, m) and their number is m + 1; this implies o(K(m, m, m)) :£ m 4- 1. The 
proof that o(K(m, m, m)) ^ m is the same as in the proof of Theorem 1. 

Conjecture. For a complete 3-equipartite graph K(m, m, m), where m + 2„ 
there is 

o(K(m, m, m)) = m. 
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