Archivum Mathematicum

Josef Kalas

Some results on the asymptotic behaviour of the equation $\dot{z}=f(t, z)$ with a complex-valued function f

Archivum Mathematicum, Vol. 21 (1985), No. 4, 195--199
Persistent URL: http://dml.cz/dmlcz/107234

Terms of use:

© Masaryk University, 1985
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

SOME RESULTS ON THE ASYMPTOTIC BEHAVIOUR OF THE EQUATION $\dot{z}=f(t, z)$ WITH A COMPLEX-VALUED FUNCTION f

JOSEF KALAS, Brno
(Received July 18, 1983)

Abstract

Asymptotic properties of the solutions of an equation $\dot{z}=f(t, z)$ with a complexvalued function f are studied. The technique of the proofs of results is based on the modified Ljapunov function method. The applicability of results is illustrated by an example.

Key words. Asymptotic behaviour, singular point, Ljapunov function.
Consider a differential equation

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)] \tag{1}
\end{equation*}
$$

in which G is a real-valued function and h, g are complex-valued functions, t and z being a real and a complex variable, respectively. In [3] we investigated the asymptotic nature of the solutions of (1) under the assumptions that h is holomorphic in a simply connected region $\Omega, h(z)=0 \Leftrightarrow z=0, h^{(j)}(0)=0$ for $j=$ $=1, \ldots, n-1, h^{(n)}(0) \neq 0$, where $n \geqq 2$ is an integer. The purpose of the present paper is to give some further results on the asymptotic behaviour of the equation (1) under the above mentioned assumptions. In the whole paper we use the notation from [2] and [3]. Assume $G \in C(I \times(\Omega-\{0\})), g \in \tilde{C}(I \times(\Omega-\{0\}))$.

Theorem 1. Let $0<\vartheta \leqq \lambda_{+}$. Suppose that
(i) for any $\tau \geqq t_{0}$, the initial value problem (1), $z(\tau)=0$, possesses the unique solution $z \equiv 0$;
(ii) there exists a function $E(t) \in C\left[t_{0}, \infty\right)$ such that

$$
\begin{equation*}
\sup _{t_{0} \leq t<\infty} \int_{t_{0}}^{t} E(s) \mathrm{d} s=x<\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E(t) \tag{3}
\end{equation*}
$$

holds for $t \geqq t_{0}, z \in K(0, \vartheta)$.
If a solution $z(t)$ (1) satisfies

$$
z\left(t_{1}\right) \in C l K(0, \gamma)
$$

where $t_{1} \geqq t_{0}$ and

$$
0<\beta=\gamma e^{x} \exp \left[-\int_{t_{0}}^{t_{1}} E(s) \mathrm{d} s\right]<\vartheta
$$

then

$$
z(t) \in C l K(0, \beta)
$$

for $t \geqq t_{1}$.
Proof. Put $\mathscr{M}=\left\{t \geqq t_{1}: z(t) \in K(0, \vartheta)\right\}$. For $t \in \mathscr{M}$ we have

$$
\begin{equation*}
W(z)=G(t, z) W(z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \tag{4}
\end{equation*}
$$

where $z=z(t)$. By virtue of (3) we get

$$
\begin{equation*}
W(z(t)) \leqq E(t) W(z(t)) \quad \text { for } t \in \mathscr{M} \tag{5}
\end{equation*}
$$

Suppose there is a $t^{*}>t_{1}$ such that $z\left(t^{*}\right) \in K(\beta, \vartheta)$ and $z(t) \in K(0, \vartheta)$ for $t \in\left[t_{1}, t^{*}\right]$. The inequality (5) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{t_{1}}^{t} E(s) \mathrm{d} s\right]\right\} \leqq 0, \quad t \in \mathscr{M}
$$

Integrating over $\left[t_{1}, t^{*}\right]$ we obtain

$$
W\left(z\left(t^{*}\right)\right) \exp \left[-\int_{t_{1}}^{t *} E(s) \mathrm{d} s\right]-W\left(z\left(t_{1}\right)\right) \leqq 0
$$

whence

$$
\begin{aligned}
& W\left(z\left(t^{*}\right)\right) \leqq W\left(z\left(t_{1}\right)\right) \exp \left[\int_{t_{1}}^{t^{*}} E(s) \mathrm{d} s\right] \leqq \\
& \leqq \gamma \exp \left[x-\int_{t_{0}}^{t_{1}} E(s) \mathrm{d} s\right] \leqq \beta<W\left(z\left(t^{*}\right)\right)
\end{aligned}
$$

This contradiction proves $z(t) \in C l K(0, \beta)$ for $t \geqq t_{1}$.
Theorem 2. Suppose that the hypotheses of Theorem 1 are fulfilled and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} E(s) \mathrm{d} s=-\infty \tag{6}
\end{equation*}
$$

If a solution $z(t)$ of (1) satisfies

$$
\begin{equation*}
z\left(t_{1}\right) \in K\left(0, \vartheta e^{-x} \exp \left[\int_{t_{0}}^{t_{1}} E(s) \mathrm{d} s\right]\right) \cup\{0\} \tag{7}
\end{equation*}
$$

where $t_{1} \geqq t_{0}$, then to any $\varepsilon, 0<\varepsilon<\lambda_{+}$, there is a $T=T\left(\varepsilon, t_{1}\right)>0$ independent of $z(t)$, such that

$$
z(t) \in K(0, \varepsilon) \cup\{0\}
$$

for $t \geqq t_{1}+T$.

