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TRANSFORMATIONS OF LINEAR SECOND 
ORDER ORDINARY DIFFERENTIAL EQUATIONS 

S. STANfiK, J. VOSMANSK* 
(Received November 2, 1984) * 

Abstract. The transformation z(t) « a(t) y + /?(t) y' of solutions y of a linear second order 
ordinary differential in general form is considered and a differential equation for z(t) is derived. 
Previous results concerning such problem are discussed. 

Key words. Transformations of ordinary differential equations, Bdcher function, linear 
combination of solution and its derivative. 

Several papers investigating certain special types of transformations between 
linear differential equations of the second order have appeared recently. There 
were studied e.g. transformations of the equation 

(1) У" + q(t)y = 0 

onto the equation 

(2) z" + Q(t)y = 0 

by means of the formula z(t) = oc(t) y + j?(t) y'} y being a solution of (1). 
In the present paper the transformation of the above mentioned type of the 

equation 

(3) y" + a(t)/ + b(t)y = 0 

onto 

(4) 2m + A(t) z' + B(t) z = 0 

is considered. Note that the independent variable remains the same, but the 
derivative / is included in the transformation. Throughout the paper j denotes 
an interval (c, d), where —oo ^ c < d £ oo. 

Definition 1. Let A, Be C0(j), a, be Cl(j), a, p e C2(j). We say that the formula 

(5) z(t) = x(t)y + Kt)/ 

maps the set of solutions of the equation (3) onto the set of solutions of the 
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equation (4) (or shortly transforms (3) onto (4)) if for any solution y = y(t) of (3) 
there is a unique solution z = z(t) of (4) such that 

(6) t(t) = a(0 y(0 + P(0 yV) for t ej 

and reversely for any solution z = z(t) of (4) there is a unique solution y = y(t) 
of (3) complying with (6). 

Remark 1. The transformation (5) between (1) and (2) from a little different 
points of view is investigated and its various priperties are given in [5], [6] and [9].t 

However, the functions a(0, P(t) cannot be chosen arbitrarily in such a case because 
of vanishing of the term involving the first derivative in (2). 

Some applications to the Bessel equation are given in [3], [4], [8], particulary 
the function /*/v(0 + tJ'y(t) is investigated in [8]. The case a = 0 is used in order 
to investigate the distribution of zeros of derivatives of solutions of (1) and (3) e.g. 
in [10], [11]. The case a(0 = kfi(t) is used in [7] to solve certain boundary value 
problem. 

Lemma 1. If a, be Cl(j\ a, p e C2(j) and the formula z(t) = a(0 y + P(t) y' 
transforms (3) onto (4), then 

(7) a2 + <xp' — <xpa — <x'P + p2b ^ 0 on j . 

Proof. Let yi,y2 denote a pair of linearly independent solutions of (3). Let 
zx, z2 be defined for t ej by 

*<(0 = ay* + 0y.\ ' = - ,2. 

The function (5) transforms (3) onto (4) iff zx, z2 are linearly independent solutions 
of (4). Let w(f, g) = f'g — fg' denote the wronskian of the couple f g. Direct 
calculation shows that 

*(zi, z2) - (a2 + <xp' — *Pa — <x'p + p2b) w(y,, y2) 

and (7) follows now immediately. 

Theorem 1. Let a, be C\j), a, p e C2(j) and(D(t) = ) a2 + <xp' — <xpa — <x'p + 
+ P2b T* 0 on j . The formula z(t) = a(0 y + P(t) y' transforms the equation 

(3) y" + tf(0y' + *(0y = 0 
onto 

(4) z" + A(t)zf + B(t)z=-0 
just if 

A=a — D'lD, B = b — (DtU2 — UXD2)ID, 
where 

(8) Ux(t) = (x + pf-pay 

U2(t) = pb-<x\ 
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Di(t) = 2a' + p" — P'a-pd, 

D2(t) = 2p'b + pb' — aoc' — a". 

Proof. Let y be a solution of (3) and set z(t) = a(t)y + P(t)y'. Then 

z' = (a' - pb) y + (a + P' - pa) y', 

z» = (a" — ab-r- 2p'b — pb' + pab) y + 

+ (2a' — aa + p" — 2j3'a + Pa2 — pd — pb) y' 

which implies that z is a solution of (4) just if the coefficients A, B comply with 

(9) a" — <xb — 2p'b — pb' + pab + A(a' — pb) + B<x = 0, 

(10) 2a' — aa + P" — 2p'a + Pa2 — pd — pb + A(a + pt — Pa) + Bp = 0. 

The linear combination (9) /? — (10) a can be expressed in the form 

—D' + Da — DA = 0, 
so that 

A = a — D'/D. 

Suppose B in the form B = b + XID, X being a sought expression. Substituting 
the above mentioned form of A and B into (9) and (10) we receive 

—DD2 + D'U2 + aX = 0, DDt — D'UX + pX = 0 
and 

(11) D(—aD2 + pDJ + D'(«U2 — pU,) + (a2 + p2) X = 0. 

Direct calculation shows that 

(12) D = ocUl+pU2, D' = aDi+pD2, 

with respect to (8) and (12) it follows from (11) that 

(aU, + pU2) ( - a/)2 + PD,) + (aZ>, + pD2) (aU2 - pUt) + 
+ (a2 + p2) X = 0, 

so that 
(a2 + p2) (DtU2 — U,D2 + X) = 0 

a n d ^ = UvD2 — DlU2. 

Remark 2. Only small changes in the proof of Theorem 1 are necessary to receive 
the following a little different formulation of Theorem 1. 

Theorem 1'. Let a, be C\j), a, P e C2(j). If the formula (5) transforms (3) 
onto (4) then D(t) ^ Oonj and (8) holds. Conversely, if D(t) # 0 onj and (8), hold, 
then the formula (5) transforms (3) onto (4). 
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Remark 3. Shortly, we can say that the equation 

(13) zT + (a — D'jD) z1 + (b — (D, U2 — UtD2)ID) z = 0, 

where D, Dl9 D2, Ux, U2 are defined by (8), is a differential equation for the func
tion z(t) = oc(t)y + ft(t)y\ The special case of (13) was derived also by I. Bihary 
in [1] and presented at the "Colloquium on the Qualitative Theory on Differential 
Equations" at Szeged in August 1984. The equation of the form (1) is considered 
and the equation for so-called "Bocher-function" $(t) = <px(t)y — ̂ ( O / is' 
derived there. 

However, the coefficient A(t) is presented erroneously. This fact is without 
influence on the main line of the above mentioned paper but several formulae 
should be changed slightly. 

Remark 4. The derivatives of the function z(t) = ocy + fiy' can be expressed 
in the form 

z'(t) = oLxy + pxy', 
where 

z\t) = oc2y + ß2ÿ, 

aß, 

where 

By means of this notation it can be easily shown that 

D = 

Remark 5. In case a, P are constants, the equation (13) has the following explicite 
form 

« ß , A = L « ß , в - 1 «i ßi , A = L , в - 1 
«1 ßl D «2 ßг D <x2 ß2 

\ a.2 + p2b - xpa ) 

Jt-pK'r-fV-oX-0. 
V a 2 + p2b - «Pa ) 

This equation is used in [3] to investigate certain higher monotonicity properties 
of Airy and Bessel functions. 

Remark 6. Due to the fact that the general form of linear differential equation 
of the second orderis considered a differential equations for the functions zt(t) = 
= a(0^ ( 0(t) + A0y ( < + 1 ) (0 or for the /-th derivative of z(t) (i = 1, 2, ...)can be 
easily found by means of the method introduced in [11]. 
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