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ARCHIVŮM MATHEMÁTICUM (BRNO) 
Vol. 25, No. 1 - 2 (1989), 61-72 

REMARKS ON HAMILTONIAN PROPERTIES 
OF SQUARES OF GRAPHS 

GONTER SCHAAR 
(Received April 28, 1988) 

In memory of Milan Sekanina 

Abstract This paper deals with problems concerning the existence of such Hamiltonian cycles 
or paths in squares of graphs containing some edges of the original graphs. Using a method due to 
ftiha several results on blocks could be found generalizing previous ones. 

Key words. Squares of graphs, blocks, Hamiltonian cycles, Hamiltonian paths. 
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0. It has been M. Sekanina who 25 years ago posed the question for the structure 
of those graphs G the square of which has an open or a closed Hamiltonian line 
(i.e. G2 is traceable or Hamiltonian, resp.), cf. [7]. Since that time many results 
concerning this problem could be obtained; to the most important and well-
known ones among them certainly belong the Theorem of Fleischner [2], [3] 
verifying a conjecture of Plummer and Nash — Williams [4] (Every block G with 
at least 3 vertices has a Hamiltonian square) and its generalization by Chartrand, 
Hobbs, Jung, Kapoor, Nash— Williams [1] (For every block G its square is 
Hamiltonian-connected and, if G has at least 4 vertices, G2 is 1-Hamiltonian as 
well). Recently, St. Riha, a young former co-worker of Sekanina's succeeded in 
finding an excellent proof of the following statement (cf. [6]) which implies 
Fleischner's theorem and its generalization mentioned above. 

Theorem 0: Let G be a block with at least 3 vertices and x any vertex of G. Then 
there are two different G-neighbours a,b of x and a Hamiltonian path in G2 —. x 
joining a and b. a 

Using rtiha's proof-method and his theorem, in the next sections of this paper 
we shall get several results on the existence of Hamiltonian cycles in G2 containing 
some edges of G, especially a partial answer to the question, if the Hamiltonicity 
of G2 always implies the existence of a Hamiltonian cycle in G2 containing an 
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edge of G. (In case that this conjecture were true it can be easily shown [8] that 
for any such G even there is a Hamiltonian cycle in G2 containing at least two 
edges of G.) 

All graphs considered here are supposed to be undirected, simple and finite 
(possibly empty). Let G = (V9 E) be a graph with the vertex-set V(G) : = V and 
the edge-set E(G): = E. If x9ye V9 x # y, are the end-vertices of an edge le E 
we denote this edge / by the couple {x9 y}. We say that x e V is a G-neighbour of 
y e V iff {x9 y} e E. The vertex x is called a G-neighbour of M g V iff x i M 
and * is a G-neighbour of some yeM. If X is a vertex (a subgraph or a vertex-
subset) of G then N(X : G) denotes the set of all G-neighbours of the vertex X 
(of the set of all vertices belonging to X), and G — X is defined to be the subgraph 
arising from G by deleting the vertex X (all vertices of X) and all edges incident 
with X (with some vertices of X). By G(M) we denote the induced subgraph of G 
generated by M g V. The valency (degree) of the vertex x e V(H) in the subgraph H 
of G is denoted by v(x : H). The square G2 of G is the graph with V(G2) := V(G) 
and {x9y} eE(G2) iff the distance of x and y in G is 1 or 2. A block is a graph 
which is 2-connected (non-trivial block) or a path of length 1 (trivial block). A blockG 
is minimal iff there is no edge / e E(G) such that the graph arising from G by delet
ing / is a block. Paths and cycles w are comprehended to be special graphs (possibly 
subgraphs of a given graph); as usual they are represented by sequences of the 
vertices passed by w. Generally we shall not distinguish between a path (or a cycle) w 
and its representation by a vertex-sequence. A path of length 0 is called trivial. 
Ifp = (x0, x_, ..., xr __, xr) is a vertex-sequence the inverse sequence (xr, xr _ _, ..., 
xl9 x0) is denoted by p"x

9 and if q = (y09 yl9 ...,ys) is another vertex-sequence 
then (p9 q) is defined to be the vertex-sequence (x0, x_, ..., xr _ _, xr, y0, y_, ..., j>s); 
analogously in similar cases. The number of elements of a set Af is denoted by \M\* 

