Archivum Mathematicum

Bohdan Zelinka

Odd graphs

Archivum Mathematicum, Vol. 21 (1985), No. 4, 181--187
Persistent URL: http://dml.cz/dmlcz/107232

Terms of use:

© Masaryk University, 1985
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Vol. 21, No. 4 (1985), $181-188$

ODD GRAPHS

BOHDAN ZELINKA, Liberec
(Received July 20, 1981)

Abstract

Let k be an integer, $k \geqq 2, M_{k}=\{1,2, \ldots, 2 k-1\}$, let \mathscr{V}_{k} be the set of all ($k-1$)-element subsets of M_{k}. The odd graph O_{k} is the graph whose vertex set is \mathscr{V}_{k} and in which two vertices are adjacent if and only if they are disjoint as sets. Various properties of odd graph are studied.

Key words. Odd graph, chromatic number, distance, diameter, radius, geodetic graph, domination number, domatic number.

In [2] the concept of the odd graph is introduced. Here we shall show some of its properties.

Let k be an integer, $k \geqq 2$. Let $M_{k}=\{1,2, \ldots, 2 k-1\}$, let \mathscr{V}_{k} be the set of all subsets of M_{k} which have the cardinality $k-1$. The odd graph O_{k} is the graph whose vertex set is \mathscr{V}_{k} and in which two vertices are adjacent if and only if they are disjoint (as sets).

The graph O_{2} is the complete graph K_{3} with three vertices, the graph O_{3} is the well-known Petersen graph.

First we determine the chromatic numbers of odd graphs.
Theorem 1. The chromatic number of every odd graph is equal to 3.
Proof. Consider an odd graph O_{k}. Let \mathscr{U}_{1} be the set of all sets belonging to \mathscr{V}_{k} and containing the number 1 , let \mathscr{U}_{2} be the set of all sets belonging to $\mathscr{V}_{k}-\mathscr{U}_{1}$ and containing the number 2, let $\mathscr{U}_{3}=\mathscr{V}_{k}-\left(\mathscr{U}_{1} \cup \mathscr{U}_{2}\right)$. Any two elements of \mathscr{U}_{1} are non-adjacent (as vertices of O_{k}), because their intersection contains the number 1 and therefore it is non-empty. Hence \mathscr{U}_{1} is an independent set in O_{k} and analogously so is \mathscr{U}_{2}. Now let $X \in \mathscr{U}_{3}, Y \in \mathscr{U}_{3}$. Then the sets X, Y are subsets of the set $M_{k}-\{1,2\}$. This set has the cardinality $2 k-3$, while each of the sets X, Y has the cardinality $k-1$. If X, Y were disjoint, their union $X \cup Y$ would have the cardinality $2(k-1)$ which is greater than the cardinality of $M_{k}-$ $-\{1,2\}$; this is impossible. Therefore $X \cap Y \neq \emptyset$ for any two elements X, Y of \mathscr{U}_{3} and \mathscr{U}_{3} is an independent set in O_{k}, too. The vertices of O_{k} can be coloured by three colours $1,2,3$ in such a way that by the colour $i(i=1,2,3)$ the vertices belonging to \mathscr{U}_{i} are coloured. This colouring is admissible; no two vertices of the same colour are adjacent. We have proved that $\chi\left(O_{k}\right) \leqq 3$, where $\chi\left(O_{k}\right)$ is the chromatic number of O_{k}.

