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SPECIAL INVARIANT S U B S P A C E S 
OF A VECTOR SPACE OVER Z//Z 

L A D I S L A V SKULA 
(Received April 7, 1988) 

Dedicated to the memory of Milan Sekanina 

Abstract. This article deals with a special linear operator S on the vector space V over the Galois 

field Z//Z of dimension (/ an odd prime). All invariant subspaces are described in three 

ways. The background of this theme is found in the area of the Stickelberger ideal mod /. It is 
shown that the matrices of the Stickelberger ideals have a very convenient form for / < 1,000. 

Key words. Invariant subspaces, Stickelberger ideal, group ring of a cyclic group over the Galois 
field, Bernoulli numbers, index of irregularity of a prime. 

MS Classification. 10 M 20, 12 A 80 

In this paper the vector space V over the Galois field Z//Z is considered 

(/ is an odd prime) with dimension . For this vector space special linear 
2 

operators S2 (1 ^ z S I - 1) are defined. The main goal of this paper is to describe 
all invariant subspaces of V with respect to the operators Sz (Theorem 3.4). 

There is defined a special isomorphism F from a group ring 9t~(/) (considered 
as a vector space) on V and the connection is shown between the ideals of 9l~(/) 
and invariant subspaces of V with respect to Sz (4.3.2). 

The* theme of this paper derives from the area of the Bernoulli numbers, index 
of irregularity of the prime I and the Stickelberger ideal mod / (4.3.3). 

The final Section 5 deals with the normal matrix of a subspace of V. Especially 
the normal matrix of an invariant subspace of V with respect to the operators Sr 

is investigated and it is mentioned that for each prime / < 1,000 the normal 
matrix of the subspace of V corresponding to the Stickelberger ideal has a very 
convenient form (5.9.1). 
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1. NOTATION 

Throughout this paper it will be designated by 
7 an odd prime, 

N = l^± 
2 ' 

V = {(a(l), a(2), ..., a(N)) : a(i) e Z//Z) = (Z/ /Z)w the vector space over the 
Galois field Z//Z (of residue classes mod / on the ring Z of integers) with dimen
sion N and with componentwise operations, 
L = {1,2, . . . , # } . 

For integers 1 ^ x, z £ I - 1 put 

„,., „ * _ J * " * * • y(modi),o<y£N, 
€[Xf Z) t - i if xz s >>(mod /), 1V + 1 <; y < /, 

f(x, z) s= e(x, z) xz(mod /), f(x, z) e L, 
so/(x, z ) s ±xz(mod/). 

For the vector u = (u(\),..., u(N)) e V put 

SM(u) ==v-=(Kl),...,t?(N))6V, 

where i?(x) = e(x, z) w(f(x, z)) (x e L). Sometimes an integer 
x e Z will be considered as the residue class mod / containing x. , 

According to ([6], 3.4 and 3.5) it holds 

1.1. Proposition, (a) For each 1 51 z 51 / - 1 (zG Z) rhc mapping Sz: V -• V 
is tw automorphism of the vector space V. 

(b) For 1 <; z, z' ^ / — 1 (z, z. e Z) we fetft?e 

.Sz/ = Sx if and only ifz = z\ 

(c) 7/ 1 <; z, z', H> ^ / -- 1 (z, z', w e Z), w> = z . z'(mod /), then Sw = 5'z, o Sz. 
(d) The set {Sz: 1 51 z 51 / — 1, z e Z} w/fft operation e forms a cyc//c grow/? 

of order / — 1. Generators of this group are the automorphisms SR, where I 51 -R ^ 
<* / — 1 are primitive roots mod /. 

(The operations o means composition of mappings.) 
The aim of this paper is to describe all invariant subspaces of the vector space V 

with respect to the group ({Sz : 1 <£ z <i / — 1}, o). 
Choose a primitive root r mod / (1 < r < /) and denote by 5 the mapping Sr. 

Then 
{ S , : l g z g / - l , 2 6 Z } = { y , : 0 ^ ^ / - 2 , n e Z } 

and the 5,-invariant subspaces of V for each 1 <I z <I / — 1, z e Z are just the 
S-invariant subspaces of V. 