1. Let G be a graph, w a non-trivial path in G and JC an end vertex of w. 

Definition. S is a (G2, w9 x)-basic—set iff S is a set of pairwise vertex-disjoint 
paths in G2 - w with \J V(p) = V(G) - F(w), and there is a mapping / from S 

peS 

into the power-set of V(w) with the following properties: 
(1) S = Sj u S2 where S, := {p e S : \f(p)\ = /}, / = 1, 2; 
(2) for each peS29if {a_, a2} = f(p) and {^, e2} 1s the set of the endvertices 

of p (possibly e_ = e2)9 it holds: {al9 e_}, {a29 e2} eE(G) or {al9 e2}9 {a29 e_}e 
eE(G); 

(3) for each p e S_, if {a} = f(p)9 then {a, £?} e E(G) holds for every endvertex e 
ofp; 

(4) /(p) n f(p') » 0 for any different p, p' e S; 
(5) if S2 = 0 then there is a ze V(w)9 z ^ x such that z$f(p) for each peS. 

The construction given by Riha in [6]— it is the main point of his proof of 
Theorem 0 — Verifies the following 
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Lemma. Let G be a graphs w a non-trivial path in G, x an endvertex of w and S 
a (G2, w, x)-basic-set. Then there is a G-neighbour x' of x and a Hamiltonian path 
in G2 joining the endvertices of w and containing the edge {x, x'} and each pe S 
as a subpath. a 

2. Using this Lemma we shall prove some generalizations of ftiha's Theorem 0. 
For this end we introduce the following notations. Let G be a non-trivial block 
(i.e. |V(G)| = 3) and w SL path in G. By Cx(w) and C2(w) we denote the set of all 
components C of the graph G — w with |V(C)| = 1 and |V(C)| ^ 2, respectively, 
and we define C(w) := Cx(w) u C2(w). Let C e C(w). Then N(C : G) £ V(w) and 
|N(C : G)| ^ 2; for C eC2(w) at least two vertices of C have G-neighbours in 
N(C : G) and therefore there are two different vertices in C having a pair of different 
G-neighbours in N(C : G). For every C e C(w) we form the graph Gc arising from 
G(V(C) u N(C : G)) by contracting all vertices of N(C : G) to a new vertex 0 £ 
£ V(G) (the edges between C and N(C : G) in G become edges between C and 0 
in Gc, of course), where resulting multiple edges are replaced by a simple edge 
with the same endvertices and resulting loops are removed. Obviously, Gc is 
a block, and |V(Gc)| ^ 3 if C e C2(w). Let us suppose: 

(6) For each C e C2(w) there is given a Hamiltonian path Ac in Gc — 0 joining 
two Gc-neighbours of 0. . . 

Furthermore, for each Ce Ct(w) we define hc := C (the trivial path consisting 
of the single vertex of C). Then it follows that hc and hc> are vertex-disjoint if 
C # C\ C, C' e C(w). Denote by P the set of all subpaths arising from the family 
(hc : CeC(w)) by deleting, for each hc, all edges in hc which do not belong to 
E(C2). We remark that P consists of pairwise vertex-disjoint paths in (G — w)2 

the endvertices of which are G-neighbours of some vertices of w, that every edge 
belonging to E(hc) n E(G) for a C e C(w) is also an edge of some p e P, and that 
the (disjoint) union of all sets V(p) with p e P results in V(G) - V(w). Now the 
following algorithm (*) is applied to P (see ftiha [6]): 

(*) If there exist different paths p, p' e P with the property that there is a z e V(w) 
which is a G-neighbour of an endvertex x of p as well as of an endvertex x' of p', 
we take such a pair p = (a, ..., x),p' = (x', ..., b) with x, x' e N(z : G) for a z e 
e V(w\ form the pathp" = (p, p') = (a,..., x, *' , . . . , 6) which is a path of G2 - H> 
whose endvertices a, b are G-neighbours of some vertices of w (possibly of only 
one vertex of w\ and replace the elements p, p' in P by p". We obtain the set P' : = 
:= (P — {p,p'}) u {p"} and repeat this procedure with respect to P', and so on. 
After a finite number of steps —say r—this algorithm stops, and the resulting set 
S := I*(r) has the properties: 

(7) S consists of pairwise vertex-disjoint paths in G2 — w the endvertices of 
which are G-neighbours of some vertices of w; 

(8) for any different elements p = (x,..., x') and q = (y>...,/) of S, the end-
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vertices of these paths satisfy 

N({x, x'} : G) n N({y, /} : G) n V(w) = 0 ; 

(9) (J V(p) = V(G) - V(w); 
peS 

(10) for any CeC2(w) every leE(hc) n E(G) is also an edge of some peS. 