Now we shall construct the sets X_{1}, \ldots, X_{k} and Y_{1}, \ldots, Y_{k} as follows. We put $X_{1}=\{1, \ldots, k-1\}$. If X_{i} is constructed for some i, then we put $Y_{i}=M_{k}-$ - ($X_{i} \cup\{2 k-i\}$). If Y_{i} is constructed for some i, then we put $X_{i+1}=M_{k}-$ $-\left(Y_{i} \cup\{i\}\right)$. The reader himself may verify that then $Y_{k}=X_{1}$. Further $X_{i} \cap Y_{i}=$ $=\emptyset$ for $i=1, \ldots, k$ and $X_{i+1} \cap Y_{i}=\emptyset$ for $i=1, \ldots, k-1$. Therefore X_{1}, Y_{1}, $X_{2}, Y_{2}, \ldots, X_{k}, Y_{k}=X_{1}$ are vertices of a circuit in O_{k} having the length $2 k-1$ which is an odd number. Hence O_{k} is not bipartite and $\chi\left(O_{k}\right) \geqq 3$. Together with the previous inequality this yields $\chi\left(O_{k}\right)=3$.

Now we shall study the distance in O_{k}.
Theorem 2. Let U, V be two vertices of the graph O_{k}, let $|U \cap V|=m$. Then the distance of the vertices U, V in O_{k} is $\Delta(m)=\min (2 m+1,2 k-2 m-2)$.

Remark. The vertices of O_{k} are denoted by capital letters, because they are sets.
Proof. If for two pairs U_{1}, V_{1} and U_{2}, V_{2} of vertices of Q_{k} we have $\left|U_{1} \cap V_{1}\right|=$ $=\left|U_{2} \cap V_{2}\right|$, then evidently there exists a permutation of the set M_{k} which maps U_{1} onto U_{2} and V_{1} onto V_{2}; this permutation induces an automorphism of O_{k} which again maps U_{1} onto U_{2} and V_{1} onto V_{2}. This implies that the distance of two vertices of O_{k} is a function of the cardinality of their intersection and we may denote it by $\Delta(m)$, where m is this cardinality. Now let us have two vertices U, V of O_{k}, let $m=|U \cap V|$. If $m=0$, then $U \cap V=\emptyset$ and the vertices U, V are adjacent; their distance is 1 , therefore $\Delta(0)=1$, which fulfills the assertion. If $m=$ $=k-1$, then $U=V$, because $|U|=|V|=k-1$. The distance of U and V is 0 , therefore $\Delta(k-1)=0$, which again fulfils the assertion. Now let m be an arbitrary integer such that $2 \leqq m \leqq k-2$. We have $|U-V|=|V-U|=$ $=k-1-m,\left|M_{k}-(U \cup V)\right|=m+1$. Let P be the shortest path in O_{k} connecting U and V. Let U_{0} (or V_{0}) be the vertex of P adjacer.t to U (or V respectively). Evidently $d(U, V)=d\left(U_{0}, V_{0}\right)+2$, where d denotes the distance of two vertices. We have $U \cap U_{0}=V \cap V_{0}=\emptyset$, therefore the intersection $U_{0} \cap V_{0} \subseteq$ $\subseteq M_{k}-(U \cup V)$ and $\left|U_{0} \cap V_{0}\right| \leqq m+1$. On the other hand, the set U_{0} can have at most $k-1-m$ elements in common with V and the other vertices of U_{0} belong to $M_{k}-(U \cup V)$, hence $\left|U_{0} \cap\left(M_{k}-(U \cup V)\right)\right| \geqq m$ and analogously $\left|V_{0} \cap\left(M_{k}-(U \cup V)\right)\right| \geqq m$. This implies $\left|U_{0} \cap V_{0}\right| \geqq m-1$. Thus there are three possibilitics for the cardinality of $U_{0} \cap V_{0}$, namely $m-1$ or m or $m+1$. As P is the shortest path connecting U and V, the sets U_{0}, V_{0} must be chosen so that their distance might be the least possible, i.c. $d\left(U_{0}, V_{0}\right)=\min (\Delta(m-1)$, $\Delta(m), \Delta(m+1))$. As $\Delta(m)=d(U, V)=d\left(U_{0}, V_{0}\right)+2$, the equalities $d\left(U_{0}, V_{0}\right)=$ $=\Delta(m)$ and $\left|U_{0} \cap V_{0}\right|=m$ are impossible. There can be only either $d\left(U_{0}, V_{0}\right)=$ $=m-1$ and $\Delta(m)=\Delta(m-1)+2$, or $d\left(U_{0}, V_{0}\right)=m+1$ and $\Delta(m)=\Delta(m+1)+$ +2 . Suppose that $\Delta(m)=\Delta(m-1)+2$ holds, hence $d\left(U_{0}, V_{0}\right)=\Delta(m-1)$ and $\left|U_{0} \cap V_{0}\right|=m-1$. If $m=1$, then U_{0}, V_{0} are adjacent and $d(U, V)=$ $=\Delta(1)=3$ (evidently it cannot be less) which fulfills the assertion. If $m \geqq 2$,
consider the interrelation between $\Delta(m-1)$ and $\Delta(m-2)$. Analogously there is $\Delta(m-1)=\Delta(m-2)+2$ or $\Delta(m-1)=\Delta(m)+2$. But, as we have supposed $\Delta(m)=\Delta(m-1)+2$, we must have $\Delta(m-1)=\Delta(m-2)+2$. Inductively we can prove that if $\Delta(m)=\Delta(m-1)+2$ for some m, then $\Delta(p)=\Delta(p-1)+2$ for each integer p such that $2 \leqq p \leqq m$. Analogously if $\Delta(m)=\Delta(m+1)+2$ for some m, then $\Delta(q)=\Delta(q+1)+2$ for each integer q such that $m \leqq q \leqq$ $\leqq k-2$. As we have proved $\Delta(0)=1, \Delta(k-1)=0$, the function $\Delta(m)$ is uniquely determined as $\Delta(m)=\min (2 m+1,2 k-2 m-2)$.