36 
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2. SOME S-INVARIANT SUBSPACES OF V 

2.1. Definition. For a subset A ___ L put 
N 

c/>(A) = {a = (a(l), a(2), ..., a(N)) e V: £ a(x)2*~* = 0 for each a e 4 
*-=i 

2.2. Proposition, (a) For each subset A ___ L the set £f(A) forms an S-invariant 
subspace of the vector space V and dim £f(A) = N — | A \ . (| A \ means cardinal 
of A). 

(b) For A <_= H cz L t/ie relation £f (A) __> «9%B) ft0/dy. 
(c) 5^(0) = V, &(L) = 0. (0 means zero subspace.) 
Proof, a) Clearly, £f(A) is a subspace of the vector space V. Let u = (w(l), ..., 

..., w(N)) e < n A S(u) = v = (v(l), ..., v(N)) e V. Then for ae A we have 

hence 

E t<x) x2""1 = £ s(x, r) u(/(x, r)) x2''1 , 
X - = l X - - 1 

r2""1 £ K x ) ^ ' 1 = £ «(/(x, ^(rx)2""1 (e(x, r) - 1) + 
X = l J C - - 1 

+ I «(/(x, r)) (-rx)2""1 (e(x, r) - - 1 ) = 
X = l 

= I «(y)y2*~l(e(y, r.t) = 1) + £ «(y)ya*",(«(j', r-i) = 

= - l ) = _>OO.v2f l-1=0, 
y=-l 

where / - ^ e Z , 0 < r^t < /, r . r . t =s l(mod/). Therefore the subspace £f(A) 
is S-invariant. 

(b) The subspace £f(A) is the space of solutions of the system of linear equations 
N 

Ya(x)x2a'i^0 (aeA)9 
x-=l 

over the field Z//Z with unknowns a(l), ..., a(N). The matrix of this system equals 
the matrix 

(x2a~l)(xeL, aeA)y 

which is of Vandermond's type, hence its rank is equal to | A \. It follows that 
dim «S/>(_4) = N - \A\. 

(c) The assertions (b) and (c) are evident. 
• " • • • ' „ • » ^ • • 

2.3. Definition. We denote by Jf the set of all non-quadratic residues x mod / 
(1 < x < /). For xe^V put . , 

u(x) = („(l), . . . ,«(#))eV, 
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where for 1 ^ t ^ N we have 

M ( f ) = j c i n d ' , 

(ind t denotes index of t relative to the primitive root r of /.) 
The subspace of the space V generated by the vector u(x) will be denoted by U(x). 

Hence, 
U(x) = {k . u(x) : k e Z//Z} and dim U(x) = J. 

Since 5(u(x)) = x. u(x), U(x) is an S-invariant subspace of the space V and 
S(u) <= x . u for each u e U(x). 

2.4. Proposition. The vectors u(x) (x e N) form a basis of the space V. 
Proof. As dim V = N, it is enough to prove that the vectors u(x) (x e JT) are 

linearly independent. 
Let c(x) e Z//Z for x e JT such that 

£c(x)u(x)(xe.yV).= o. 

(o means zero vector.) 
Then 

I>(x) xindv(* e JT) = 0 for each 1 = v g N. 

It follows 

£c(x) x'(x e JT) = 0 for each O ^ / ^ i V - l . 

The matrix (x1) (x e JT, 0 <i f :g N — 1) is of Vandermond's type, hence 
c(x) = 0 for each x e JT. The proposition is proved. 

2.5. Definition. For X s jr let U(X) mean the subspace of the vector space V 
generated by the vectors u(x) (x G X), U(0) is defined as zero space. Hence U(X) 
is the direct sum of the subspaces U(x) (x e X): 

U(X) = £U(x)(xeX) 

anddimU(X)= | X | . 
Since the subspace U(x) is 5-invariant, the subspace U(X) is also 5-invariant. 

2.6. Proposition. Let X, Y e jr. Then we have 

(a) U(X) c U(Y) if and only ifX^Y, 
(b) U(X) = U(Y) if and only if X = Y. 

Proof. Clearly, (a) implies (b). Suppose U(X) & U(F) and x G X. Then u(x) e 
e U(Y) and hence xe Y. Therefore (a) holds and hence (b) as well. 

Between the subspaces U(X) (X £ JT) and the subspaces S?(A) (A £ L) the 
following relation holds.* 
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2.7. Theorem. Let X ^ ^ and A = L - <N - y (1nd * - 1) : x e xl. Then 

U(X) = &(A). 