Let S(hc : C e C(w)) denote the set of all such path-sets S which can be obtained 
if we apply algorithm (*) to P in any possible way. Then it is easy to see that every 
SeS(hc : CeC(w)) fulfils (10) and all properties of a (G2, w9 x)-basic-set with 
the exception of (5), where x is either endvertex of w. The mapping/is chosen as 
follows: If for a peS with |V(p)| ^ 2 the endvertices el9 e2 of p satisfy m : = 
:= \V(w) n(N(et : G) u N(e2 : G))\ = 2, we take arbitrary at e N(et : G) n V(w)9 

i = 1, 2, with a! T* a2 and define f(p) := {al9 a2}\ if m = 1 we have to put 
f(p) := {a} = N(et : G) n V(w). For a peS with |V(p)| = 1 it follows 
\N(e : G) n V(w)\ ^ 2 for the vertex e of p if p e C^w), and we take ai9a2e 
e N(e :G) n V(w>), at * a2, and /(p) := { a ^ } ; if p £ C2(w) and |N(e : G) n 
n V(w)\ ^ 2 we proceed as before; if p $ C2(w) and \N(e : G) n V(w)\ = 1 we 
define f(p) := {a} with {a} = N(e : G) n V(n>). 

3. Now we suppose G to be a minimal block with (V(G)) = 3, and let x and y 
be different vertices. Then there exists a cycle in G containing x and >\ Because 
this cycle has two different vertices a9 b with v(a : G) = v(b : G) = 2 (see Plummer 
[5], ftiha [6]), at least one of the two independent paths joining x and y which 
form a separation of this cycle must contain a vertex z ^ x with v(z : G) = 2. 
A path p satisfying this property (i.e. p joins x and >> and contains a vertex z ^ x 
with v(z : G) = 2) is called an admissible (x, jO-path in G and x its m/t/a/ vertex. 
(Obviously, an admissible (x9 j)-path is not necessarily an admissible (y9 x)-path.) 
Note that for any x ^ y there is an admissible (x, y)-path in the minimal block G; 
if {*> y} e E(G) then every path in G of length ^ 2 joining x and ^ is an admissible 
(*» y)*path, and if {x, j} ^ E(G) then there is an admissible (x, ̂ )-path which 
is not a Hamiltonian path. Let w be an admissible (x, j>)-path *n G anc^ assume (6) 
for this w. Then there is a z e V(w)9 z ?- x with v(z : G) = 2. Assume that the 
family (hc: C e C2(w)) satisfies the additional property: 

(6a) If v(y : G) = 2 and y is not a G-neighbour of x and the (only) G-neighbour 
y* $ V(w) of y belongs to a component C* of G - w fulfilling C*C2(w)9 then hc* 
Contains an edge {y*, z} eE(G) with some zeN(y*:C*). Now consider an 
S e S(hc : C e C(w)) and a mapping / described at the end of section 2. Then it 
follows that the set S2 = {p e S : |/(p)| = 2} is empty only in the case that for 
eachp the premisepeS implies |V(p)| = 2and|V(w) n (N(^ : G) u N(e2 : G)\ = 
*= 1, for the endvertices ei9 e2 of p or |V(p)| = 1 and |N(e : G) n V(p)| = 1 
With (e) = p. In the first case we conclude/(p) = N(ei : G) n V(w) = N(^2 : G) n 
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n V(w) = {ap} because of (7); obviously, v(ap : G) ^ v(ap : w) + v(ap : G({ei9 e2, 
ap})) ^ 3, and thus we have ap ^ Z, i.e. Z <£ f(p). 

