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ON THE ONE PRINCIPAL 
CONGRUENCE IDENTITY 

IVAN C H A J D A 

(Received July 8, 1985) 

Abstract. If two congruences S(x, 0), 0(y, 0) permute, then clearly 0(x, 0). G(y, 0) is a con
gruence 'and G(x, y) g B(x, 0). &(y, 0). The paper gives sufficient conditions under which this 
relation identity is satisfied also in the case of non permutable congruences G(x, 0), 0(y, 0). 
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It is well-known fact that the relational product of two congruences 0i902e Con A 
is a congruence on A if and only if 0^ . &2 — 02 . 01. An algebra A is congruence 
permutable if this equality is true for each 0t,02e Con A] a variety lT is congruence 
permutable if each A e'f* has this property. Denote by 0(a, b) the principal congruence 
on A containing the pair (a,b}eAxA. 

Let A be an algebra with a miliary operation 0. Since <x, >>> e 0(x, 0). 0(y, 0) 
for each x, y e A, it is clear that 

(*) 0(x,y)Q0(x9O).0(y,O) 

if <9(x, 0). 0(y, 0) = 0(y, 0) . 0(x, 0). However, (*) can be satisfied also if 0(x, 0), 
0(y, 0) do not permute. The investigation of (*) in this case is the aim of this short 
note. We say that (*) is satisfied in A if it is true for each JC, y e A. 

By a tolerance on an algebra A is meant a reflexive and symmetrical binary rela
tion on A satisfying the substitution property with respect to all operations of A. 
Since the set of all tolerances on A forms a complete lattice with respect to set inclusion 
[2], there exists the least tolerance on A containing the given pair <tf, fc> e A xA\ 
denote it by T(a, b). It is called the principal tolerance on A (generated by (a, fr». 
An algebra A is tolerance trivial if each tolerance on At is a congruence on A. A is 
principal tolerance trivial if T(a9 b) = 0(a, b) for each a, b of A. A variety i^ is 
(principal) tolerance trivial if each A elT has this property. A variety "T is tolerance 
trivial if and only if *f~ is congruence permutable, [3], [9], Principal tolerance trivial 
algebras and varieties were characterized in [3], [4], [8]. 
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Since (*) contains a principal congruence generated by the pair containing 0 
and since other statements presented here are formulated for principal tolerances, 
we can firstly repeat the following assertion (see [1] or [4]): 

Theorem 1. Let if be a variety with a nullary operation 0. The following conditions 
are equivalent: 
(1) T(x9 0) = 0(x9 0) is tlie relation identity in i^; 
(2) T(x90) .T(y90) . T(x90) = T(y90). T(x90) . T(y90) 

is the relation identity in IT. 
It implies that the relation identity T(x9 0) = 0(x9 0) is not equal to the relation 

identity T(x9 0) . T(y9 0) = T(y9 0) . T(x9 0). However, varieties satisfying the last 
identity have a special polynomial property which will be used for characterizing of (*) 
and which is satisfied in each permutable variety with 0. Namely, if ̂  is a congruence 
permutable variety, then there exists a ternary polynomial p(x9y9z) such that 
p(x9 z9z) = x and p(x9 x9 z) = z. Let i^ be congruence permutable and contain 
a nullary operation 0. Put b(x9 y) = p(x9 0, y). Then clearly 

b(x9 0) = x and b(09 x) = x. 

(Note that varieties with a binary polynomial b(x9 y) satisfying b(x9 x) = 0, b(x9 0) = x 
are "permutable at 0", see [1], [6], [7] and varieties with b(x9 y) satisfying b(x9 x) = 0, 
fc(0, x) = 0, b(x9 0) = x are "arithmetical'at 0", see [6]). 

Theorem 2. Let IT be a variety with a nullary operation 0. If T(x9 0). T(y9 0) = 
= T(y9 0) . T(x9 0) is an relation identity in ir

9 then there exists a binary polynomial 
b(x9 y) such that 

b(x9 0) = x9 b(09 x) = x. 

Proof. Let "K be a variety with 0 and F2(x9 y) be the free algebra of Y* generated 
by x9 y. Suppose T(x9 0) . T(y9 0) = T(y9 0) . T(x9 0). Since <x, y} e T(x9 0) . T(y9 0), 
thus <x, y) e T(y9 0) . T(x9 0), i.e. there exists an element v e F2(x9 y) with <x, t?> e 
e T(y9 0) and <r, y} e T(x9 0). Hence v = b(x9 y) for some binary polynomial b and 

<x, b(x9 y)y 6 T(y9 0) implies b(x9 0) = x 
and 

<b(x9 y)9 yy e T(x9 0) implies b(09 y) = y. 

Example. There exists a wide class of varieties having a binary polynomial b(x9 y) 
with b(x9 0) = x = 6(0, x). If'f is a variety of V-semilattices with the least element 0, 
then b(x9 y) = x V y. If ^ is a variety of additive groupoids with 0 (i.e. x + 0 = 
= x = 0 + x), we can put &(*> y) = x + y. 

Theorem 3, Let^ be a variety with a nullary operation 0. The following conditions 
are equivalent: 
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0 ) <y,x>eT(x,0).T(y,0); 

(2) T(x,y)QT(x,0).T(y,0); 

(3) T(x,y)Q0(x,O).0(y,O); 

(4) /here ixfofc a binary polynomial b(x, y) with 

b(x, 0) = x, b(0, x) = x. 

Proof, (1) => (2): Let iT satisfy (1) and > 4 e f , *,>>e,4. Clearly the relation 
T(x, 0) . T(y9 0) is reflexive and has the substitution property. Thus 

<x,y>eT(x,0).T(y,0) 
and 

<y,x>eT(x,0).T(y,0) 
imply also 

<<P(*> y), <p(y, *)> e T(x, 0) . T(y, 0) 

for every binary algebraic function cp over A. By Lemma 2 of [2], we hav e (2) 
The implication (2) => (3) is evident. Prove (3) => (4): Let F2(x,y) be a free algebra 
of a variety "T with 0 satisfying (3) and G(x, 0), 0(y, 0) e Con F2(x, y). Clearly 

(y,x>e0(x,O).0(y,O). 

We obtain (4) in the way completely analogous to that in the proof of Theorem 2. 
(4) => (1): Suppose A ei", x, y e A and "T satisfies (4). Then 

<j, b(x, y)> = <b(0, y), b(x, y)> e T(x, 0) 

(b(x, y), x> = (b(x, y), b(x, 0)> e T(y, 0), 

thus(y,x>eT(x,0).T(y,0). 

Corollary 1. Let V be a variety with 0 satisfying the relation identity 

T(x,0) . T(y,0) . T(x,0) = T(y,0) . T(x,0) . T(y,0). 

i^ satisfies 0(x, y) S 0(x, 0) . 0(y, 0) if and only if there exists a binary polynomial 
b(x, y) with b(x, 0) = x = b(0, x). 

It follows directly from Theorem 1 and Theorem 3. 

Corollary 2. Ifi^ is principal tolerance trivial variety with 0, then i^ satisfies 
0(x, y) £ 0(x, 0 ) . 0(y, 0) if and only if there exists a binary polynomial b(x, y) 
such that 

b(x, 0) = x = b(0, x). 

Corollary 3. The variety of all distributive lattices with the least element 0 satisfies 
the relation identity 

0(x, y) c 0(x9 0). 0(y, 0). 
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Proof. By [5], the variety of all distributive lattices is principal tolerance trivial. 
By the Example, there exists a binary polynomial b(x, y) = x V y satisfying (4) of 
Theorem 3. 
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