Corollary. The diameter and the radius of the graph O_{k} are both equal to $k-1$. The number $k-1$ is evidently the maximum of $\Delta(m)$; it is attained in $m=$ $=\frac{1}{2}(k-1)$ for k odd and in $m=\frac{1}{2} k-1$ for k even. As O_{k} is vertex-transitive, its radius is equal to its diameter.

Theorem 3. The graph O_{k} for every integer $k \geqq 2$ is geodetic.
Proof. In the proof of Theorem 2 we have shown that for given vertices U, V the vertices U_{0}, V_{0} (the vertices adjacent to U and V respectively in the shortest path connecting U and V) are determined uniquely. Thus by induction we can prove that whole the shortest path between U and V is uniquely determined.

The graph O_{k} is an example of a geodetic graph of the diameter $k-1$ which is simultanecusly regular of the degree k.

In the sequel we shall use a cartain labelling of edges of O_{k}.
Let e be an edge of O_{k}, let U, V be its end vertices. Then by $\lambda(e)$ we denote the element of the one-element set $M_{k}-(U \cup V)$.

An edge-dominating set in a graph G is a subset D of the edge set $E(G)$ of G with the property that to each edge $e \in E(G)-D$ there exists an edge $f \in D$ such that the edges e, f have a common end vertex. The minimal number of vertices of an edge-dominating set in G is called the edge-domination number of G.

Analogously to the domatic number of a graph [1] we may define the edgedomatic number of a graph G.

An edge-domatic partition of a graph G is a partition of the edge set $E(G)$ of G, all of whose classes are edge-dominating sets in G. The maximal number of classes of an edge-domatic partition of G is called the edge-domatic number of G.

Theorem 4. The edge-domination number of the graph O_{k} is equal to $\frac{1}{2}\binom{2 k-2}{k-1}$ and its edge-domatic number is equal to $2 k-1$.