In the second case we have f(p) = N(e : G) n V(w) = {ap} for the vertex e 
of p; further v(ap : G) = v(ap : w) + v(ap : G({e, ap}) gt 2 +- 1 = 3 if ap is an 
inner vertex of w, and if ap = y and {x, y} e E(G) then v(y : G) ^ v(y : G(w)) + 
+ v(y : G({e, y}) = 2 + 1 = 3. Now let ap = y, {x, 7} £-E(G); if v(y : G) = 2 
then because of (6a) and (10) it follows that {y*, z} e ^(p) for some z e N(y*:G - w), 
where 7* e NO : G) - V(w). This is a contradiction to |V(p)| = 1. Hence in every 
case v(ap : G) ^ 3, and thus ap # z, i.e. z <£f(P). So we have proved z £f(p) for 
e a c h p e S i f S 2 = 0. Consequently, S and/fulfil (5); using the statements of 
section 2 and the notations introduced there we get 

Corollary 1. Let G be a minimal non-trivial block, x, y e V(G) with x 7-= y, and w 
an admissible (x, y)-path in G. Furthermore, we assume that we are given a family 
(hc : C e C2(w)) according to (6) and fulfilling (6a). Then every S e S(hc: C e C(w) 
is a (G2, w, x)-basic-set satisfying property (10). o 

For any block H with \V(H)\ ^ 3 we define 

s(H) : = \V(H)\ £ (v(x: fl) - 2) = 2|V(H)|| |C|(£(H)I - |V(H)i). 
xeV(H) 

Obviously, s(H) = 0 because of v(x : H) = 2 for x e V(H), and s(H) = 0 iff H is 
a cycle. Referring to the notations of section 2 we can prove 

Corollary 2. Let G be a non-trivial block not being a cycle, and w a non-trivial 
path in G with the endvertices x, y. Then for every C e C2(w) the graph Gc is a non-
trivial block satisfying 

(11) s(Gc)<s(G). 

P roof : CeC2(w) implies (see section 2) |V(C)| = 2,|N(C : G)| = 2, N(C: G) s . 
<= V(w\ and V(C) n N(w : G) = N(0 : Gc). Hence, |V(Gc)| < |V(G)|, and Gc is 
a block with (V(Gc)) = 3. Let N(C : G) - {x, y} = {ei9 ..., ek}, and write e0 = x 
and ek + i = y. Obviously, for. each xa V(C) we have v(x : Gc) g v(x : G). If 

k 

x,y£N(C : G)wegetk = 2 a n d 2 g v(0 : Gc) = £ (v(ef : G) - 2); if x e N(C : G), 
i = l 

k 

y $ N(C : G) it follows k = 1 and 2 = v(0 : Gc) = £ (v(e. : G) - 2) + 1, analog-
i = 0 

ously for y e N(C : G), x $ N(C : G); if x, y e N(C : G) we find k = 0 and 2 = 

*+i 

^ v(0 : Gc) = ^ (K^i : G) — 2) + 2. In each of these cases we obtain 
i = 0 

s(Gc) £ \V(GC)\ £ (v(x : G) - 2) = Xs(G), 
xeV(G) 

with k = \jr < 1. This results in (11) because G is not a cycle and therefore 
\V(G)\ 

s(G) > 0. D 
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Note that for blocks # , G with |V(#)| ^ 3, where # is a subgraph of G and 
# ?= G, it follows s(#) < s(G). 

4. Generalizing ftiha's theorem (Theorem 0) we show 

Theorem 1. Let Gbea block andx, y adjacent vertices. Then there is a G-neighbour 
x' ofx and a Hamiltonian path in G2 joining x and y and containing the edge {x, x'}. 