Proof. I. We show that U(X) c ^(i4). Let x e X a n d u(x) = (u(l), ..., w(N)). 
Then x,nd" = w(v) for each 1 = v g N. For a G A the integer ind x + 2a — 1 
is even and ind x + 2a — I ^ 0(mod / — 1). Therefore we have 

YJx
[ndvv2a'i = J (r™*+2a~^W0(modO s 

v = l t;=l 
. - 3 

2 
ind x + 2 a - l \ t i i _, £ (rmd * + 2„- ly, ( m o d /} s 0 ( m o d ř ) 

м = 0 

/V 

It follows that £ u(v) v2*"1 = 0, hence u(x) e Sf(A). 
ľ = i 

II. Since dim U(X) = | X | = N - | A ] = dim 5 ^ ) , we get U(X) = /^(A). 

3. ALL S-INVARIANT SUBSPACES OF V 

In this Section we give description of all S-invariant subspaces of the vector 
space V. The proofs use the known results concerning the structure of a linear 
operator in an ^-dimensional vector spave over a number field that hold also 
for the field Z/ZZ as it is possibly easily to see. The notions and these results from 
this branch are taken from book [2] by F. R. Gantmacher, Chapter VII. Especially 
we use the notion of minimal polynomial of a vector space (with respect to a given 
linear operator) and „The First Theorem on the Decomposition of a Space into 
Invariant Subspaces9' ([2], Chapter VII, Theorem 1). 

3.1. Proposition. The polynomial ¥ (A) = XN + 1 (considered over the field Z//Z) 
is the minimal polynomial of the space V with respect to the linear operator S. 
Proof. Recall that the minimal polynomial !P(A) is the non-zero inonic polynomial 
over Z//Z of the least degree such that for each u e V we have W(S) (u) = o. 

If u e V, then SN(u) = S?(u) = S^t(u) = - u , so ¥(S) (u) = o. 
Let u{ = (0, 0, ..., 0, 1,0, ..., 0) G V, where 1 is situated on the ith position. 

The vectors uf (1 g i ^ N) form a basis of V. 
/ — 3 

For 0 ^ n = let x(n) be the integer, 1 g x(n) £ N9 en = ±1 such that 

ej"x(n) s l(mod/). Then Sn = S? = Sw according to LI (c), where w is the 
integer, 1 ^ w S I - 1, w s r"(mod /). Hence rS"(ux) = enux(ny Since for 0 ^ n, 

I — 3 
™ -S " ~ 2 ~ t h e eclual i ty x ^ ^ *(m) follows n = m, the vectors S°(ut), Sl(u^f..., 
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1 - 3 

...,.S 2 (u t) are linearly independent hence x(S)(u{) ^ o for each non-zero 
polynomial x(X) over the field Z//Z of degree < N. The proposition follows. 

3.2. Remark. Clearly 

Y(X) =-. XN + 1 = Il(k - x) (x e JV) 

over the field Z//Z. The polynomial A — JC is the minimal polynomial of the 
subspace U(x) with respect to the operator S for each xe Jf. The conversion 
of this assertion holds as well: 

3.3. Proposition. Let U be an invariant subspace of V with respect to the operator S 
with minimal polynomial X — x (xeJf) (over Z//Z). Then U = U(x). 

Proof. Clearly, U is a non-zero space. Let u = (u(l), ..., u(N)) e U, u # o. 
There exists 1 ^ / ^ N such that u(i) 4=0. For 1 g j g N let 1 g z g / - 1 
with the property zz == J(mod /). There exists k e Z//Z, 0 # k such that k. u = 
= 5z(u), hence 0 # k . u(i) = e(/, z) u(f(i9 z)) = ±u(j). Thus u(j) # 0 for each 

Put v = w(l)"1u = (i?(l), ..., v(N))e U. Then v(j) * 0 for each 1 g f g N 
and t;(l) = 1. 

. a) For l ^ f l , i ) g i V w e have v(a) . v(b) = e(a9 b). v(f(a, fc)). Namely, there 
exists k e Z//Z, k * 0 such that k . v = Sfl(v) = (w(l), ..., w(N)). Since 1 = v(l), 
we get k = H>(1) = e(l,a) t;(f(l, a)) = v(a), thus v(a). t>(b) = k . v(b) = w(b) = 
= 6(6, a) . v(f(b9 a)). 

b) Let 1 <; c, d <* N, <? = ±1 , n a positive integer and cn == ^d(mod/). Then 
v(c)"~ev(d). 

