Archivum Mathematicum

Zuzana Došlá

Monotonicity properties of the linear combination of derivatives of some special functions

Archivum Mathematicum, Vol. 21 (1985), No. 3, 147--157
Persistent URL: http://dml.cz/dmlcz/107227

Terms of use:

© Masaryk University, 1985
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

MONOTONICITY PROPERTIES OF THE LINEAR COMBINATION OF DERIVATIVES OF SOME SPECIAL FUNCTIONS

ZUZANA DOŠLÁTESAŘOVÁ, Brno
(Received February 29, 1984)

Abstract

The principal concern here is with monotonicity properties of the zeros and related quantities of the linear combination $\alpha y^{(1)}+\beta y^{(4+1)}, i=0,1, \ldots$, where α, β are real numbers and $y=y^{(0)}$ is a solution of $$
y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0
$$

In particular, the results are formulated for the functions $\alpha A i(-t)+\beta A i^{\prime}(-t), \alpha C_{v}(t)+\beta C_{\nu}^{\prime}(t)$ and $\alpha C_{\nu}^{\prime}(t)+\beta C_{y}^{\prime}(t)$, where $A i(-t)$ and $C_{\nu}(t)$ denote Airy and Bessel functions, respectively.

Key words. Monotonicity properties - "Bocher-function"-Airy function-Bessel function.

1. Introduction

In [4] J. Vosmanský derived certain higher monotonicity properties of i-th derivatives of solutions of

$$
\begin{equation*}
y^{\prime \prime}+a(t) y^{\prime}+b(t) y^{\prime}=0 \tag{1}
\end{equation*}
$$

in the oscillatoric case. In [2] using the first accompanying equation there are extended results from [4] to the function

$$
\alpha y^{(i)}+\beta\left(y^{(t+1)}+\frac{1}{2} a_{i}(t) y^{(i)}\right) \quad i=0,1, \ldots
$$

where $y(t)$ is a solution of (1) and functions $a_{i}(t)$ are defined by the same formulae as $A_{i}(t)$ below. The used method does not allow to formulate results for the linear combination $\alpha y^{(i)}+\beta y^{(i+1)}$, as there was deduced in [1] for the equation

$$
\begin{equation*}
y^{\prime \prime}+f(t) y=0 \tag{2}
\end{equation*}
$$

in the case $i=0$.
The aim of this paper is to investigate monotonicity properties of the zeros of the linear combination $\alpha y^{(i)}+\beta y^{(i+1)}$, where $y=y^{(0)}$ is a solution of (1), and to apply obtained results on Airy and Bessel functions.

Let $a(t), b(t) \in C^{\infty}(0, \infty)$. The transformation

$$
u(t)=y(t) \exp \left[-\frac{1}{2} \int a(t) \mathrm{d} t\right]
$$

transforms (1) in (2), where

$$
\begin{equation*}
f(t)=b(t)-\frac{1}{2} a^{\prime}(t)-\frac{1}{4} a^{2}(t) \tag{3}
\end{equation*}
$$

In [3] it is proved that if y is a solution of (1) then the ,,Bocher-function" $z=\alpha y+\beta y^{\prime}$ is a solution of

$$
\begin{equation*}
z^{\prime \prime}+\left(a+\beta \frac{\alpha a^{\prime}-\beta b^{\prime}}{\alpha^{2}+\beta^{2} b-\alpha \beta a}\right) z^{\prime}+\left(b+\beta \frac{\alpha b^{\prime}+\beta\left(a^{\prime} b-a b^{\prime}\right)}{\alpha^{2}+\beta^{2} b-\alpha \beta a}\right) z=0 \tag{4}
\end{equation*}
$$

where α, β are real numbers such that $\alpha^{2}+\beta^{2}>0$ and $a=a(t), b=b(t)$ are coefficients of (1).

Let us denote

$$
\begin{equation*}
K=K(t)=\alpha^{2}+\beta^{2} b-\alpha \beta a, \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
A=A(t)=a+\beta \frac{\alpha a^{\prime}-\beta b^{\prime}}{\alpha^{2}+\beta^{2} b-\alpha \beta a}=a-\frac{K^{\prime}}{K} \tag{6}\\
B=B(t)=b+\beta \frac{\alpha b^{\prime}+\beta\left(a^{\prime} b-a b^{\prime}\right)}{\alpha^{2}+\beta^{2} b-\alpha \beta a}=b+\alpha \beta \frac{b^{\prime}}{K}+\frac{\beta^{2}\left(a^{\prime} b-a b^{\prime}\right)}{K}
\end{gather*}
$$

Analogously as in [4] let $A_{0}=A(t), B_{0}=B(t)$ and define reccurently for $i=$ $=1,2, \ldots$ functions $A_{i}(t), B_{i}(t) \neq 0$ by formulae

$$
\begin{gather*}
A_{i}=A_{i-1}-B_{i-1}^{\prime} / B_{i} \\
B_{i}=B_{i-1}+A_{i-1}^{\prime}-A_{i-1} B_{i-1}^{\prime} / B_{i-1} \tag{8}
\end{gather*}
$$

and for $i=0,1, \ldots$ functions F_{i} by

$$
\begin{equation*}
F_{i}=B_{i}-\frac{1}{2} A_{i}^{\prime}-\frac{1}{4} A_{i}^{2} \tag{9}
\end{equation*}
$$

