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Abstract. Lorentzian manifolds, i.e. pseudo-Riemannian manifolds of signature (-1— ... —), 
are considered. It is shown that from the volume of small truncated light cones there may be 
recognized whether the manifold is flat or Ricci-flat respectively. 
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INTRODUCTION 

A. Gray, L. Vanhecke [5, 6, 7] and others [2, 9,10] studied the following problem 
for properly Riemannian manifolds: To what extent does the volume of small 
geodesic balls determine the geometry? (The papers [8, 1, 11, 12, 13, 16, 17] are 
closely related to this problem. Note also that there is a rich literature on the volumes 
of tubes, which we will not quote here. For the historical sources cf. [7, 4]). The 
topic of the present paper is an analogous problem for Lorentzian manifolds, i.e. 
for smooth manifolds equipped with a pseudo-Riemannian metric of signature 
(H— ... —): To what extent does the volume of small truncated light cones determine 
the geometry? For the case of four dimensions, i.e. for the spacetimes of general 
relativity theory, this question has been raised by F. and B. Gackstatter [4]. 

The "volume conjecture" due to A. Gray and L. Vanhecke reads: 
An ^-dimensional properly Riemannian manifold is flat if and only if the volume 

of its geodesic balls of small radius R > 0 equals f / -y + 1 \~1nnl2Rn. The Lorentzian 

analog of this conjecture reads: 
An (n + l)-dimensional Lorentzian manifold is flat if and only if the volume of its 

truncated light cones of small altitude T > 0 equals(« + l ) ~ 1 r { ~ + 1 )"V / 2T"+ 1. 
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For the case n+ 1 =*-4 this has been supposed by F. Gackstatter [personal 
communication]. 

While Gray's and Vanhecke's conjecture remains still open, we decide here Gack-
statter's conjecture, generalized to n + 1 ^ 3 dimensions, in the affiimative. Thus, 
flatness is a property of a Lorentzian manifold which is reflected by the volume of 
small truncated light cones. We prove that Ricci-flatness is another such property. 
As a by-product we derive a seemingly new Pizzetti-type expansion formula for 
the mean value of a function over a truncated light cone in flat Rn+i. 

Let us fix some conventions and notations. The manifolds and all geometric 
objects on them are assumed to be of differentiability class C00. The (pseudo-)-
Riemannian metric and its inverse Tead 

g = ft* dx* dx*9 , \g*) := (gm,)-\ 

the curvature tensor, Ricci tensor, and scalar curvature respectively 

Riem = /^^(dx" A dx?) (dx* A dxv), Ric = Rafi dx* dxfi, R. 
i'< 

The sign conventions for the curvature quantities are the same as in [7 ,19]. We 
abbreviate 

(Riem)2 :-= RaXePR/6
v dx" dxp dx? dx\ 

A symmetric differential form of degree p 

Ap = Aaia2...adx*>dx**...dx*> 

is a special notation foi a symmetric covariant tensor field of degree p. Apart from 
tfyp/psual tensorial operations there are specific operations for symmetric forms: 

{..j-- Symmetric product of a p-form Ap and a q-form Bq 

AA:=AMt..,afBfl...,/bf1...d*-d*'...dx»-. 
Jl^ Trace = tr with respect to the metric g 

tr Ap . = g"tAafia3 ... adx*> ... dx*" for p ^ 3, 

:>iu tr A0 :-= 0, tr At := 0, tr A2 := g*pAaP. 

'n!i- Trace-free part ~Ap of Ap with respect to g\ cf. [19] for concrete formulas. 

— Value of AD on a vector field a = a* 
dx" 

.inn Ap(a, ..., a) :-= Aaia2 ... «pd"cf- ... a**. 

tiit-r Symmetric differential d built by means of the Levi-Civita derivatives Va 

dAp := VaAai ... ad^ dx"1 ... dx**. 

t i e 'Laplace operator of (Af, g) reads 

*-•-**?.?,. 