Proof: Obviously, the assertionis true if |V(G)| = 2 and also if Gis Hamiltonian. 
Assume, Theorem 1 fails to hold. Let G be a block with the least value of s(G) 
such that G does not fulfil the property stated in this theorem for some adjacent 
vertices x ^ y. Hence it follows, that G is a minimal block with |V(G)| ^ 3 
being not Hamiltonian, i.e. G is not a cycle, and therefore s(G) > 0. Because G is 
a minimal block there is an admissible (x, j>)-path w. Obviously w is a non-Ha-
miltonian path. According to section 2 we form the set C(w) = Ct(w) u C2(w\ 
and for each C e C2(w) we consider the graph Gc which is a non-trivial block. 
Owing to Theorem 0 (cf. [6]) there exists a Hamiltonian path hc in Gc — 0 joining 
two Gc-neighbours of 0; therefore we can find a family (hc : C e C2(w)) realizing 
(6). (Note* that (6a) is trivial because of {x, y} e E(G).) Owing to Corollary 1 
every S e S(AC : C e C(w)) is a (G2, w9 x)-basic-set. Because w is a non-Hamiltonian 
path, S(hc : C e C(w)) =£ 0. Taking an S e S{hc: C e C(w)) and using the Lemma 
of section 1 we get a Hamiltonian path in G2 joining x and y and containing an edge 
{x9 x'} for some G-neighbour x' of JC, which is a contradiction to the assump
tion on G. o 

Theorem 2. Let G be a non-trivial block, and x, y different vertices. Then there 
are different G-neighbours a, b of x9 a G-neighbour z of v, and a Hamiltonian path 
in G2-x joining a and b and containing the edge {y, z}. 

Proof: The assertion holds for Hamiltonian graphs, i.e. for all non-trivial 
blocks G with s(G) == 0. Assume Theorem 2 to be not true, and consider a block G 
with |V(G)| ^ 3 and the least value of s(G) such that the property stated in 
Theorem 2 is not fulfilled for some x # y. Then G is a minimal non-trivial block 
and not Hamiltonian (i.e. not a cycle), what implies s(G) > 0. 

Case 1: Suppose that there is a cycle k in G with x e V(k) and y $ V(k). Let b 
be a k-neighbour of x. Deleting the edge {x9 b} in k we obtain a non-Hamiltonian 
path w which is an admissible (x9 b)-path. 

According to section 2 we form the set C(w) -= Cx(w) u C2(w)9 and for each 
C e C2(w) we consider the graph GC which is a block with |V(GC)I ^ 3. 

a) Let ye V(T) for some TeC2(w). Then Corollary 2 yields s(Gr) < s(G); 
hence it follows that there is a Hamiltonian path hT in GT — 0 joining two 
Gr«neighbours of 0 and containing an edge {y9 z} with a suitable GT-neighbour z 
of y. Then y9 z # 0, and therefore z is a G-neighbour of y as well. Thus {y9 z} e 
e E(hT) n E(G). For every C e C2(w)9 C ?= T9 Theorem 0 yields a Hamiltonian 
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path hc in Gc — 0 joining two Gc-neighbours of 0. In this way we have succeeded 
in finding a family (hc:C e C2(w)) realizing (6). Owing to Corollary 1 every 
S e S(hc : C e C(w)) ?- 0 (w is a non-Hamiltonian path) is a (G2, w9 x)-basic-set 
satisfying (10) and consequently, {y, z} eE(p) for some pe S. Using the Lemma 
of section 1 with such an S we obtain a G-neighbour a of x and a Hamiltonian 
path in G2 joining x and b and containing the edges {x, a} and {y9 z}. Because of 
|V(G)| = 3 we have a ^ b9 and we have found a Hamiltonian path in G2 — x, 
joining two different G-neighbours a, b of x and containing the edge {y9 z} e E(G). 
This is a contradiction to the assumption on G. 

b) Let y e V(T) for some Te Cx(w). Then T consists of the vertex y9 and y is 
a G-neighbour of exactly two vertices z', z e V(w) = V(k) which cannot be adjacent 
in G (note that k has not diagonals because G is a minimal block). We may assume 
z T* x. Both paths wl9 w2 joining z' and z and forming a separation of the cycle k 
must contain at least one inner vertex ( ^ z, z'). Then it follows that G — j ; is 
a block with |V(G - v)| ^ 4 and s(G - y) < s(G). Thus (because of x ^ z) there 
is a Hamiltonian path /? in (G — y)2 — x joining two (G — ^-neighbours a, br 

of x and containing an edge {z, t} e K(G — y) e K(G). Replacing the subpath (z, l) 
(which corresponds to the edge {z, /}) in p by (z, y, t) which is a path of length 2 
in G2, we get a Hamiltonian path/?' in G2 — x joining different G-neighbours a, bf 

of x and containing the edge {y9 z} e E(G). But this is a contradiction to the 
assumption on G. 