Since the function $F=F_{0}(t)$ defined by (9) ${ }_{0}$ plays an important role in our study it is useful to express $F(t)$ using coefficients of (1). By routine computation we get

$$
\begin{equation*}
F=f-\frac{3}{4}\left[\frac{K^{\prime}}{K}\right]^{2}+\frac{1}{2} \frac{K^{\prime \prime}}{K}+\frac{1}{2} a \frac{K^{\prime}}{K}+\alpha \beta \frac{b^{\prime}}{K}+\frac{\beta^{2}\left(a^{\prime} b-a b^{\prime}\right)}{K} \tag{10}
\end{equation*}
$$

where $f(t)$ and $K(t)$ are defined by (3) and (5), respectively.
We shall study sequences $\left\{R_{k}^{(i)}\right\}_{k=0}^{\infty}$, where $R_{k}^{(i)}$ is defined for fixed $\lambda>-1$,
$(11)_{i} \cdot R_{k}^{(i)}=R_{k}^{(i)}(W, \lambda)=\int_{t_{k}^{(i)}}^{t_{k+1}^{(i)}} W(t) \exp \left\{\frac{\lambda}{2} \int_{c}^{t} A_{i}(\tau) \mathrm{d} \tau\right\}\left|\alpha y^{(i)}(t)+\beta y^{(i+1)}(t)\right|^{\lambda} \mathrm{d} t$,
where $y=y^{(0)}(t)$ is an arbitrary (non-trivial) solution of (1), $\left\{t_{k}^{(i)}\right\}$ denotes any sequence of consecutive zeros of the function $\alpha z^{(i)}+\beta z^{(i+1)}(i=0,1, \ldots)$, where z is any solution of (1) which may or may not be linearly independent of $y ; \alpha, \beta$ are real numbers such that $\alpha^{2}+\beta^{2}>0$ and $W(t)$ sufficiently monotonic function. By special choice of $W(t), \lambda, i$ and $z(t)$ we can obtain $R_{k}^{(i)}$ having different meaning.

A function $f(t)$ is said to be monotonic of order n over $(0, \infty)$ if

$$
\begin{equation*}
(-1)^{k} f^{(k)}(t) \geqq 0 \quad k=0,1, \ldots, n, t \in(0, \infty) \tag{12}
\end{equation*}
$$

and we write $f \in M_{n}$. If (12) holds for $n=\infty, f(t)$ is called completely monotonic $\left(f(t) \in M_{\infty}\right)$. A sequence $\left\{t_{k}\right\}$ is said to be monotonic of order n if

$$
\begin{equation*}
(-1)^{j} \Delta^{j} t_{k} \geqq 0 \quad k=0,1, \ldots ; j=0,1, \ldots, n \tag{13}
\end{equation*}
$$

where $\Delta^{0} t_{k}=t_{k}, \Delta^{n} t_{k}=\Delta^{n-1} t_{k+1}-\Delta^{n-1} t_{k}$ and we denote $\left\{t_{k}\right\} \in M_{n}$. If (13) holds for $n=\infty,\left\{t_{k}\right\}$ is called completely monotonic $\left(\left\{t_{k}\right\} \in M_{\infty}\right.$). If strict inequality holds throughout (12) or (13) then we write $f \in M_{n}^{*}$ or $\left\{t_{k}\right\} \in M_{n}^{*}$, respectively.

2. Preliminaries

Lemma 1. If $y=y^{(0)}$ is a solution of (1) then $z=\alpha y^{(i)}+\beta y^{(i+1)}, i=0,1, \ldots$, is a solution of

$$
\begin{equation*}
z^{\prime \prime}+A_{i}(t) z^{\prime}+B_{i}(t) z=0 \tag{14}
\end{equation*}
$$

where A_{i}, B_{i} are defined by (8) $\mathbf{i}_{\mathbf{i}}$.
Proof. For $i=0$ Lemma holds according to [3]. Let $i \geqq 1$. Using [4, Lemma 2.1] we get that if $z=z(t)$ is a solution of (4), i.e. of (14) $)_{0}$, then $z=z^{(i)}(t)$ is a solution of $(14)_{i}$. From this and from the linearity of the derivation a conclusion follows.

Lemma 2. [4, p. 96] Let $A(t) \in M_{n+2}^{*}, B^{\prime}(t) \in M_{n+2}^{*}, B(\infty)-A^{2}(\infty) / 4=\delta>0$, $B(t)>0$. Then for $F_{1}(t)$ defined by $(9)_{1}$ it holds

$$
F_{1}^{\prime} \in M_{n}^{*}, \quad F_{1}(\infty)=\delta>0 .
$$

Lemma 3. Let $i>0, k<0, x_{1}>0, x_{2}<0$ be real numbers such that

$$
\begin{align*}
& i+j+k>0 \tag{15}\\
& -j x_{1} \geqq k x_{2} \quad \text { if } \quad j<0 \tag{16}
\end{align*}
$$

Let $\varphi(t)$ be for $t>x_{1}$ defined by

$$
\begin{equation*}
\varphi(t):=\frac{i}{t}+\frac{j}{t-x_{1}}+\frac{k}{t-x_{2}} \tag{17}
\end{equation*}
$$

If $j \geqslant 0$ then $\varphi(t) \in M_{\infty}^{*}\left(x_{1}, \infty\right)$.
If $j<0$ then $\varphi(t) \in M_{n}^{*}\left(\tau_{n}, \infty\right)$, where τ_{n} denotes the unique zero of the equation $(18)_{n} \quad G_{n}(t) \equiv i+j\left(\frac{t}{t-x_{1}}\right)^{n+1}+k\left(\frac{t}{t-x_{2}}\right)^{n+1}=0 \quad t \in\left(x_{1}, \infty\right), n=0,1, \ldots$

Proof. The n-th ($n=0,1, \ldots$) derivative of $\varphi(t)$ has the form

$$
\varphi^{(n)}(t)=(-1)^{n} n!\left[i t^{-(n+1)}+j\left(t-x_{1}\right)^{-(n+1)}+k\left(t-x_{2}\right)^{-(n+1)}\right]
$$

It is evidently seen that $\varphi^{(n)}(t) \in C\left(x_{1}, \infty\right)$ and therefore $\varphi^{(n)}$ changes the sign only in the zeros of the equation $\varphi^{(n)}(t)=0$.