Proof. Put $\mathscr{M}=\left\{t \geqq t_{1}: z(t) \in K(0, \vartheta)\right\}$. For $t \in \mathscr{M}$ we get (4), where $z=z(t)$. From Theorem 1 it follows that $z(t) \in K(0, \vartheta) \cup\{0\}$ for $t \geqq t_{1}$.

Choose $\varepsilon, 0<\varepsilon<\lambda_{+}$. Without loss of generality it may be supposed $\varepsilon<\vartheta$. Pick $T=T\left(\varepsilon, t_{1}\right)>0$ so that

$$
\int_{t_{1}}^{t} E(s) \mathrm{d} s<\ln \frac{\varepsilon}{2 \vartheta}
$$

for $t \geqq t_{1}+T$. We claim that $z(t) \in K(0, \varepsilon) \cup\{0\}$ for $t \geqq t_{1}+T$. If it is not the case, there exists a $t^{*} \geqq t_{1}+T$ for which

$$
\begin{equation*}
z\left(t^{*}\right) \notin K(0, \varepsilon) \cup\{0\} . \tag{8}
\end{equation*}
$$

The inequality (5) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{t_{1}}^{t} E(s) \mathrm{d} s\right]\right\} \leqq 0
$$

Since $z(t) \neq 0$ for $t \in\left[t_{1}, t^{*}\right]$, the integration of this inequality from t_{1} to t^{*}. gives

$$
W\left(z\left(t^{*}\right)\right) \exp \left[-\int_{i_{1}}^{t *} E(s) \mathrm{d} s\right]-W\left(z\left(t_{1}\right)\right) \leqq 0
$$

Hence

$$
W\left(z\left(t^{*}\right)\right) \leqq W\left(z\left(t_{1}\right)\right) \exp \left[\int_{t_{1}}^{t^{*}} E(s) \mathrm{d} s\right] \leqq \vartheta \frac{\varepsilon}{[\vartheta}=\frac{\varepsilon}{2}<\varepsilon
$$

which contradicts (8) and implies $z(t) \in K(0, \varepsilon) \cup\{0\}$ for $t \geqq t_{1}+T$.
Theorem 3. Let the assumptions of Theorem 2 be fulfilled except (6) is replaced by

$$
\begin{equation*}
\int_{s}^{s+t} E(\xi) \mathrm{d} \xi \rightarrow-\infty \quad \text { as } \quad t \rightarrow \infty . \tag{9}
\end{equation*}
$$

uniformly for $s \in\left[t_{0}, \infty\right)$.
If a solution $z(t)$ of (1) satisfies' (7), where $t_{1}>t_{0}$, then to any $\varepsilon, 0<\varepsilon<\lambda_{+}$, there is a $T=T(\varepsilon)>0$ independent of t_{1} and $z(t)$ such that

$$
z(t) \in K(0, \varepsilon) \cup\{0\}
$$

for $t \geqq t_{1}+T$.
Proof. Because of (9), there exists a $T=T(\varepsilon)>0$ so that $t-t_{1} \geqq T$ implies.

$$
\int_{t_{1}}^{t} E(\xi) \mathrm{d} \xi=\int_{t_{1}}^{t_{1}+\left(t-t_{1}\right)} E(\xi) \mathrm{d} \xi<\ln \frac{\varepsilon}{2 \vartheta} .
$$

The statement follows from the proof of Theorem 2.
Theorems $1-3$ have their corresponding analogies (Theorems $1^{\prime}-3^{\prime}$) for the case when we consider subsets of $K\left(\infty, \lambda_{-}\right) \cup\{0\}$ instead of those of $K\left(0, \lambda_{+}\right) \cup$ $\cup\{0\}$. We shall formulate here only the first of these results:

Theorem 1'. Let $\lambda_{-} \leqq \vartheta<\infty$. Suppose that
(i) for any $\tau \geqq t_{0}$, the initial value problem (1), $z(\tau)=0$, possesses the unique solution $z \equiv 0$;
(ii) there exists an $E(t) \in C\left[t_{0}, \infty\right)$ such that

$$
\begin{equation*}
\sup _{t_{0} \leqq t<\infty} \int_{t_{0}}^{t} E(s) \mathrm{d} s=x<\infty \tag{2}
\end{equation*}
$$

and

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E(t)
$$

holds for $t \geqq t_{0}, z \in K(\infty, \vartheta)$.
If a solution $z(t)$ of (1) satisfies