Proof. Let $j \in M_{k}$ and let E_{j} be the set of all edges e of O_{k} such that $\lambda(e)=j$, Let f be an edge of O_{k} not belonging to E_{j}, let $\lambda(f)=k$. Then $k \neq j$. Let $U_{,}, V$ be the end vertices of f. Exactly one of the sets U, V contains the element j; without loss of generality let it be U. Let $W=M_{k}-(V \cup\{j\})$; then V and W are joined
by an edge belonging to E_{j}. As f was chosen arbitrarily, we have proved that E_{j} is an edge-dominating set (for an arbitrary j).

Now let us look for the cardinality of E_{j}. If X is an arbitrary subset of $M_{k}-\{j\}$ of the cardinality $k-1$ and $Y=M_{k}-(X \cup\{j\})$, then the vertices X, Y are joined by an edge belonging to E_{j} and vice versa. The number of subsets of M_{k} -$-\{j\}$ of the cardinality $k-1$ is equal to $\binom{2 k-2}{k-1}$. Having in mind that for a subset X of $M_{k}-\{j\}$ of the cardinality $k-1$ the set $Y=M_{k}-(X \cup\{j\})$ is also a subset of $M_{k}-\{j\}$ of the cardinality $k-1$, we find that the number of unordered pairs $\{X, Y\}$ of described sets is $\frac{1}{2}\binom{2 k-2}{k-1}$ and this is also the cardinality of E_{j}. This number does not depend on j, thus all the sets E_{j} for $j=1, \ldots, 2 k-1$ have equal cardinalities. The edge-domination number of O_{k} is thus at most $\frac{1}{2}\binom{2 k-2}{k-1}$ and its edge-domatic number is at least $2 k-1$.

The edge-domatic number of a graph is evidently equal to the domatic number [1] of its line-graph. The degree of each vertex of the line-graph of O_{k} is $2 k-2$ and this implies [1] that its domatic number (and thus the edge-domatic number of O_{k}) is at most $2 k-1$. We have proved that the edge-domatic number of O_{k} is $2 k-1$.

Now suppose that there exists an edge-dominating set D of a cardinality $d<$ $<\frac{1}{2}\binom{2 k-2}{k-1}$. For each edge $e \in D$ the set consisting of e and all edges having a common end vertex with e has the cardinality $2 k-1$. As each edge of O_{k} either is in D, or has an end vertex in common with an edge of D, the number of edges of O_{k} is at most $d(2 k-1)<\frac{1}{2}(2 k-1)\binom{2 k-2}{k-1}=\frac{1}{2} k\binom{2 k-1}{k-1}$. But the number at the right-hand side of this inequality is the number of edges of O_{k}. (The number of vertices is $\binom{2 k-1}{k-1}$ and the graph is regular of the degree k.) As $d(2 k-1)$ is less, we have a contradiction. Thus each E_{j} is an edge-dominating set of the least cardinality and the edge-domination number of O_{k} is $\frac{1}{2}\binom{2 k-2}{k-1}$.

Theorem 5. Let T_{k} be a tree with the vertex set $\left\{a, b, c_{1}, \ldots, c_{k-1}, d_{1}, \ldots, d_{k-1}\right\}$ and with the edges $a b, a c_{i}, b d_{i}$ for $i=1, \ldots, k-1$. Then the graph O_{k} can be decomposed into $\frac{1}{2}\binom{2 k-2}{k-1}$ pairwise edge-disjoint subgraphs which are all isomorphic to T_{k}. Moreover, each of these subgraphs contains exactly one edge from each set E_{j} for $j=1, \ldots, 2 k-1$.

