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ON /-BEST APPROXIMATION IN TOPOLOGICAL 
SPACES 

T. D. NARANG*, Amritsar 
(Received December 2, 1983) 

Abstract. If K is a non-empty closed subset of a Hausdorff topological space X and fa continu
ous real-valued function on XxX then an element k0e Kis said to be an f-best approximation 
to x in K if f(xt k0) = inf {f(xt k): ke K}. The set-valued map which takes each x e X to its 
set of its f-best approximants is called the f-best approximation map. In this paper we discuss 
the existence of f-best approximation, uniqueness of f-best approximation and the continuity 
of the f-best approximation map in Hausdorff topological spaces. 

Key words, f-best approximation, f-projection, f-proximinal, f-Chebyshev, f-boundedly com
pact, y-compact andf-convex set. 

By using the existence of elements of/-best approximation in Hausdorff topo
logical spaces, certain results on fixed points were proved by Pai and Veermani 
in [6]. Here we shall also discuss the existence of/-best approximation, uniqueness 
of /-best approximation and the continuity of the /-best approximation map 
in Hausdorff topological spaces. We start with a few definitions. 

Let X be a Hausdorff topological space and/a continuous real-valued function 
on XxX. Let K be a non-empty closed subset of X. 

An element k0 e K is said to be f-nearest to x in K or f best approximation to x 
in K [6] if f(x, k0) = /(*, K) = inf {/(*, k) : k e K}. 

The set-valued mapping Pf: x -* Pf(x) s {k0 e K : f(x, k0) = f(x, K)} is called 
the f-best approximation map or f-projection [6] supported on K. 

The set Kis said to be f-proximinal (respectively f-Chebyshev) [6] if Pf(x) # & 
(respectively Pf(x) is a singleton set) for each x in X. 

The set Kis said to be infeompact at a point x e X[6] if each minimizing net {&„} 
in K (i.e. f(x, kj -+f(x, K)) has a convergent subnet converging in K. 

K is said to be inf-compact [6] if it is inf-compact at each point x € X. 
In case X is a metric space and / = d, the metric on X, the notion of inf-

compactness of K coincides with the well known notion of approximative compact
ness (see [7]) of K. In this case, /-nearest elements to x in K are usually called 
elements of best approximation to x in K. v 

* The author is thankful to the U.G.C, India for .financial support. 
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The mapping f is said to be inf-compact at a point x e X if the sub-level sets 

Sr = {yeX:f(x,y) = r} 

are compact for each reR.fis said to be inf-compact if it is inf-compact for 
each xe X. 

The set K is said to be f-boundedly compact if for each xe X and r e R, K n Sr 

is compact. 
The set K is said to be y-compact if for each xeX, there exists y >f(x, K) such 

that K n Sy is compact. 
Let Xand Y be two topological spaces, then a mapping g : X -• 2 r (the collection 

of all subsets of Y) is called upper-Kuratowski semi-continuous if the relations 

lim xa = x, yme g(xa), . lim ya = y 
a a 

imply v e ^ ) . 
g is called upper-semi-continuous (lower-semi-continuous) if the set 

g - 1 ^ ) = {xeX:g(x)nA * 0} "' '".,_"" 

is closed (open) for each closed (open) set A in Y. 
Throughout the following, we assume that Xis a Hausdorff topological space, 

/ i s a continuous real-valued function on Xx Xand Kis a non-empty closed subset 
ofX/ 

Proposition 1. Consider the following statements: 
(i) / is inf compact, 

(ii) Kis fboundedly compact, 
(iii) K is y-compact, , ' 
(iv) K /s inf-compact, 
(v) K is fproximinal. 

We have (i) => (ii) => (iii) => (iv) => (v). 
Proof. (i)=>(ii). Since / is inf-compact, Sr = {yeX :f(x,y)>.'g r} is compact 

for each xe Xand reR. This implies that Kn Sr is compact for each xe Xand 
/ e R as K is closed. 

(ii) => (iii). Let xeX. Choose any y > f(x, K). Consider the set Kn Sy. This 
is compact, so Kis y-compact. 

(iii) => (iv). Let xe Xand {fcj be a minimizing net in Ki.e. f(x, ka) ->/(*, K). 
Since Kis y-compact, there exists y > f(x, K) such that Kn Sy is compact. Since 
y > f(x, K) = iimf(x, Ara), {fcj is eventually in Kn Sy. Compactness of Kn SY 

implies that the new net, obtained by deleting those ka,s which do not lie in Kn Sy, 
ivill have a convergent subnet in K. Hence K is inf-compact. 