The function $G_{n}(t)$ defined by $(18)_{n}$ has the following properties:

$$
\begin{array}{ccc}
\lim _{t \rightarrow \infty} G_{n}(t)=i+j+k>0, & G_{n}^{\prime}(t)=(n+1) t^{n}\left[-j x_{1}\left(t-x_{1}\right)^{-n-2}-k x_{2}\left(t-x_{2}\right)^{-n-2}\right] \\
G_{n}^{\prime}(t)<0 \quad \text { and } \quad \lim _{t \rightarrow x_{1}+} G_{n}(t)=+\infty \quad \text { if } \quad j>0, t \in\left(x_{1}, \infty\right) \\
G_{n}^{\prime}(t)>0 \quad \text { and } \quad \lim _{t \rightarrow x_{1}+} G_{n}(t)=-\infty \quad \text { if } \quad j<0, t \in\left(x_{1}, \infty\right)
\end{array}
$$

Thus, if $j>0$ then $G_{n}(t)>0$ for $t>x_{1}$ and therefore $(-1)^{n} \varphi^{(n)}(t)>0$ $(n=0,1, \ldots)$. Let $j<0$. Then (18) ${ }_{n}$ has the unique zero τ_{n} in $\left(x_{1}, \infty\right)$. The rest of the proof is the same as [5, proof of Lemma 2.3].

Corollary 1. Let $\alpha \beta>0, v \geqq 0$ be real numbers and let $P(t), A(t)$ be defined by

$$
\begin{gather*}
P(t):=\left(\alpha^{2}+\beta^{2}\right) t^{2}-\alpha \beta t-\beta^{2} v^{2} \\
A(t):=\frac{1}{t}-\frac{\alpha \beta}{P(t)}-\frac{2 \beta^{2} v^{2}}{t P(t)} \quad \text { for } t>x_{1} \tag{19}
\end{gather*}
$$

where

$$
\begin{equation*}
x_{1,2}=\left[\alpha \beta \pm \sqrt{\alpha^{2} \beta^{2}+4\left(\alpha^{2}+\beta^{2}\right) \beta^{2} v^{2}}\right] / 2\left(\alpha^{2}+\beta^{2}\right), \quad x_{1}>x_{2} \tag{20}
\end{equation*}
$$

If $v^{2} \geqslant 3 / 4 \beta^{2}\left(\alpha^{2}+\beta^{2}\right)$ then $A(t) \in M_{\infty}^{*}\left(x_{1}, \infty\right)$.
If $v^{2}<3 / 4 \beta^{2}\left(\alpha^{2}+\beta^{2}\right)$ then $A(t) \in M_{n}^{*}\left(\tau_{n}, \infty\right)$, where τ_{n} denotes the unique zero of $(18)_{n}$ with

$$
\begin{gather*}
i=1+2\left(\alpha^{2}+\beta^{2}\right), \quad j=-\frac{\alpha \beta}{x_{1}-x_{2}}+\frac{2 \beta^{2} v^{2}}{x_{1}\left(x_{1}-x_{2}\right)} \tag{21}\\
k=\frac{\alpha \beta}{x_{1}-x_{2}}+\frac{2 \beta^{2} v^{2}}{x_{2}\left(x_{1}-x_{2}\right)}
\end{gather*}
$$

Proof. The function $A(t)$ can be expressed in the form (17), where i, j, k are defined by (21). It holds $i>0, x_{1}>0, x_{2}<0, x_{1}-x_{2}>0, x_{1}+x_{2}>0$. By routine computation we get $k<0 ; j \geqslant 0 \Leftrightarrow \nu^{2} \geqslant 3 / 4 \beta^{2}\left(\alpha^{2}+\beta^{2}\right)$. From the fact $x_{1} x_{2}=-\beta^{2} v^{2} /\left(\alpha^{2}+\beta^{2}\right)$ we have the validity of (15). If $j<0$ then (16) holds
because $2 \beta^{2} v^{2}\left(x_{1}+x_{2}\right) / x_{1} x_{2}\left(x_{1}-x_{2}\right)<0<\alpha \beta$. Thus, the conclusion follows directly from Lemma 3.