Proof. Let $j \in\{1, \ldots, 2 k-1\}$, let E_{j} have the same meaning as in the proof of Theorem 4. Let e_{1}, e_{2} be two elements of E_{j}. Suppose that these edges have a common end vertex U. Let V_{1} (or V_{2}) be the end vertex of e_{1} (or e_{2} respectively)
distinct from U. Then $M_{k}-\left(U \cup V_{1}\right)=M_{k}-\left(U \cup V_{2}\right)=\{j\}$ and $U \cap V_{1}=$ $=U \cap V_{2}=\emptyset$. This implies $V_{1}=V_{2}$ and also $e_{1}=e_{2}$, because O_{k} is a graph without multiple edges. We have proved that there exist no two distinct edges of E_{j} which would have an end vertex in common. Now suppose that to the edges e_{1}, e_{2} of E_{j} there exists an edge f which has common end vertices with both e_{1}, e_{2}. Let U_{1} (or U_{2}) be the common end vertex of e_{1} (or e_{2} respectively) and f. Let V_{1} (or V_{2}) be the end vertex of e_{1} (or e_{2} respectively) distinct from U_{1} and U_{2}. Then $M_{k}-\left(U_{1} \cup V_{1}\right)=M_{k}-\left(U_{2} \cup V_{2}\right)=\{j\}, U_{1} \cap V_{1}=U_{2} \cap V_{2}=U_{1} \cap U_{2}=\emptyset$. This implies that none of the sets $U_{1}, U_{2}, V_{1}, V_{2}$ contains j. As $U_{1} \cap U_{2}=\emptyset$, we have $M_{k}-\left(U_{1} \cup U_{2}\right)=\{j\}$ and $f \in E_{j}$. According to the above proved this is possible only if $e_{1}=e_{2}=f$. Therefore if $\lambda\left(e_{1}\right)=\lambda\left(e_{2}\right)$ and $e_{1} \neq e_{2}$, then the distance between an arbitrary end vertex of e_{1} and an arbitrary vertex of e_{2} is at least 2.

Now let e be an edge of O_{k}. Let $G(e)$ be the subgraph of O_{k} consisting of the edge e, all edges having a common end vertex with e and of end vertices of all of these edges. This is a tree isomorphic to T_{k}. If e_{1}, e_{2} are two distinct edges of $G(e)$, then either they have a common end vertex, or there exists an edge of $G(e)$ which has common end vertices with both of them. According to the above proved the labellings of edges of $G(e)$ are pairwise different.

Let $\mathscr{T}(j)$ be the set of subtrees $G(e)$ for all edges $e \in E_{j}$. Any two distinct trees from $\mathscr{T}(j)$ are edge-disjoint; otherwise there would exist two distinct edges of E_{j} with a common end vertex or with the property that there exists an edge having common vertices with both of them. The cardinality of $\mathscr{T}(j)$ is equal to that of E_{j}, namely $\frac{1}{2}\binom{2 k-2}{k-1}$. Each tree from $\mathscr{T}(j)$ has $2 k-1$ edges. Hence the union of all trees from $\mathscr{T}(j)$ has $\frac{1}{2}\binom{2 k-2}{k-1} \cdot(2 k-1)=\frac{1}{2} k\binom{2 k-1}{k-1}$ edges and this is the number of edges of O_{k}. We have proved that $\mathscr{T}\left({ }_{j}\right)$ is the required decomposition.

To contract an edge of a graph means to delete this edge and to identify its end vertices.

Theorem 6. The graph $O_{k}^{\prime}(j)$ obtained from O_{k} by contracting every edge e with $\lambda(e)=j$, where j is an integer between 1 and $2 k-1$, is a bipartite graph.

Proof. By the described contractions each tree from $\mathscr{T}(j)$ is transformed into a star. Hence $O_{k}^{\prime}(j)$ is a graph which is the union of edge-disjoint stars with the property that each of them contains all edges incident with its centre in $O_{k}^{\prime}(j)$. Every graph with this property is bipartite.

Let $\mathscr{P}(n)$ be the set of all linear orderings of the set $\{1, \ldots, n\}$. Let π_{1}, π_{2} be elements of $\mathscr{P}(n)$. We say that π_{1}, π_{2} are dihedrally equivalent, if either $\pi_{1}=\pi_{2}$, or π_{2} can be obtained from π_{1} by a cyclic permutation, by reversing or by a super-
position of a cyclic permutation and a reversing. The relation thus defined is evidently an equivalence on the set $\mathscr{P}(n)$.

