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SECOND ORDER STRONG DIVISIBILITY 
SEQUENCES IN AN ALGEBRAIC NUMBER FIELD 

A. SCHINZEL 

(Received March 21, 1986) 

Abstract. There are determined all second order linear recurrences un, consisting of integers 
of an algebraic number field and satisfying the condition \un, um) =- (uCu,m)) for all positive 
integers m, n. This answers a question of L. Skula. 
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Let K be an algebraic number field, 0 its ring of integers, 0 * the group of units. 
Let us consider a linear recurrence of the second order defined over 0, i.e. a sequence 
un satisfying the conditions 

(1) ul9u2eO, un+2 = cun+1+dun (n = 1,2,...) 

for suitable c, de 0, d ^ 0. The sequence un is called a strong divisibility sequence 
if the equality of ideals 

("n>"m) = (w(B,m)) 

holds for all pairs of positive integers w, n. P. Horak and L. Skula [1] have de
termined all strong divisibility sequences un for K = Q and L. Skula has asked [3] 
for their determination in the general case. A nearly final answer to this problem 
is given by the following theorem. In this theorem Ck denotes a primitive root of unity 
of order k. 

Theorem. The sequence un defined by the conditions (1) with ut # 0 is a strong 
divisibility sequence if and only if at least one of the following five conditions holds 

(i) - S 2 - - * ( ' , < * ) - l ; 

(üi) c = 0, deO*, ^єO, 
u i 
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(iv) d = - c 2 є o * , — є o * , 
« 1 

<v> d- - г „ C\,z є °* ( 3 < f c > v W - - 2 l x : Ö ] ) » 
(l + C*)2 

f J 

• є Ғ å , 

where Fk is a finite set of strong divisibility sequences in the ring of integers of K(Cjt) 
periodic with period of length k. Fk can be effectively computed for each K and k. 

P. Horak and L. Skula have not assumed that d ^ 0. It is easy to see that all 
strong divisibility sequences corresponding to d = 0, wx ^ 0 are given by con
ditions 

ceO*, — 6 0 * . 

The proof of the theorem is based on three lemmata. 

Lemma 1. Let a, /?, y, <5 be non-zero algebraic numbers. There exists an effectively 
computable constant c, depending only on the height and the degree of cc/p and y/d 
such that for every positive integer n either yan — Sfi* = 0 or 

| r a " - <5jS" | = min {| y |, | S |} (max {| a |, | j8 \})nn~c. 

Proof. We assume without loss of generality that | a | _t \ p \ and apply Baker's 
estimate for | a^a*2... a*n — 1 | in the form given to it in [2] (p. 66, Theorem A) 
taking there 

^ R 

b2 = n. « i 
_ô^ 

P ' 
« , - £ , *>> = 

We get eitheг 

Я-И-
or 

rtøиk 
which implies the lemma. 

Lemma 2. Let L be an algebraic number field, a, f}9y9Se L*, a, /? algebraic integers. 
Then either NL/Q(yccn — 5fin) is unbounded or a, j? are t/w'te and /J/a w a roof o/ unity 
or a -= />, y = 5. 
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Proof. If for all sufficiently large n 

y<xn - 8pn = 0 

then clearly y = <5, a = /?. Otherwise we have for arbitrarily large n: 
y(<Oa(<r)n _ $(*)fi(*)n ^ Q 

for all isomorphic injections a of L into C. Applying Lemma 1 we get 

| y(*)a(<o« _ sMfi'» I _ min {| y(<r) |, | <5(<r) 1} max {| a(a) |, | 0(<r) \}nn~c 

and on multiplication 

2) I NLIQ(y*n - dp") | _ Q C X ^ 2 1 

where 

c.^riniindy^M^I}, 
(3) c2 = nmax{|aw|,ir>|}. 

<r 

If a is not a unit, we have 

n i « £ i = -
<r 

and the right hand side of (2) tends to oo. If a is a unit we have 

(4) PI ™*x (I "(a) I, I J?r ) l }= in ™ * {*> I HET II > 1> 
I* I I a w |J 

unless, by a theorem of Kronecker, P/cc is a root of 1. The formulae (2), (3) and (4) 
imply that NL/Q(yoLn — 8pn) is unbounded and the lemma is proved. 

Lemma 3. If y, <5, n are non-zero elements of an algebraic number field L and S 
is a finite set of prime ideals ofL then the equation 

ye — <5e' = r\ 
t 

has only finitely many solutions in S-units e, e' ofL, which can be effectively determined. 
Proof, see Sprindzuk [1], Chapter VI, lemma 6.2. 
Proof of the theorem. Let x2 - ex - d = (x - a) (x - j3), aj? ^ 0. If a = P. 

we have from the general theory of linear recurrences 

"n = (?« - <*) a", a, y, <5 e K. 