Lemma 4. Let $i>0, j<0, k>0$ be real numbers and let $\psi(t)$ be for $t>0$ defined by

$$
\psi(t):=\frac{2 i}{t^{3}}+\frac{3 j}{t^{4}}+\frac{4 k}{t^{5}}
$$

Then

$$
\begin{array}{cccc}
\psi(t) \in M_{n}^{*} & \text { on } & (0, \infty) \quad \text { for } \quad 3(n+3) j^{2}<8(n+4) i k \\
\psi(t) \in M_{n}^{*} & \text { on } & (-(n+3) j / 2 i, \infty) \quad \text { otherwise }
\end{array}
$$

Proof. The n-th derivative of $\psi(t)$ has the form

$$
\psi^{(n)}(t)=(-1)^{n} \frac{1}{t^{5+n}} Q_{n}(t), \quad Q_{n}(t)=i(n+2)!t^{2}+j \frac{(n+3)!}{2} t+k \frac{(n+4)!}{6}
$$

The function Q_{n} is positive for $t \in R$ if $3 j^{2}(n+3)<8 i k(n+4)$ and in the opposite case is surely positive for $t>-(n+3) j / 2 i>x_{3}$, where x_{3} is the root of Q_{n}, i.e.

$$
x_{3}=-(n+3) j / 4 i+\left[j^{2}(n+3)^{2} / 4-2 i(n+3)(n+4) / 3\right]^{1 / 2}
$$

Since $Q_{k}(t)>0$ on $(-(n+3) j / 2 i, \infty)$ for $k=0,1, \ldots, n$ the proof is complete.
Corollary 2. Let $\alpha \beta>0, v \geqq 0$ be real numbers and $\omega=8 \beta^{2} / 9 \alpha^{2}-v^{2}$. Let $h(t)$ be defined by.

$$
\begin{equation*}
h(t):=\frac{\beta^{2}}{t^{2}}-\frac{2 \alpha \beta v^{2}}{t^{3}}+\frac{v^{2} \beta^{2}}{t^{4}} . \tag{22}
\end{equation*}
$$

If $\omega>0$ then $h(t) \in M_{\infty}^{*}$ for $t>0$.
If $\omega \leqq 0$ then $h(t) \in M_{n}^{*}$ for $t>(n+2) \alpha \nu^{2} / \beta, n=0,1, \ldots$
Proof. Let us put $i=\beta^{2}, j=-2 \alpha \beta v^{2}, k=v^{2} \beta^{2}$ in Lemma 4. Let $\omega>0$. Then it holds $h>0$ for $t>0$ and using Lemma $4-h^{\prime} \in M_{\infty}^{*}$ for $t>0$, i.e. $h \in M_{\infty}^{*}$ for $t>0$. Now, let $\omega \leqq 0$. Then we have $h>0$ for $t>2 \alpha v^{2} / \beta$ and $-h^{\prime} \in M_{n}$ for $t>(n+3) \alpha \nu^{2} / \beta \quad n=0,1, \ldots$, q.e.d.

3. Statement of principal results

3.1. General theorems. Using Lemma 1 and [4, Theorem 3.5] we have

Theorem 1. Let $i \geqq 0$ be arbitrary fixed integer and $W(t) \in M_{n}, W(t)>0$. For the function $F_{i}(t)$ defined by (9) $)_{i}$ suppose

$$
F_{i}^{\prime} \in M_{n}, \quad F_{i}^{\prime}>0 \quad \text { for } t \in(0, \infty), F_{i}(\infty)>0
$$

Then it holds

$$
\left\{R_{k}^{(i)}\right\}_{k=0}^{\infty} \in M_{n}^{*}
$$

and, in particular

$$
\left\{\Delta t_{k}^{(i)}\right\}_{k=0}^{\infty} \in M_{n}^{*}
$$

consequently, the sequence of the differences of succesive zeros of a function $\alpha y^{(i)}+$ $+\beta y^{(i+1)}$, where $y(t)$ is any solution of (1), is monotonic of order n.
If, in addition, $W(t)$ is non-constant function, then the hypothesis $F_{i}^{\prime}>0$ may be omitted. If $W(t) \in M_{n}$ and the hypothesis $F_{i}^{\prime}>0$ is omitted then it holds $\left\{R_{k}^{(i)}\right\} \in M_{n}$.

Theorem 2. Suppose in (1)

$$
a(t) \equiv 0, b^{\prime}(t) \in M_{\infty}, b>0, b^{\prime}>0 \quad \text { on } \quad(0, \infty)
$$

Let $W(t) \in M_{\infty}(0, \infty)$ and let R_{k} be defined by $(11)_{0}$.
If $\alpha \beta \leqq 0$ then $\left\{R_{k}\right\}_{k=0}^{\infty} \in M_{\infty}^{*}$.
If $\alpha \beta>0$ suppose, in addition, for some $p \geqq 0$

$$
\begin{equation*}
b^{(n+1)}=0\left(t^{-(n+p)}\right) \quad b^{(n+1)} \neq 0\left(t^{-(n+p+1)}\right) \text { as } t \rightarrow \infty . \tag{23}
\end{equation*}
$$

Then there exists $e=e(n) \in N$ such that $\left\{R_{k}\right\}_{k=e(n)}^{\infty} \in M_{n}^{*}$.
Remark 1. In the case $a(t) \equiv 0$ we can (11) $)_{0}$ rewrite as

$$
\begin{gather*}
R_{k}=\int_{t_{k}}^{t_{k+1}} W(t) \exp \left\{\frac{\lambda}{2} \int \frac{-\beta^{2} b^{\prime}}{\alpha^{2}+\beta^{2} b}\right\}\left|\alpha y+\beta y^{\prime}\right|^{\lambda} \mathrm{d} t= \tag{11}\\
=\int_{t_{k}}^{t_{k+1}} W(t)\left|\frac{\alpha y+\beta y^{\prime}}{\sqrt{\alpha^{2}+\beta^{2} b}}\right|^{\lambda} \mathrm{d} t .
\end{gather*}
$$

Remark 2. Supposing $\alpha \beta<0, W(t) \equiv 1$ in (11)' we obtain some results of [1].