© 
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A PIZZETTI-TYPE FORMULA FOR TRUNCATED LIGHT 

CONES IN «"+1 

Let R" denote the flat space with points t = Oc1, x2,..., *") and equipped with 
the Euclidean metric 

dt2 = (dx1)2 + (dx2)2 + ... + (dx")2, 
the Laplace operator 

d2 d2 d2 

Л = — - т - = —--т + - + 
(dx)2 (dx1)2 '" (dx11)29 

and the Lebesgue measure d"r = dx1 dx2 ... d.*". Let further Rn+i denote the flat 
spacetime with points x = (x*) = (x0, x

1, ..., x*) = (t, x) and equipped with the 
Minkowski metric 

rj = nafi dx* dxp = dt2 - dr2, 
the D'Alembert operator 

and the Lebesgue measure dn + 1x = dx° dx1 ... dx" = dt dnx. Our aim is to calculate 
the mean value of a function F(x) = F(t, x) over the truncated light cones in Rn+i. 
The mean value MDF of a function F over the domain D is defined as the quotient 
of the integral of F over D and the measure of D. 

*\ 
Definition 1. Let a = cf be a timelike vector. The point set 

dx* 

C(a) : = {x eRn+i\ rj(x, x) = 0, 0 ^ rj(a, x) ^ r\(a, a)} 

is called the truncated light cone with vertex 0, axis a and altitude \ a \ : = t](a, d)ifl. 

Theorem 1. There holds the asymptotic power series expansion with respect to \ a \ 

(1) MC(a)F~ £ aH(-|a|2)*(DVF)(0) 
M = 0 

with the numerical coefficients aki given by 

4*fc! /!(n + 2k + I + l)rCj + k + I - TL1 + y W y + *= + [ y ] + l)««: = 

:=(« + i ) r ( | + i ) r ( | + fc + / + l ) . 

Proof. There exists a Lorentz transformation which results in x 

(^-(r,o o), r= |a | , 
C(a) = {(t,x)eRn+11 \x\£t£T}. 
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We will work in the corresponding coordinate system. Let us write (like, e.g., in 
quantum field theory) integrations as operators which act on the succedent functional 
expressions. Then Fubini's theorem applied to C(a) reads 

T t 

J F(x) dn+1x = J dt J dr J F(t, r) dS, 
C(«) O 0 5(r) 

where 
S(r):={TeRn\ \ r | -= r} 

denotes the spheie with centre 0, radius r, and measure dS. Changing from integrals 
to mean values we obtain 

r+1MC(a)F = n(n + 1) J dr J dr r ^ A ^ F . 
o o 

Herein we insert the well-known Pizzetti expansion formula [3] 

*~f - r(T),l„(T)"[k"-(y + *)]-VF)«,o) 
and simultaneously the Taylor expansion with respect to / 

F(* ,r )~£ rl(/!)-1(5iF)(0,r) with 5:= -^- . 
/to dt 

The result is 

(2) AfC(fl)F~ J pklT
2k+,(AkdlF)(0) 

k,l = 0 

with the numerical coefficients 

pkl := (n + l ) r ( y + l)|4*/c! l\(n + 2k + I + l)rij + k + 1 j \ . 

In order to transform (2) into the Lorentz-invariant formula (1) a rearrangement 
of terms is to be done: 

Ak = (d2-n)k = i:(k)(-n)k-rd2', 

a = T8, T2k+i8' = \a\2kat, 
ll^(k + r\. 

aAI = L I r )Pk + r,l-2r-

The last formula is, by some elementary transformations, equivalent to 

This "combinatorial identity" is, finally, established by means of the method of 
a generating function: 

8 
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ì (*f) ł = {z + l)2" = (z2 + 2z + 1Г = | o (^) -2'( r(2z + l) w " r -=... 
r = 0 \ r / 

00 fřl2] 

- I 12 
1 = 0 г = 0 

J-2r 

( : ) ( , • - > 
The theorem is proved. 

We give the Pizzetti-type foimula (1) an appearance which is more suitable for 
our purposes by changing from the language of differential operators to the language 
of symmetric differential forms. 

Proposition 1. There holds the asymptotic power series expansion with respect to a: 

(3) MCia)F~f,Ap(a9...9a) 
p = 0 

with the symmetric p-forms 

(4) Ap:= £ pkl(-rj)ktrkFp, Fp: = (d'F) (0). 
2k + l = p 

The proof follows from 

I a \2k(UkalF) (0) = \a |2*(tr*Fp) (a, ..., a) = 
= (rjk ttkFp) (a, ..., a) with p := 2k + I. 