Case 2: We have to suppose that every cycle containing x must contain y as 
well. Note that at least one such cycle exists. Each of the components of the graph 
G — {x, y} is adjacent with x and with y in G and contains exactly one G-neighbour 
of x. If x and y are adjacent in G, then G — {x, y} has exactly one component 
(G is a minimal block), say Tl9 otherwise G — {x9 y} has at least two components, 
say Tl9T29...9Tr9r*2. 

a) Let (x, y} <£ E(G). By Ht we denote the graph arising from # f : = G(V(Tt) u 
u {x, y}) by adding the new edge {x, >>},/= 1, ..., r. Obviously, Ht is a block with 
l^(#i)l = 3 and s(Ht) < s(G) (because of r ^ 2), and, furthermore, v(x : Ht) = 1, 
v(x : Ht) = 2, / = 1, ..., r. Consider any / e {1, ..., r} and write # and # instead 
of Hi and # „ respectively. Note that # arises from # by deleting the edge {x, ^ } . 
Let z denote the # neighbour of x being different from y, and let p be any path 
in # joining x and y and not containing the edge {x, y}; such a path exists, for # 
is a block. Then /? is a path in # which contains all cutpoints of # (A cutpoint z' 
of # with z' $ V(p) would imply that both x, 7 belong to the same component C 
of # — z', and that there is at least another component C 5-= C; therefore the 
edge {x,j>} eE(H) joins vertices of the same component C of # — z \ and we get 
at least two components of # — z', in contradiction to the fact that R is a block.) 
Obviously, one cutpoint of # is z. Hence it follows that p can be represented by 
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the sequence 

p = (x9z = zl9 . . . , z 2 , . . . ,z ? , . . . ,z,, ...,y) = 
= (*>F1>P2> —,Pt-l,Pt), 

where zx, z 2 , . . . , zt(f = 1) are all the (different) cutpoints of H, andp0 = (x, z = zx\ 
Pk = (2*> •••>zfc+i) = (Pk>zk+i)>k = 1, ..., t - 1, and p, = (zt, ...,j0 are non-
trivial subpaths of p forming a separation of p. (Of course, zt ^ y holds because H 
is a block.) With z0 : = *, z t+1 : = jV the couple {zfc, zfc+ J of the endvertices of pk 

determines a (maximal) block Bk of H (£k is the maximal subgraph in H being 
a block and containing zfc and zfc+1), k = 0, 1, ..., t, and these B'ks satisfy the 
properties: V(Bk) n V(5fc+1) = {zfc+1}, k = 0, ..., t - 1, ;V(B,) n V(Bfc) = 0 for 
0 <L I < k <i t with fc # / + 1, and 5 0 , Bl9 ..., Bt are all the (maximal) blocks 
of H. (For otherwise we could find a path in H joining x and y and not containing 
every cutpoint of H, or we would get a cutpoint of H, respectively, but we have 
seen that neither of these situations is possible. To put it concisely: The block-
cutpoint-graph of H is a path, and x and y belong to its different end-blocks.) 
Of course, B0 = p0 = (x, z). 

H : • iMIEIIl^^WII^ ••• «gz_77/7/H7Ẑ  
*o *< % \-< \ 

Because of s(H) < s(G) we have s(Bfc) < s(G) if |V(Bfc)| = 3, k = 0, 1, ..., t. 
Hence it follows that for such a Bfc there is a Hamiltonian path in B\ — zk+1 

joining two suitable Bfc-neighbours zk+1 and zk+l of zfc+1 and containing some 
edge {zfc, zfc} eE(Bk). We can write this path in the form (z'k+l9 ..., zfc, zk9 ..., zk+ x) 
and consider the two subpaths q'k : = (z*;+1, •••, zk) and qfc := (zfc, ..., zfc + 1); note 
that {zfc,zfc}, {zk+l9 zfc+1}, {4+l9 zk+1}eE(H). In case that |V(Bfc)| = 2, k = 1, 
we have {zfc, zfc+ J e K(H) and we consider the maximal sequence Bk9Bk+l9...9Bk+1 

with \V(Bk+j)\ = 2, j = 0, 1, ...,/, and k = k + / = t (that is: Either k + / = t 
or if k + / < t then it holds |V(Bfc+*+1)| ^ 3); now we define q'k := 0 , qfc:= (zfc) 
if / is even, and q'k : = (zfc), q£ : = 0 if / is odd. Then the sequence 

q := (-?*'> q/-i> —»^I»^i»?2» •••,qr/) 

is a Hamiltonian path in (H - x)2 - y satisfying the following property: 
If |V(2?t)| > 3 then q joins two i?t-neighbours (and therefore H-neighbours) 