3.2. Application for Airy functions

Consider

$$
\begin{equation*}
y^{\prime \prime}+c t^{\mu} y=0 \tag{24}
\end{equation*}
$$

with $t>0$, where $c>0$ and $\mu \in(0,1]$ are parameters. When $c=\mu=1,(24)$ is reduced to the equation

$$
y^{\prime \prime}+t y=0
$$

which is satisfied by the linearly independent Airy functions $\operatorname{Ai}(-t)$ and $B i(-t)$ of first and second kind, respectively. Using Theorem 2 we obtain the following result for generalized Airy functions.

Theorem 3. Let $\mu \in(0,1]$ and let $y(t)$ be any non-trivial solution of (24). Then for R_{k} defined by (11)' it holds

$$
\begin{array}{cc}
\begin{array}{c}
\left\{R_{k}\right\}_{k=0}^{\infty} \in M_{\infty}^{*}
\end{array} \quad \text { if } \quad \alpha \beta \leqq 0, \\
\left\{R_{k}\right\}_{k=e(n)}^{\infty} \in M_{n}^{*} & \text { if }
\end{array} \quad \alpha \beta>0, n=0,1, \ldots .
$$

where $e=e(n, \alpha, \beta, c, \mu)$ is sufficiently great integer, i.e. if $c=1, \alpha / \beta=1, n=0$ it is $e=2$.

In particular the conclusion holds for the sequence of zeros of the function $\alpha y+\beta y^{\prime}$.

3.3. Application for Bessel functions

By a Bessel function of order v we mean any nontrivial solution $C_{v}(t)$ of the Bessel equation

$$
y^{\prime \prime}+\frac{1}{t} y^{\prime}+\left(1-\frac{v^{2}}{t^{2}}\right) y=0 \quad t \in(0, \infty) .
$$

Let us define for $t>v$ and $\lambda>-1$

$$
\begin{gather*}
R_{v k}=\int_{d_{v k}}^{d_{v k+1}} W(t) \frac{t^{3 \lambda / 2}}{\left[\left(\alpha^{2}+\beta^{2}\right) t^{2}-\alpha \beta t-\beta^{2} v^{2}\right]^{\lambda / 2}}\left|\alpha C_{v}+\beta C_{v}^{\prime}\right|^{\lambda} \mathrm{d} t, \tag{26}\\
R_{v k}^{\prime}=\int_{d_{v k}^{\prime}}^{d_{v k+1}^{\prime}} W(t) \exp \left|\frac{\lambda}{2} \int_{c}^{t} A_{1}(\tau) \mathrm{d} \tau\right|\left|\alpha C_{v}^{\prime}+\beta C_{v}^{\prime \prime}\right|^{\lambda} \mathrm{d} t, \tag{27}
\end{gather*}
$$

where $\left\{d_{v k}\right\}$ and $\left\{d_{v k}^{\prime}\right\}$ is a sequence of zeros of the function $\alpha C_{v}+\beta C_{v}^{\prime}$ and $\alpha C_{v}^{\prime}+$ $+\beta C_{v}^{\prime \prime}$ respectively and $A_{1}=A-B^{\prime} \mid B$.
From [5, Theorem 1], [6, Remark 9.1] it follows that the sequence of differences of zeros of C_{v}^{\prime} is completely monotonic for every v but the sequence of differences of zeros of C_{v} is completely monotonic only for $v>1 / 2$. It is interesting to compare this fact with following theorems.

Theorem 4. Let $\alpha \beta>0, v>1 / 2$ be arbitrary numbers. Let $W(t) \in M_{n}$ and $W(t)>$ >0 for $t>v$, let $R_{v k}$ be defined by (26) ${ }_{v}$.
Let $m=m(n):=\max \left(v, \alpha \nu^{2}(n+2) / \beta\right)$. Let p and $e=e(n)$ be the smallest integer satisfying $d_{v p} \geqq v$ and $d_{v, e(n)} \geqq m(n)$, respectively. Then

$$
\begin{array}{cl}
\left\{R_{v k}\right\}_{\}=p}^{\infty} \in M_{\infty}^{*} & \text { if } \quad v^{2}<2 \beta^{2} / 3 \alpha^{2}, \\
\left\{R_{v k}\right\}_{k=e(n)}^{\infty} \in M_{n}^{*}, & n=0,1, \ldots \text { otherwise, }
\end{array}
$$

In particular the conclusion holds for the sequence of differences of zeros of any function $\alpha C_{v}+\beta C_{v}^{\prime}$.

Theorem 5. Let $\alpha \beta>0, v \geqq 0$ be arbitrary numbers. Let $W(t) \in M_{n}$ and $W(t)>0$ for $t>v$, let $R_{v k}^{\prime}$ be defined by (27) .

Let τ_{n} denote the unique zero of $(18)_{n}^{\prime}$; where i, j, k and x_{1} are defined by (21) and (20), respectively. Let $\gamma=\gamma(n):=\max \left\{x_{1}, \tau_{n}, v, \alpha \nu^{2}(n+3) / \beta\right\}$. Let p and $q=q(n)$ be the smallest integer satisfying $d_{v p}^{\prime} \geqq v$ and $d_{v, q(n)}^{\prime}>\gamma(n)$, respectively.