(iv) => (v). Let xe X. By the definition of f(x, K), we can extract a net {fca} 
in K such that limf(x, km) = f(x, .K). Now K being inf-compact at x, {ka} has 

a 
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a convergent subnet {kfi} converging tofc0e K. Then 

f(xtK)~limf(x,kfi) 

= \imf(jc,lce) 

^f(x , k0), as f being continuous, is lower-semi-continuous 
lzf(x,K). 

Hence f(x, k0) = f(x, K) and so k0 e Pf(x). 
It is well known (see e.g. [7]) that for a proximinal set in a metric space, the 

metric projection is upper-Kuratowski-semicontinuous and for approximatively 
compact sets it is upper-semicontinuous. For f-proximinal sets we have the follow
ing two propositions: 

Proposition 2. If a subset K of X is f-proximinal then Pf is upper-Kuratowski-semi-
continuous. 

Proof. Let {xa} be a net in X such that xa -» x0, ya $ Pf(xa),,and ya ->\y0. 
Since K is closed, y0 e K We claim that y0 e Pf(x0). 

yaePf (xa) => f(xa, ya) = inff(xa, z) => limf(xa, ya) = lim inff(xa, z) => 
zeK a a seK 

=> A*o, yo) => inf f(x0, Z), as f is continuous => y0 e Pf(x0). 
zeK 

Proposition 3. If K is inf-compact then Pf is upper-semicontinuous. 
Proof. Let A be a closed subset of X. We want to show that the setP = 

= {xe X : Pf(x) A n =t= 0} is closed. Let {xa} be a net in F such that xa -+ x0. 
Then P/(xa) n A + 0 for each a. Let ya e Pf(xa) n At. Then we have f(xat ya) = 
= f(xa,K). This implies that limf(xa, ya) = limf(xa, K) i.e. lim f(x0,y,) = 

* a « • ^ . 

= f(x0, K) asfis continuous and x -»f(x, K)is continuous i.e. {ya} is a minimizing 
net for x0 in K. Since Kis inf-compact, {ya} has a convergent subnet {^} converging 
to k0 e K. Continuity of f gives f(x0, y0) = f(x0, K) i.e. >>0 G Pf(x0) n ^ whence 
x0 e P and F is closed. 

Now we shall discuss conditions under which f-best approximation is unique. 
A subset A of X is said to be f-convex if x, ye A imply ze A where z e X is 

such that f(x, z) + f(z, y) = f(x, y) i.e. 

[x, y] = {z G X :f(x, z) + f(z, JO = f(x, >>)} 

is a subset of A for all x, y G A. 
fis said to be a convex function if 

f(x0, *) ^ r, f(*0y) ^ r imply f(*0, z) < r 

for all z G [x, y], where x0 is arbitrary but .fixed point of X 
fis said to be a strictly convex function if 

f(*0, x) = r = f(x0, >0, x * y imply f(j0, z) < r. 
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We have the following theorem on uniqueness of/-best approximation: 

Theorem 1. Let K be f-convex subset of X and fa strictly convex function on XxX. 
Then Pf(x) is atmost singleton for each x e X. 

Proof. Let if possible, kx, k2 ePf(x) i.e. kl9 k2e K and f(x, kx) = f(x9 k2) -=-
= /(x, K) = r. Since K is /-convex, \k1, k2]

 c -& Since / is strictly convex, 
f(x,z) < r for all z e ] kx, fc2 [, a contradiction. 

Remark. From Theorem 1, we get the following: If / i s a strictly convex function 
on Xx X and K an /-proximinal, /-convex subset of X then K is/-Chebyshev. This 
is similar to the result: A proximinal convex subset of a strictly convex metric 
space is Chebyshev [5]. 

The following theorem gives conditions under which the mapping Pf is 
continuous. 

Theorem 2. If K is inf compact, f Chebyshev set and f a continuous mapping 
of XxX -* R then Pf is continuous. 

Proof. The proof of this theorem follows from Proposition 3 using the facts 
that for /Chebyshev sets, the mapping Pf is single-valued and for single-valued 
maps the two concepts of upper-semi-continuity and continuity coincide. 

Theorem 2 is analogous to the following result: 
If K is an approximatively compact, Chebyshev subset of a metric space then 

the metric projection is continuous [7]. . 

Remark. The notion of e-approximation (see [7]), best simultaneous approxima
tion (see [1]), proximinal points for pair of sets (see [4]), best co-approximation 
(see [3]), strong approximation (see [2]) and strong co-approximation can be 
extended to Hausdorff topological spaces relative to the function / and can be 
further investigated. 
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