We prove this assertion by mathematical induction with regard to n. The case 
n = 1 is clear. Let this assertion hold for n ^ 1 and let 1 ^ C, D g N, £ = ±1 
and let C"+* ==. £ . Z^mod /). 

There exist integers e, 5, e = ± l , l g < 5 ^ N such that Cn s. e<5(mod/). We 
have v(C)n == ev(S) and according to a) i?(<5). v(c) = e(<5, c). v(f(d9 c)). Further 
s(<5, c) f(8y c) s C<5 s eC"+ * = e£. D(mod /), hence f(<5, c) = D and eK = e(<5, c), 
thus v(C)«+i « et,(5) . t;(C) = £»(D). 

c) It holds v(t) = > * ' for each 1 g r g N. Put £ = r, e = 1 in case r < ^2 
and R^ / - r , e = - 1 in case r > //2. There holds xi;(I) = e(f r) v(f(f r)) 
(1 £ j ;S N), hence x = j«?(l) = e(l, r) t?(f(l, r)) = ev(R)9 which follows ex = v(jR). 
Let 1. £ r g N, w = ind /. According to b) (c = /?, d = t9 e = e") we get v(t) = 
=-* anv(R)» -=-- *», thus ***' = t;(/). 

Assertion c) yields v = v(x) and since each vector from U is a multiple of v, 
we have U = kU(x). 
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3.4. Theorem. Let U be a non-zero S-invariant subspace of the space V, dim U = 
= m (1 <; m ^ N). Then there exists X <^ JT, \ X | = m such that U(X) = U. 

Proof. Let G(X) be the minimal polynomial of the space U with respect to S. 
Then G(X) divides the polynomial *F(A) = kN -f 1, hence there exists I c / with 
the property 

G(k) = l\(X - x) (xeX), 

(considered as a polynomial over the field Z//Z). T îe First Theorem on the 
Decomposition of a Space into Invariant Subspaces then yields 

U = £ U x (xsX), 

where Ux is an S-invariant subspace of V with the minimal polynomial A — x. 
Proposition 3.3 then implies Theorem. 

4. C O N N E C T I O N WITH THE G R O U P R I N G (Z//Z) [G] 

4.1. Notation. Throughout this Section we shall use the following notation: 

G a multiplicative cyclic group of order / — 1, 

s a generator of G; thus G = {1 = s°, s, ..., s1'2}, 

«(/) =(Z//Z)[G] the group ring of G over the field Z//Z; thus .»(/)=-= 

= {ZV:«i<sZ//Z}, 
i = 0 

9T(/) = {a = £ V 6 «(/) : 0 = at + aUN for each 0 g i g N - 1}, 
1 = 0 

F the mapping of 9?"(/) onto V defined as follows: F(a) = u = (w(l), ..., 

. . . ,u(N))eV,a = £ ^ e 9 U 0 and for 1 ^ x £ N,\x(x) = ^^^^M-i = 

= tf0), 
F,, the mapping of 9t"(/) onto 9l~(/) for an integer n defined by the formula 

Fn(a)-s*.a(ae9r(/)). 

We consider the subring 9t"(/) of the ring 9t(/) as the vector space over the field 
Z//Z. Then F is an isomorphism of the vector space 9t~(/) onto the vector space V 
and the mappings Fn are automorphisms of the vector space 91"""(/). 

4.2. Proposition. Let z be an integer, 1 g z g / - 1, n = ind z. Then 

• FoFnoF~l ^Sz. • W-l>"' •••• : - •••'••:*• 
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Thus the following diagram is commutative: 

*U) + 

R (I) -> Y 

1 - 2 

Proof. Let u = (u(l), ..., u(N)) e V, _ " » = a = ~ a,*'' 6 9. (/), E„(a) = /J = 
1 - 2 

= £ bts
l 6 «"(/) and F(/?) = v = (v(l), ..., v(N)) e V. For each integer j let 

i_o 
aj = #i- where 0 :g / :g / — 2, / = j(mod / — 1). 

Then for 1 _^x_l NandO ^ i g / - 2 wehaveu(x) = a_indjc, bf = af_,, and v(x) = 

^ i - i - i n d x — ö - i ndx —« = a_ = a_; nde(дc, z )/(x ,z) = a_ inde(x, z) - ind/(x,z) 

= e(x, z) u(f(x, z)) = u(x). It follows Sz(u) = v and the proposition is proved. 