Conjecture. For each p ^ 0 the linear transformation of symmetric p-forms (4) 
has an inverse 

FP= I ykii
k*kAp 

2k + l = p 

with the coefficients ykl being rational functions of n. 

Proposition 2. The preceding conjecture holds true for p ^ 4. 
The proof is done by direct calculation. We omit the concrete expressions for 

the ykl for 2k + I ^ 4; they do not matter here. 

Proposition 3. If a symmetric p-form Ap vanishes on all timelike vectors then it 
vanishes identically. That meanst Ap(a,..., a) = Ofor every timelike a implies Ap = 0. 

Proof. Let a0 be a fixed timelike vector and v an arbitrary vector. For sufficiently 
small I e | the vector a = a0 + sv remains timelike and Ap(a, ...,a) becomes a poly
nomial of degree p in s which vanishes identically (in e) by assumption. Particularly, 
the coefficient of sp gives Ap(v,..., v) = 0, hence Ap = 0. 

Proposition 4. If two functions Fl9 Fn on Sn+1 satisfy 

MC(a)Fi=MC(a)
F

n 

for each timelike vector a, then 

(dpFd (0) = W - ) (0) for p<4. 

9 
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Proof. Because of the linearity it is sufficient to show that A/C(fl)F = 0 for every 
timelike a implies (dpF) (0) -= 0 for p ^ 4. This assertion follows, in fact, from the 
propositions 1,2, 3. 

THE MAIN RESULT AND ITS PROOF 

To any Riemannian manifold there are associated some "natural" two-point 
functions [18, 14, 19]. 

Definition 2. Let (M9 g) be a Riemannian manifold of arbitrary signature. The 
distance function a = a(x9 y) is the solution of the problem 

,~ g*pVaaVpa = 2a9 
W (Vad) (y9 y) = 0, (Va Vpa) (y9 y) = gaP(y). 

The function u = u(x9 y) is defined by 

(6) 2u := Aa - dimAf. 

The normal volume function Q = Q(X9 y) is the solution of the problem 

(7) g# Va<7 VpQ = 2UQ9 Q(y9 y)=L 

Here and in the following differential operators V, A9 d, ... refer to the first argument 
of the two-point functions. 

Both the two-point functions a and Q are defined in some neighbourhood of the 
diagonal of MxM and are symmetric in their arguments, i.e. a(x9 y) = a(y9 x) and 
g(jc, y) =± Q(y9 x). In normal coordinates (xa) of x e M with respect to the origin 
yeMthere holds 

. ^ , y ) = yg a , (y )xV, * 

Q(x9y) = | detft,/*) |1/2 | detg,v(y) |"1/2. 

For properly Riemannian manifolds a and the geodesic distance s between two 
sufficiently neighboured points are related by 2a(x9 y) = s(x9 y)2. For pseudo-
Riemannian manifolds the geodesic distance s should be defined by 2a \ (x9 y) \ = 
= s(x9y)2. 

The limit for x -> y9 if existing, of a two-point quantity with the arguments x9y 
is called its coincidence limit. The equality of the coincidence limits is an equivalence 
relation between two-point quantities and shall be denoted by =. One-point quantities 
and constants may be looked upon as special two-point quantities. 

Proposition 5. There holds 

dQ = 0, - 3 d2Q == Ric, - 2 d3Q =- d Ric, 
-15 d4g =?= 2(Riem)2 - 5(Ric)2 + 9 d2 Ric. 

10 



VOLUME OF LIGHT CONES 

Proof. We apply dp = dd ... d and after that the limit operation x -+ y to the 
differential equation (7). The recursion formula 

pdpQ == 2 d ^ + 2 £ (P)dp-qfidq
g for p = 4 

c2 = 2 \ q / 

comes out. The formula holds for p < 4 too if an "empty sum" is taken as 0. Next, 
the coincidence limits of the dqji (q = 1,2,...), as they follow from the celebrated 
Ledger formula [18, 19], are inserted. The concrete evaluation for p == 1,2, 3, 4 
gives the above result. 

Note that proposition 5 is equivalent to the expressions for the first four terms 
in the Tayloi expansion of Q with respect to normal coordinates, which have been 
presented in [5, 6, 7]. 