$$
z\left(t_{1}\right) \in C l K(\infty, \gamma)
$$

where $t_{1} \geqq t_{0}$ and

$$
\vartheta<\beta=\gamma e^{-x} \exp \left[\int_{t_{0}}^{t_{1}} E(s) \mathrm{d} s\right]<\infty,
$$

then

$$
z(t) \in C l K(\infty, \beta)
$$

for $t \geqq t_{1}$.
Example. Consider an equation

$$
\begin{equation*}
\dot{z}=z^{2} q(t, z) \tag{10}
\end{equation*}
$$

where $q \in \tilde{\mathbf{C}}(I \times C)$ satisfies locally a Lipschitz condition with respect to z. Putting $G(t, z) \equiv 1, h(z)=b(z-a) z^{2}, g(t, z)=[q(t, z)+b(a-z)] z^{2}$, where $a, b \in C$, $a \neq 0 \neq b$, we can write (10) in the form

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+\dot{g}(t, z)] \tag{1}
\end{equation*}
$$

From [2, Example 2] we have $h^{\prime}(z)=b(3 z-2 a) z, h^{\prime \prime}(z)=2 b(3 z-a), n=2$, $W(z)=|a||z||z-a|^{-1} \exp \left\{\operatorname{Re}\left[-a z^{-1}\right]\right\}, \lambda_{+}=\lambda_{-}=|a|, k=a / 2$. Supposing that there is an $H(t) \in C(I)$ such that $|q(t, z)+(a-z) b| \leqq H(t)|z-a|$ for $t \geqq t_{0}, z \in C$, we obtain

$$
G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq-\operatorname{Re}\left(a^{2} b\right)+|a|^{2} H(t)
$$

By use of Theorem 1 and Theorem 2 we get the following assertion:
If there exist $a, b \in C, H(t) \in C(I)$ such that $b \neq 0$,

$$
\begin{equation*}
|q(t, z)+(a-z) b| \leqq H(t)|z-a| \quad \text { for } t \geqq t_{0}, z \in C \text {, } \tag{11}
\end{equation*}
$$

and the function
(12) $|a|^{2} \int_{t_{0}}^{t} H(\xi) \mathrm{d} \xi-\operatorname{Re}\left(a^{2} b\right) t \quad$ is upper bounded on $\quad t_{0} \leqq t<\infty$,
then every solution $z(t)$ of (10) satisfying

$$
\begin{gather*}
\left|z\left(t_{1}\right)\right|\left|z\left(t_{1}\right)-a\right|^{-1} \exp \left\{\operatorname{Re}\left[-a z^{-1}\left(t_{1}\right)\right]\right\}= \tag{13}\\
=\omega<\mathrm{e}^{-x} \exp \left[|a|^{2} \int_{t_{0}}^{t_{1}} H(s) \mathrm{d} s-\operatorname{Re}\left(a^{2} b\right)\left(t_{1}-t_{0}\right)\right]
\end{gather*}
$$

where $t_{1} \geqq t_{0}$ and

$$
\begin{equation*}
x=\sup _{t_{0} \leqq t<\infty}\left[|a|^{2} \int_{t_{0}}^{t} H(\xi) \mathrm{d} \xi-\operatorname{Re}\left(a^{2} b\right)\left(t-t_{0}\right)\right] \tag{14}
\end{equation*}
$$

is defined for all $t \geqq t_{1}$, and

$$
\begin{aligned}
|z(t) \| z(t)-a|^{-1} \exp \{ & \left.\operatorname{Re}\left[-a z^{-1}(t)\right]\right\} \leqq \omega \mathrm{e}^{x} \exp \left[-|a|^{2} \int_{t_{0}}^{t_{1}} H(s) \mathrm{d} s+\right. \\
+ & \left.\operatorname{Re}\left(a^{2} b\right)\left(t_{1}-t_{0}\right)\right]
\end{aligned}
$$

holds for $t \geqq t_{1}$. If, in addition,

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[|a|^{2} \int_{t_{0}}^{t} H(\xi) \mathrm{d} \xi-\operatorname{Re}\left(a^{2} b\right) t\right]=-\infty \tag{15}
\end{equation*}
$$

then any solution $z(t)$ of (10) satisfying (13), where $t_{1} \geqq t_{0}$ and x is defined by (14), fulfils the condition

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

REFERENCES

[1] Z. Tesařová : The Riccati differential equation with complex-valued coefficients and application to the equation $x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0$, Arch. Math. (Brno) 18 (1982), 133-143.
[2] J. Kalas: On a "Liapunov-like" function for an equation $z=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 18 (1982), 65-76.
[3] J. Kalas: Asymptotic nature of solutions of the equation $\dot{z}=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 20 (1984), 83-94.
[4] C. Kulig: On a system of differential equations, Zeszyty Naukowe Univ. Jagiellońskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48.
[5] M. Ráb: Geometrical approach to the study of the Riccati differential equation with complex--valued coefficients, J. Diff. Equations 25 (1977), 108-114.

[^0]
[^0]: J. Kalas

 Department of Mathematics, J. E. Purkyně University
 66295 Brno, Janáčkovo nám. 2a
 Czechoslovakia