From («„, w„+1) = (wx) we get that (y, <5) an | (y - <5) a ^ 0, hence a e O * . From 
K I Hi* we get 

yn — <51 2y/2 — 8 

and since 

•y/t — <5 | iy/i — 28 
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we obtain 
yn - S | <5, NK/Q(yn - S) \ NK/QS. 

If y # 0 then NK/Q(yn — S) is a non-constant polynomial in w, it is unbounded, 
hence NK/QS = 0, S = 0, u„ = y«a\ 

—^ = 2a = c and (c, d) = (2a, a2) = 1 u\ 

thus (i) holds. If y = 0, then — = a and (ii) holds. Suppose now, that a ^ p. 
ui 

Then, as is well known 
un = ya" - Sfin 

for suitable y, S e K(a, /?) such that y — S e K, yS e K. Let us choose a positive integer/) 
so that yJD, 51) are algebraic integers. Assume first that yS = 0; without loss of 
generality 5 = 0, 

un = y<xn. 

From (un9 un+1) = («i) we get that (xeO*9 hence --2- eO*. Moreover 
ui 

fcM*)--
hence (ii) holds. 

Assume now that yS ^ 0. From (wn, uH+1) = (ut) we get that (a,/J) = 1 hence 
(c, d) = 1. From i/B | u2n we get 

ya" - <5j8" | ya2" - Sp2n
9 

but 

yan-<5j8"|(y2a2"-<52j82")A 
hence 

ya" - Spn | (a2", p2n) DyS(y - <5) | DyS(y - S) 

and either y = S or 

(5) 0 < | NK/Q(y<xn - Sfin) | = | NK/QDyS(y - S) |. 

In the former case we have 

u2 ya2 - yjS2 

"i y« - yß 
= a + ß = c 

and (i) holds. In the latter case we apply lemma 2 with L = K(a, p) and infer from (5) 
that oc9peO* and /J/a = fk for a suitable k. The case & = 1 is impossible, since 
a & P. In the case fc = 2 we get c = 0 and since (c, <f) = 1 we get J e 0* , case (iii). 
In Uie case k = 3 we get c = a + )8 = a(l + C3) = -«C|» <* = - « 0 = -C3*2 = 
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= - c 2 . Since (c, d) = 1 we get deO*). Since u2 \ w4 we get u2 \ cu3 + du2\ u2 \ M3; 

u2 I cw2 + Juj; u2 | i/ lf hence — 6 0* , the case (iv); 
ui 

In the case A: > 3 we infer from c = a + /? = a(l + C*)> ̂  = —a/? = — C*«2 that 

d - - ^ 
(l + C*)2 

and since (a, /?) = 1 that deO*. Since C* satisfies an equation of degree 2 over K 
its absolute degree (p(k) is at most 2[K : Q], It remains to show the last assertion 

of (v). We notice first that a = ^ — — and put 

The sequence en is a strong divisibility sequence in the ring of integers of K(C*) (note 
that a, P,y,8e K(C*))- It is periodic with period k and satisfies the recurrence relation 

(6) £n+2 = (l + C*K+1 - C.A-

From e2 \ eA we infer that e2 \ (1 + C*)fi3> hence e2 | (1 + C*)€i = 1 + C*« From 
«3 | e6 we infer that e3 | (1 + CO e5 - C*e4> hence 

% I (1 + C*)2*4 - CA = (1 - C* + fl)«4. 
hence further 

«3l(l + C* + C2)«2l(l + Ci)(l + C* + fi). 

Thus e2 and e3 are .S-units, where S is the set of all prime divisors of (1 +C*) • 
• (1 + C* + CJk). On the other hand 

e3 - « i ( l + C*) = -C*. 

By Lemma 3 withL = K(C*) there are only finitely many choices for e2, e3, hence by (6) 
for the sequence 8„, which proves that Fk is finite. 

Thus we have proved that every second order strong divisibility sequence satisfies 
the alternative (i)—(v). The converse is true, since in case (i) 

a » _ on] ^ 

H« = « I TT> (a, P) = h a * p or uH = t^na" \ OLEO*. 
a — p 

in case (ii) 

•-•—it)""- %«>• 
in case (iii) 

u„ -= <P-'V\ for « B r (mod 2), r = 1 or 2 
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in case (iv) 

- (-c) ( в _ r ) / 3м, for n s r(mod 3), - = 1 oг 2 oг 3 

(note that in this case u2/ul is a unit), 
in case (v) 

u-'Ui\wш) s-
where {ej e Fk and is a unit. 

c C 
Remark. In the case K= Q>d = -̂ -r- e Q* is impossible for k > 3, hence 

(l + C*)2 

the case (v) does not occur. In the proof of (i)—(iv) only the conditions (i/n, i/n+i) = 
= (uj) and un \ u2n have been used. Hence these two conditions imply for K = Q 
that {un} is a strong divisibility sequence. 
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