Proposition 6. A Lorentzian manifold (M9 g) is 
— Einstein iff ~d2Q =. 0, 
- Ricci-flat iff d2Q == 0, 
— of constant curvature iff ~d2Q == 0 and ~d4£ = 0, 
- (locally) flat iffd2Q = 0 and "d4^ == 0. 

Here iff := if and only if. 
Proof. Proposition 5 is used. While the first two assertions are obvious^ the last 

two assertions folow from [19], proposition 1.2, and are essentially based on argu
ments given by A. Lichnerowicz and A. G. Walker [15]. 

Definition 3. Let (M9 g) be a Lorentzian manifold, yeM, and a = cf a timelike 
dy" 

vector at y. For sufficiently small \ a \2 := gaB(y) cfaf* > 0 the compact set 

C(y9a) := {xeM\a(x9y) ^ 0 , 0 = (aa)(x9y) ^ \a\2} 

is defined; it is called the truncated light cone with vertex y, axis a, and altitude \a\. 
(Note that a acts as a differential operator on the second argument of a.) The volume 
of C(y9 a) with respect to the invariant Riemannian measure of (M9g) is denoted by 
VolC(y9a). 

Proposition 7. Let the altitude T .= \a\ be so small that C(y9 a) is defined. There 
exists a system of normal coordinates (x*) = (x°9 x

l
9 ..., JC") ofx e C(y9 a) with respect 

to the origin y such that C(y9 a) is characterized by the inequalities 

0^x° = T and (x1)2 + (x2)2 + ... + (x*)2 g (x0)2. 

Proof. By assumption o(x9 y) and normal coordinates (x?) are defined for xe 
e C(y9 a). There holds 

OX 

11 
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Further, there exists a linear transformation of the normal coordinates which 
results in 

fa*00) = (l*fi) = diag(l, - 1 , . . . , -1) , 

cf=-TS*0, a<r = Tx°. 

The corresponding coordinate system is the desired one. 

Proposition 8. The relative deviation of the curved manifold expression Vol C(y, a) 
from the flat manifold expression 

Vol C(a) = (n + iyvrij + 1) V 2 | a \n+1 

admits a power series expansion in the axis vector a = a" , namely 

dy* 

576(n + I)"1 (" "J 5 ) [Vol C(y, a)/Vol C(a) - 1] = 

= 12(n + 4) (n + 5) [(n + 3)F2 - gtr F2] (a, a) + 
+ 4(n + 3) (n + 5) [(n + 5) F3 - 3gtr F3] (a, a, a) + 

+ (n + 3)[(n + 5)(n + 7)F4 - 6(n + 5)gtrF4 - 3g2 tr2 F j (a,a, a, a) + .... 
the points indicating higher order terms. Here the symmetric p-forms 

F f : = [ d ' d x . , (P = 2,3,4,...) 

are built from the normal volume function Q and are taken at the vertex y. 
Proof. Working with suitably chosen normal coordinates x = (xa) = 

= (x°, x1, ..., JC") with respect to the origin y we have 

Vol CO, a) = J Q(X, y) dx°, dx1 ... dx" = 
C(y,a) 

= $Qdn+1x = tVo\C(a)-]MCia)Q. 
C(a) 

(For the moment we notationally identify the point x with its normal coordinates.) 
As is well known, the Taylor expansion of a function Q = Q(X, y) in the normal 
coordinates of x with respect to the origin y has the covariant derivatives taken at 
x = y as its coefficients: 

1 1 1 
Q - 1 + -jFzix, x) + -^-F3(x, x, x) + —ht(x, x, x, x) + ... 

The operatorMC(a) transforms a power series in x into a power series in a. The calcula
tion of the first terms is based on proposition 1 and theorem 1. 

In the following, o(Tr) denotes a remainder term of the form 
fr' (regular function of y and a). 

12 
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Theorem 2. A Lorentzian manifold (M, g) of dimension n + 1 ^ 3 is flat if and 
only if 

Vol C(y, a) = Vol C(a) (1 + o(r5)) 

for sufficiently small altitudes T :'= \ a\ of the truncated light cones C(y, a). Likewise 
(M, g) is Ricci-flat if and only if 

Vol C(y, a) = Vol C(a) (1 + o(r3)). 

Proof. The quadratic term in the expansion of proposition 8 is missing if and 
only if d2g = 0. Likewise, the quadratic and quaitic terms are missing if and only if 
A2Q == 0 and d4g = 0. Considering this, proposition 6 gives the assertion. 