Then

$$
\begin{aligned}
\left\{R_{v k}^{\prime}\right\}_{k=p}^{\infty} \in M_{\infty}^{*} \quad \text { if } & \frac{3}{4 \beta^{2}\left(\alpha^{2}+\beta^{2}\right)} \leq v^{2}<\frac{2 \beta^{2}}{3 \alpha^{2}} \\
\left\{R_{v k}^{\prime}\right\}_{k=q(n)}^{\infty} \in M_{n-2}^{*} & (n=2,3, \ldots) \text { otherwise } .
\end{aligned}
$$

In particular the conclusion holds for the sequence of differences of successive zeros of any function $\alpha C_{v}^{\prime}+\beta C_{v}^{\prime \prime}$.

4. Proof of Theorems 2, 3, 4, 5

Lemma 5. Let $f \in M_{\infty}$ in $(0<t<\infty)$. Then $f^{(k)}=0\left(t^{-k}\right)$ as $t \rightarrow \infty, k=0,1, \ldots$ Proof. It is similar to [7, proof of Theorem 14a], where we suppose $f \in M_{\infty}$ in ($0 \leqq t<\infty$).

Since $f \in M_{\infty}$ in $(0<t<\infty)$ it is $f \in M_{\infty}$ in $(\delta \leqq t<\infty), \delta>0$. Then from [7, Theorem 3a, pp. 146] $f(t)$ is analytic for $t>\delta$. For any number $a>\delta$

$$
f(t)=\sum_{k=0}^{\infty} f^{(k)}(a) \frac{(t-a)^{k}}{k!} \quad(\delta<t<2 a-\delta)
$$

Since each term of the series is positive when $t<a$ we have

$$
f^{(k)}(a) \frac{(t-a)^{k}}{k!^{k}} \leqq f(t) \leqq f(\delta) \quad(\delta<t<a)
$$

Allowing t to approach δ this becomes

$$
f^{(k)}(a) \frac{(\delta-a)^{k}}{k!} \leqq f(\delta) \quad(\delta<a<\infty)
$$

Hence

$$
f^{(k)}(t)=0\left((t-\delta)^{-k}\right)=0\left(t^{-k}\right) \quad(t \rightarrow \infty, k=0,1, \ldots)
$$

Proof of Theorem 2. According to (10) we get

$$
F_{i}^{\prime}=b^{\prime}-\frac{3}{4}\left[\left(\frac{K^{\prime}}{K}\right)^{2}\right]^{\prime}+\frac{1}{2_{j}}\left(\frac{K^{\prime \prime}}{K}\right)^{\prime}+\alpha \beta\left(\frac{b^{\prime}}{K_{!}}\right)^{\prime},
$$

where $K=\alpha^{2}+\beta^{2} b$. It holds $K>0, K^{\prime} \in M_{\infty}$. Using [e.g. 4, Lemma 2.3] we have $1 / K \in M_{\infty}, b^{\prime} / K \in M_{\infty},\left(K^{\prime \prime} / K\right)^{\prime} \in M_{\infty}$ on $(0, \infty)$.

1. Let $\alpha \beta \leqq 0$. Then $\alpha \beta\left(b^{\prime} / K\right)^{\prime} \in M_{\infty}$ and thus $F^{\prime} \in M_{\infty}$ on ($0, \infty$). Since $b^{\prime}>0$ w e have $F^{\prime}>0$.
2. Let $\alpha \beta>0$. From l'Hopital rule we get for $i=0,1, \ldots, n b^{(i+1)}=0\left(t^{-(t+p)}\right)$, $b^{(i+1)} \neq 0\left(t^{-(i+p+1)}\right)$ as $t \rightarrow \infty$.
By Lemma 5 we have $(1 / K)^{(i)}=0\left(t^{-i}\right), i=0,1, \ldots$ and thus

$$
\left(b^{\prime} \mid K\right)^{(i)}=\sum_{j=0}^{i}\binom{i}{j} b^{(j+1)}(1 / K)^{(i-j)}=0\left(t^{-(j+p)} \cdot t^{-(i-j)}\right)=0\left(t^{-(l+p)}\right) .
$$

Hence there exists $\sigma_{i}=\sigma(i)>0$ such that

$$
(-1)^{i} t^{i+p+1}\left(b^{(i+1)}+\alpha \beta\left(b^{\prime} / K\right)^{(i+1)}\right)>0 \quad \text { for } t>\sigma_{i}, i=0, \ldots, n .
$$

It holds $\sigma_{i+1}>\sigma_{i}$ and thus $b^{\prime}+\alpha \beta\left(b^{\prime} / K\right)^{\prime} \in M_{n}^{*}$ for $t>\sigma_{n}$. Together we have $F^{\prime} \in M_{n}^{*}$ for $t>\sigma_{n}$.
3. It remains to prove $F(\infty)>0$. It holds $K^{\prime}(\infty)=\beta^{2} b^{\prime}(\infty)$. If $b^{\prime}(\infty)=0$ then $K^{\prime \prime \prime}(\infty)=0$ and $F(\infty)=b(\infty)>0$. If $b^{\prime}(\infty)=c>0$ then it holds $c<\infty$, $K(\infty)=\infty, K^{\prime \prime}(\infty)=0$. Therefore $F(\infty)=b(\infty)>0$.

Now, the conclusion follows from Theorem 1 for $i=0$.
Proof of Theorem 3. In the case of the equation (24) there are $a(t) \equiv 0$, $b(t)=c t^{\mu}$ and thus $b^{\prime} \in M_{\infty}, b>0, b^{\prime}>0$ for $t>0, \mu \in(0,1]$.