4.3. Remark. The ideals of the ring 9t~(/) can also be characterized as follows: 

4.3.1. An additive subgroup I of the ring 9t~(/) is an ideal of the ring 9t~(/) if and 
only i/ _;. / c /. 

Proof. Clearly, if / has the given property, then it is an ideal of 9t~(/). Let / 
/ + 1 — 

be an ideal of ft (I) and let a e /. Denote by j? the element —-—s (1 — s 2 ) e 
i-i 

e9t~(/), where lis considered as an element of Z//Z. Since 9t~(/)= (1 — _ 2 )9t(/), 
111 / + l i l l 

there exists ye9t(/) such that a = (1 - s 2 ) y. Then p. a = —-—s(l - s 2 )2 y = 
i - i 

==-_••. (1 — _• 2 ) y = _ . a, which implies s . a e /. 
According to 4.3.1 there holds 

4.3.2. A subset I 0f9l~(/) is an ideal of the ring 9t~(/) if-and only if it forms an 
F^invariant subspape of the vector space 9t~(/) for each integer n. 

According to [5], Proposition 3.9 the ideals of the ring 9t~(/ are in the one-to-one 
correspondence with the subsets X of Jf by the formula 

Xc^-*/(X) = 9r(/)n(*~ x) (xeX), 
(s — x is considered as an element of 9t(/)). /(X) is a subspace of the vector space 
9t r(0 and according to [5], Proposition 3.3 the system of elements aL (1 ^ L S 
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_i / - 2, L odd, rL £ X) (1 <; r„ S I - 1, rn == /-"(mod /) for an integer n) forms 
. - 2 

a basis of the subspace / (X ) , where a_ = £ r_fI/- The image F(f(X) is then 
i = 0 

an iS-invariant subspace of V, whose basis is formed by the elements F(otL) = u(/_)-
and then F(/(X)) = U(JT - X). 

We have got in this way another proof of Theorem 3.4. 
The general situation looks like the following: 

S-invariant subspaces of V *-> subsets of JT <-> ideals of 91 ~ (I) 

U = U(X) = ST{A) = 
= F(f(JT -X))~X= {r.2b+l : b e L - A} «- / ( ^ - X) = 

I = K ' ( / ) - I l ( J - x){pc*JT- X) 

A= L - \N - ^-(indx - l): xexi, 

subsets of L 

/ - 3 
4.3.3. Special case. If we put A = {1 _̂  a g—-—; l/B2a} (Bn means the 

Bernoulli number), then | A | = i(/) the index of irregularity of I and according to [6], 
Theorem 2.4 (c) f(JT - X). = 3(/) is the Stickelberger ideal mod /. The set X 

/ — 3 
is then equal to the set {r_2b+1 :1 _ t ^ —-—, l^B2b} u {r}. 

The images of some concrete elements from the Stickelberger ideal 3~(0 in the 
isomorphism F are described in Section 4 and 5 of [6]. 

5. THE NORMAL MATRIX OF A SUBSPACE OF V 

All matrices are considered over the field Z//Z. 

5.1. Definition. A matrix M = (m{j) of size mxn(m :_ n) is said to be in normal 
form if there exist integers 1 _̂  j \ < j2 < ... < jm f_ n with the following property: 

1 for j=ji9 

my=-<0 for j<ji9 

0 for j = j k , 1 g k <i m, A: ^ U 

1 _ / _ m. Thus the columns with subscriptions fj, ...,Jm form the unit matrix 
of order m and the elements of M standing in the left of ones of this unit matrix 
are zeros. The number m is rank of M. 

It is clear that any nonzero matrix C can be transformed in a matrix Af in normal 
form by a sequence of elementary row operations (i.e. multiplication of a row by 
a nonzero element from Z//Z and addition to a row another one) and omitting 
rows containing only zeros. 
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This matrix M ir defined uniquely by this property and we will call it the normal 
form of the matrix C. 

5.2. Definition. Let 0 # U be a subspace of the vector space V. The coordinates 
of vectors of a basis @ of U form a nonzero matrix 

U = (u(l), ..., u(N)) (u = (u(l), ..., u(N)) e ^ ) 

of size dim U x N. We call the normal form M of the matrix U the normal matrix 
of the subspace U. 