Let C be a circuit of the length n whose edges are labelled by pairwise different numbers from the set $\{1, \ldots, n\}$. If we run around C and write the labels of the traversed edges, we may obtain different linear orderings of the set $\{1, \ldots, n\}$ according to in which vertex we have started and in which sense we have gone. These orderings form one class of the dihedral equivalence. We may say that to C a class of the dihedral equivalence on $\mathscr{P}(n)$ corresponds.

The number of classes of the dihedral equivalence on $\mathscr{P}(n)$ is evidently equal to $\frac{1}{2}(n-1)$.

Theorem 7. The graph O_{k} with the labelling λ is the union of $\frac{1}{2}(2 k-2)!$ circuits of the length $2 k-1$ which correspond to pairwise different classes of the dihedral equivalence on $\mathscr{P}(2 k-1)$. Each edge of O_{k} belongs to $(k-1)!^{2}$ and each vertex to $\frac{1}{2} k!(k-1)!$ such circuits.

Proof. Let \mathscr{C} be a class of the dihedral equivalence on $\mathscr{P}(2 k-1)$. Let $\pi \in \mathscr{C}$ and $\left[a_{1}, \ldots, a_{2 k-1}\right]=\pi$. Let $U_{1}=\left\{a_{i} \mid i\right.$ even, $\left.2 \leqq i \leqq 2 k-2\right\}$. We construct the sets $U_{2}, \ldots, U_{2 k-1}$ recursively. If U_{i} is constructed for some i, then $U_{i+1}=$ $=M_{k}-\left(U_{i} \cup\{i\}\right)$. Any two vertices U_{i}, U_{i+1} are adjacent in O_{k}. Further it may be easily proved that $M_{k}-\left(U_{2 k-1} \cup\{2 k-1\}\right)=U_{1}$ and the vertices $U_{2 k-1}, U_{1}$ are adjacent, too. We have obtained a circuit in O_{k}; evidently this circuit corresponds to \mathscr{C}. We may construct such a circuit for each class of the dihedral equivalence on $\mathscr{P}(2 k-1)$. From the construction it is evident that circuits corresponding to the same class are identical and that each edge of $O_{\boldsymbol{k}}$ is contained in some of these circuits. The family of the mentioned circuits will be denoted by \mathfrak{C}.

The graph $\boldsymbol{O}_{\boldsymbol{k}}$ is evidently vertex-transitive and edge-transitive. (A graph is vertex-transitive, if to any two of its vertices there exists its automorphism which maps one vertex onto the other. Analogously the edge-transitivity is defined.) This implies that for any two vertices V_{1}, V_{2} of O_{k} the number of circuits of \mathbb{C} containing V_{1} is equal to the number of those containing V_{2} and an analogous assertion holds for edges, too. Thus the number of circuits from \mathfrak{C} containing any vertex is: obtained by dividing the sum of lengths of all circuits of \mathbb{C}, namely $\frac{1}{2}(2 k-2)!(2 k-1)$, by the number of vertices of O_{k}, namely $\binom{2 k-1}{k-1}$; the result is $\frac{1}{2} k!(k-1)$!. If we divide the number $\frac{1}{2}(2 k-2)!(2 k-1)$ by the number of edges of O_{k}, namely $\frac{1}{2} k\binom{2 k-1}{k-1}$, we obtain the number of circuits of \mathfrak{C} containing any edge, namely $(k-1)!^{2}$.

ODD GRAPHS

REFERENCES

[1] E. J. Cockayne and S. T. Hedetniemi: Towards a theory of domination in graphs, Networks 7 (1977), 247-261.
[2] H. M. Mulder: The Interval Function of a Graph, Math. Centrum, Amsterdam 1980.

B. Zelinka

Department of Metal and Plastics Forming, VSST
Studentská 1292
46001 Liberec 1
Czechoslovakia