1. Let $\alpha \beta \leqq 0$ and $\mu \in(0,1]$. Then conclusion follows directly from Theorem 2.
2. Let $\alpha \beta>0$ and $\mu \in(0,1)$. Then (23) is fulfilled for $p=1-\mu$ and by Theorem 2 we have $\left\{R_{\mu k}\right\}_{k=e(n)}^{\infty} \in M_{n}^{*}$. Let us compute $e=e(0)$. By routine computation we get

$$
b^{\prime}+\alpha \beta\left(\frac{b^{\prime}}{K}\right)^{\prime}=b^{\prime}-\alpha \beta \mu c \frac{\beta^{2} c+\alpha^{2}(1-\mu) t^{-\mu}}{\left(\beta^{2} c t+\alpha^{2} t^{1-\mu}\right)^{2}}>c \mu t^{\mu-1}-\frac{2 \alpha \mu}{\beta t^{2}}>0
$$

for $t>T$, where $T=\max \left\{\left(\frac{2 \alpha}{\beta c}\right)^{1 /(\mu+1)},\left(\frac{\alpha^{2}(1-\mu)}{\beta^{2} c}\right)^{1 / \mu}\right\}$. If $c=1, \alpha / \beta=1$ then $e(0)=2$.
3. It remains to prove the limit case $\mu=1$ for $\alpha \beta>0$. The functions $A(t), B(t)$ in (14) ${ }_{0}$ are

$$
\begin{gathered}
A_{\mu}(t)=A(t)=-\mu \beta^{2} t^{\mu-1} /\left(\alpha^{2}+\beta^{2} t^{\mu}\right) \\
B_{\mu}(t)=B(t)=t^{\mu}+\alpha \beta \mu t^{\mu-1} /\left(\alpha^{2}+\beta^{2} t^{\mu}\right), \quad \mu \in(0,1] .
\end{gathered}
$$

Since $A_{\mu}(t) \rightarrow A_{1}(t), B_{\mu}(t) \rightarrow B_{1}(t)$ uniformly on $[\delta, \infty), \delta>0$ as $\mu \rightarrow 1_{\text {_ we }}$ have $\alpha y_{\mu}(t)+\beta y_{\mu}^{\prime}(t) \rightarrow \alpha y_{1}(t)+\beta y_{1}^{\prime}(t)$ uniformly on compact subintervals of $[\delta, \infty)$. It follows $t_{\mu k} \rightarrow t_{1 k}$ as $\mu \rightarrow 1_{-}, k=0,1, \ldots$, where $t_{\mu k}$ denotes k-th zero points of $\alpha y_{\mu}+\beta y_{\mu}^{\prime}$ and y_{μ} is a solution of (24). From this we obtain for $k=0,1, \ldots$

$$
\lim _{\mu \rightarrow 1-} R_{\mu k}=\lim _{\mu \rightarrow 1-} \int_{t_{\mu k}}^{t_{\mu k+1}} W(t)\left|\frac{\alpha y_{\mu}+\beta y_{\mu}^{\prime}}{\sqrt{\alpha^{2}+\beta^{2} c t^{\mu}}}\right|^{\lambda} \mathrm{d} t=\int_{t_{1 k}}^{t_{1}, k+1} W(t)\left|\frac{\alpha y_{1}+\beta y_{1}^{\prime}}{\sqrt{\alpha^{2}+\beta^{2} c t}}\right|^{\lambda} \mathrm{d} t=R_{1 k} .
$$

Finally, because $\left\{R_{\mu k}\right\}_{k=e(n)}^{\infty} \in M_{n}^{*}$, we have for $k=e(n), e(n)+1, \ldots$

$$
0 \leqq \lim _{\mu \rightarrow 1-}(-1)^{n} \Delta^{n} R_{\mu k}=(-1)^{n} \Delta^{n} \lim _{\mu \rightarrow 1-} R_{\mu k}=(-1)^{n} \Delta^{n} R_{1 k}, \quad \text { q.e.d. }
$$

Remark 3. In the limit case $\mu=1$ the function F defined by (10) is

$$
F=t+\alpha \beta /\left(\alpha^{2}+\beta^{2} t\right)-3 \beta^{2} / 4\left(\alpha^{2}+\beta^{2} t\right)^{2} .
$$

Thus, if $\alpha \beta>0$ there exists $t_{n}=t(n)$ such that $F>0, F^{\prime}>0, F^{\prime \prime} \in M_{n}$ for $t>t_{n}$, $n=2,3, \ldots$ It shows ,strength'‘ of the sufficient condition in Theorem 1.

Proof of Theorem 4. In the case of the equation (25) ${ }_{v}$ there is $a(t)=1 / t, b(t)=$ $=1-v^{2} / t^{2}$. It holds $a \in M_{\infty}, b^{\prime} \in M_{\infty}, b>0$ for $t>v$. Let us denote $\omega=$ $=8 \beta^{2} / 9 \alpha^{2}-v^{2}$. In the proof we use Theorem 1 for $i=0$. We have by (3), (5)

$$
\begin{gathered}
K=\alpha^{2}+\beta^{2}\left(1-v^{2} / t^{2}\right)-\alpha \beta / t, \quad K^{\prime}=\alpha \beta / t^{2}+2 v^{2} \beta^{2} / t^{3} \\
K^{\prime \prime}=-2 \alpha \beta / t^{3}-6 v^{2} \beta^{2} / t^{4}, \quad f=1-\left(v^{2}-1 / 4\right) / t^{2}, \quad f^{\prime}=2\left(v^{2}-1 / 4\right) / t^{3}
\end{gathered}
$$