F. and B. Gackstatter [4] derived a partial result, namely for n + 1 = 4 

Vol C(y, a) = Vol C(a)\i + -^(6R0Q(y) - R(y)) J2 4- ...1 

Herefrom the assertions which are based on the Ricci tensor alone can be obtained 
for the spacetimes of general relativity theory. 

DISCUSSION 

Let us indicate the dependence on the metric g: 
B(y, r,g) := geodesic ball in (M, g) with centre y and radius r for a properly 

Riemannian manifold (M, g) and 
C(y, a,g) := truncated light cone in (M, g) with axis a and vertex y 

for a Lorentzian manifold (M, g). The intuitive notion of recognizing geometric 
properties from the volume of B(y, r, g) or C(y, a, g) respectively is made precise 
as follows. 

Definition. Two properly Riemannian manifolds (M, g), (M0, g0) of the same dimen
sion n are called to possess the same volume of small geodesic balls or, for short, 
isovolumal, ifM is covered by neighbourhoods U and diffeomorphisms <p:U'-+ <p(U) £» 
s M0 which satisfy 

Vol Bjy, r, g) = Vol B(y, r, <p*g0) 

for yeM, r > 0 such that B(y, r, g) c U. 
(Here (p*g0 is the pull-back of the metric g0from M0 to M.) Two Lorentzian mani

folds (M, g), (M0, g0) of the same dimension n + 1 are called to possess the same 
volume of small truncated light cones or, for short, isovolumal, if M is covered by 
neighbourhoods U and diffeomorphisms <p :U-+ q>(U) g M0 which satisfy 

Vol C(y, a, g) = Vol C(y, a, <p*g0) 

foryeM,aBTyMsuchlhatC(y,a,g)ciU. 

13 
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Clearly, this "isovolumality" is an equivalence relation between Riemannian 
manifolds of the same dimension and the same signature. The definition is of local 
character and there is ambiguity in the choice of the covering by U, q>. It is plausible 
to compare manifolds (M,g) with simple "model manifolds" (M0,g0)\ that means, 
to impose on (M0, g0) geometric conditions easy to describe. One would start with 
flat model manifolds and by this rephrase the "volume conjecture": If a manifold 
is isovolumal to a flat manifold then it is flat itself. 

That is true for Lorentzian manifolds; namely we have the 

Theorem. If a Lorentzian manifold (M, g) of dimension n + 1 ^ 3 is isovolumal 
to aflat or RiccUflat manifold (M0,g0) then it is flat or Ricci-flat itself respectively. 

Proof. A local diffeomorphism q> : U -> M0 may be realized by describing the 
points x e M and cp(x) e M0 by the same coordinates (x°, ..., xn) e Rn+1. The iso-
volumality implies then that the symmetric tensors Fp := [dpo]x=y (p = 2, 3, 4, ...) 
have equal components for (M, g) and for (M0, g0) in this coordinate system. Par
ticularly, if F2 = 0 and/or F4 = 0 for (M0, g0) then the same condition holds 
for(M,g). 

It is an interesting problem to produce analogous theorems for other model 
manifolds [M0, g0). For instance, if n + 1 = 4, could the Petrov type of the space-
time (M, g) be recognized from Vol C(y, a, g)l 

It is not too surprising that Vol C(y, a) seemingly comprises more information 
than Vol B(y, r): the volume of the truncated cones depends on 2(dim M) variables, 
while the volume of the balls depends on only (dimM) + 1 variables. We do not 
know how to define "maximally intrinsic" solid point sets which depend on fewer 
variables. 

Another remarkable feature of Lorentzian manifolds is the energy-like behaviour 
of the traceless symmetric four-form "(Riem)2, cf. [15, 18, 19]. That means, this 
four-form is definite in some sense; it is akin to the Bel-Robinson tensor of general 
relativity theory. 

More "volume problems" than those discussed here are studied/could be studied 
for properly Riemannian manifolds as well as for Lorentzian manifolds; let us 
mention the volume of tubes and the volume of geodesic disks [11, 12, 13]. 

A correspondence with Professor Dr. F. Gackstatter stimulated the present paper 
and is acknowledged with gratitude. 
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