Clearjy, M doesn't depend on the basis &, size of M equals dim U x N and the 
row vectors of M form a basis of U. The normal matrix of the whole space V 
is the unit matrix of order N. 

5.3. Let 0 =£ U # V be an S-invariant subspace of V, let A e L(0 ?- A ?- L) 
and U = $T(A\ and let r = \A | (0 < r < N). 

There exist uniquely determined integers 

0 = £0 < 2 g £t < £2 < ... < £r_! < Zr = N, 

such that for xe L, ^ < x g £fc + i(0 ^ k < r — 1) rank of the matrix 

of size r x (r — k + 1) equals r — k. (Since rank of the matrix (f2fl~*) (a e A, t e L) 
of size r/N equals r (Vandermond's type)). 

Let 1 ^ / g N, i £ {<Jl9 £2, ...»£r}. Then there exists 0 = k ^ r — 1 such that 
Zk < i < Zk + i> Since ranks of matrices 

( i 2 - 1 , ^ 1 , . . . , ^ " 1 ) (aeA), 

equal one another and equal r — k, there exist uniquely determined integers 
0 <£ Jtp < /(l ^ r ^ r - fc) such that 

(*) i2fl-1+rX42
+;1xly^0(mod/). 

7*1 

Put for 1 g j ^ N O ' ^ , ...,£,}): 

1 for j = i, 
xiy for j = {fc+v(l <; y = r - k), 
0 otherwise. 

5.3.1. Theorem. The matrix M = (mi}) (1 ^ i g N, i e {^, £2> ••• > £r}> - -5 J S 
g£ N)--fa the normal matrix of the subspace U. 

Proof. According to definition the matrix' M is in normal form and has size 
dim U x N since dim U = N — r. It remains to prove that every row vector of M 
belongs to U. Using (*) and the fact U = Sf(A) we obtain the Theorem. 

m 
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5.4. Definition. We call a subset A £ L normal (for the prime /) if A = 0 or 
A — LOT0^AT£L and the normal matrix M of the subspace S?(A) of V has 
the form 

M = (E9X)9 

where is is the unit matrix of order N — \ A \ and X is a matrix of size N — | A \ x 

The following two Propositions are immediate consequences of Theorem 5.3.1. 

5.5. Proposition. Each one-element subset of L is normal for the prime /. 

5.6. Proposition. Let A ^ L, 0 ^ A ^ L9 r =\ A \ and B = {a -a* :ae A}9 

where a* is the least integer in A , Then the following assertions are equivalent: 

(a) A is normal for the prime /, 
(b) det (x2b) (beB9N-r + l£x^N)^ 0(mod /), 
(c) det ((2x - l)26) (be'B9l gx S r) & 0(mod /). 
We can see easily 

5.7. Proposition. Let 3 ^ / ^ 11. Then each subset A ^ L is normal for the 
prime /. 

We also obtain by easy computation: 

5.8. Proposition. Let / === 13. Then each subset A •£ {1,2, ..., 6} 'is normal for 13 
except 

(a) A = { l , 3 , 5 } 0 r A = {2 ,4 ,6} , 
(b) A = {1, 4} 0r A = {2, 5} 0r A = {3, 6}. 

In case (a) the normal matrix M of Sf(A) has the form 

м = 
1 0 ^! 0 У, 2, 
0 1 x2 0 yг zг 

0 0 0 1 y3 z3 

and in čase (b) 

м 

1 0 0 xt 0 yx 

0 1 0 x2 0 y2 

0 0 1 x3 0 73 
0 0 0 0 1 >>4 

( x i , y i , ^ e Z ) . 

The numbers Xi,yi5 zi can be computed by means of the equalities (*). Thus 
e.g. for A = {1, 3, 5} we have 

" 1 0 0 0 5 0" 
0 1 8 0 0 0 
0 0 0 1 0 8 

M 
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and for A = {2, 5} 

M = 

1 0 0 1 0 0 
0 1 0 0 0 12 
0 0 1 1 0 0 
0 0 0 0 1 12 

5,9. Let A -= J i g a S ^—- : UB2\, A = Au | ^ - ^ f - Using tables of 

indices ([3]) and tables of irregular primes ([4], s. also [1], Table 9) we can derive: 

5.9.1.- Proposition. For each prime /, 3 :§ / < 1,000 the sets A and A are normal 
for the prime I. 
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