It holds $f^{\prime} \in M_{\infty}^{*}$ for $v>\frac{1}{2}, K^{\prime} \in M_{\infty}$ on (v, ∞) and $K>0$ on (v, ∞) because K increases and $K(v)=\alpha^{2}+\alpha \beta / v \geqq 0$. Let us define the functions $G(t), H(t)$ as

$$
\begin{gather*}
G(t)=\left(K^{\prime \prime}+a K^{\prime}\right) / 2 K \\
H(t)=\alpha \beta b^{\prime} / K+\beta^{2}\left(a^{\prime} b-a b^{\prime}\right) / K \tag{28}
\end{gather*}
$$

Then,

$$
\begin{gathered}
G(t)=\frac{1}{2 K}\left(-\frac{\alpha \beta}{t^{3}}-\frac{4 v^{2} \beta^{2}}{t^{4}}\right), \quad H(t)=\frac{1}{K}\left(-\frac{\beta^{2}}{t^{2}}+\frac{2 \alpha \beta v^{2}}{t^{3}}-\frac{v^{2} \beta^{2}}{t^{4}}\right) \\
H^{\prime}=-\left(\frac{1}{K}\right)^{\prime} h+\frac{1}{K} h^{\prime}, \quad \text { where } h(t) \text { is defined by (22). }
\end{gathered}
$$

According to [4, Lemma 2.3] we have

$$
1 / K \in M_{\infty}, \quad-(1 / K)^{\prime} \in M_{\infty}, \quad-\frac{3}{4}\left[\left(K^{\prime} / K\right)^{2}\right]^{\prime} \in M_{\infty}, \quad G^{\prime} \in M_{\infty} \text { for } t>v
$$

Using Corollary 2 we get $H^{\prime} \in M_{\infty}^{*}$ for $t>v$ and $H^{\prime} \in M_{n}^{*}$ for $t>\alpha \nu^{2}(n+2) / \beta$, if $\omega>0$ and $\omega \leqq 0$, respectively.

Since we can write the derivation of F defined by (10) as

$$
F^{\prime}=f^{\prime}-\frac{3}{4}\left[\left(\frac{K^{\prime}}{K}\right)^{2}\right]^{\prime}+G^{\prime}+H^{\prime}
$$

we obtain $F^{\prime} \in M_{\infty}^{*}$ and $F^{\prime} \in M_{n}^{*}$ for $t>v$ and $t>\alpha v^{2}(n+2) / \beta$, if $\omega>0$ and $\omega \leqq 0$, respectively.

It is easy to verify $F(\infty)=f(\infty)=1$.
The proof is complete.
Proof of Theorem 5. According to Theorem 1 and Lemma 2 it suffices to prove $A \in M_{n}^{*}, B^{\prime} \in M_{n}^{*}, B>0$ for $t>\gamma(n)$ and $B(\infty)-A^{2}(\infty) / 4=\delta>0$.

It holds $B^{\prime}=b^{\prime}+H^{\prime}$, where $H(t)$ is defined by (28). Evidently $b^{\prime} \in M_{\infty}^{*}$ for $t>v$ and by the same way as in the proof of Theorem 4 we prove $H^{\prime} \in M_{\infty}^{*}$ for $t>\nu$ and $H^{\prime} \in M_{n}^{*}$ for $t>\alpha \nu^{2}(n+2) / \beta$ if $\omega>0$ and $\omega \leqq 0$, respectively. Together
$B^{\prime} \in M_{\infty}^{*}$ for $t>v$ and $B^{\prime} \in M_{n}^{*}$ for $t>\alpha v^{2}(n+2) / \beta$ if $\omega>0$ and $\omega \leqq 0$, respectively.

In the case of the equation (25) ${ }_{v}$ the function $A(t)$ has the form (19). From Corollary 1 it follows $A \in M_{\infty}^{*}$ for $t>x_{1}$ and $A \in M_{n}^{*}$ for $t>\tau_{n}$ if $v^{2} \geqslant 3 / 4 \beta^{2} \times$ $\times\left(\alpha^{2}+\beta^{2}\right)$ and $v^{2}<3 / 4 \beta^{2}\left(\alpha^{2}+\beta^{2}\right)$, respectively.

It is easy to see that $B(\infty)-A^{2}(\infty) / 4=1$. The proof is complete.

REFERENCES

[1] M. Hácik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y^{\prime \prime}+q(t) y=0$ with regard to the basis $[\alpha, . \beta]$, Arch. Math. (Brno) 8, (1972), 79-83.
[2] E. Pavlíková: Higher monotonicity properties of i-th derivatives of solutions of $y^{\prime \prime}+a y^{\prime}+$ $+b y=0$, Acta Univ. Palac. Olom., Math. 73 (1982), 69-77.
[3] S. Staněk, J. Vosmanský : Transformations between second order linear differential equations (to appear).
[4] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0$, Arch. Math. (Brno) 2 (1974), 87-102.
[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions, Arch. Math. (Brno) 1 (1977), 55-64.
[6] J. Vosmanský: Some higher monotonicity properties of i-th derivatives of solutions $\boldsymbol{y}^{\prime \prime}+$ $+a(t) y^{\prime}+b(t) y=0$, Ist. mat. U. D., Univ. Firenze, preprint, No. 1972/17.
[7] D. V. Widder: The Laplace transform (Princeton University Press, Princeton, 1941).

Z. Došlá-Tesařová
Department of Mathematics
University of J. E. Purkyně
66295 Brno, Janáčkovo nám. 2a
Czechoslovakia