/ := z't+i a n d / := z t+1 of j ; = z t + 1 ; 
if |V(#t)| = 2 and / ^ 2 then q joins some ^t-1-neighbour / of zt (namely 

/ := zt if IV^ .OI = 3, and / := zt,t if \V(Bt_t)\ = 2) with the ^-neighbour 
y" :~ztofy; 

if lV(2*t)| =- 2 and t = 1 then q = (zx) consists of the only £t-neighbour y' : = 
: _ ± / := zj of y. 
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Thus we can write q = (y\ . . . , / ')> where y" is an H-neighbour of y and yf is 
an H2-neighbour of y. 

Furthermore, from Theorem 1 it follows, that for each block Bk, k = 0, ..., ty 

there is a Hamiltonian path q* in B\ joining the vertices zk+1 and zk and containing 
some edge {zk+l, z*+1} eE(Bk). (This is obvious if zk and zk + 1 are adjacent. If they 
are not adjacent we consider the block B consisting of Bk, a new vertex 0 and the 
edges {0, zk} and {0, zk + 1}. Then because of r ^ 2 we have s(B) < s(G), and this 
remains valid also for r = 1 if t _ 2, i.e. in the next subcase b) only the situation 
for 1 = 1 must be considered separately. Hence it follows, that there is a Hamilto
nian path in B2 — 0 joining the two .^-neighbours of 0 and containing some edge 
{ z H 1 ) z * + 1 } 6 £ ( 5 ) . ) We can write We can write q*k = (zfc+1, z*+1 , ..., zk), k = 0, 
1, . . . , / , and with q* := (z*+ 1 , ..., z k ) - i .e . q* = (z k + 1 , qk) - , k = 0, 1, ..., t9 

it is obvious that the sequence 

q : = ( q r > q . - i > •••»qo) 

is a Hamiltonian path in H2 — y joining an H-neighbour y* : = z*+1 of y and the 
vertex x and containing the edge {z, x} e E(H) (because zx is a B0-neighbour of 
zx = z and therefore z* = x). 

Thus we have proved the following assertions for i = 1, ..., r: 
There is a Hamiltonian path qf = (y'{, ...,yj') in (Hf — x)2 — 7 joining an 

H2-neighbour y\ of j and an Hrneighbour y'j of y. 
There is a Hamiltonian path qt in H? — y joining an Hrneighbour yf of y 

and the vertex x and containing the edge {z\ x} e E(Ht), where z* is the only 
Hrneighbour of x; write qt = (yf, ...,zl,x) and ^ := (y*, ..., z1) = qf - x. 

Because V(G — {x, y}) and K(G) are the disjoint unions of the sets V(Ht — 
- {x, y}) and E(Ht), respectively, and V(Hf) n V(Hj) = {x, y} if / # J we obtain: 

( q ' S y ^ q a ^ q r 1 , q4, •••. §7-1* £r) if r is even and 

(5r 1»^?2»53»94 1» •••.qr'-liqr) if r is odd 

is a Hamiltonian path in G2 — x joining the two G-neighbours a := zxand b := zr 

of x and containing the edge {y*,y} eE(G) (and the edge {y, y*} eE(G) if r is 
even as well). However, this is a contradiction to the assumption on G. 

b) Let {x, y} e E(G). Then G — {x, y} has exactly one component Tx. Write 
H := G and let H be the graph arising from H by deleting the edge {x, y}. Obvious
ly, we have the same situation as considered in subcase a) with respect to the 
graphs H, H with the only exception that now s(R) < s(G) does not hold (because 
of H = G). However, if t ;> 2 (note that t + 1 is the number of the blocks of H) 
the construction of the path q remains valid. Now let t = 1. Then G consists 
of the block B : = B± containing the two different vertices zt = z and z2 = y, 
of the vertex x and of the edges {x, z} and {x, y}. Obviously, s(B) < s(G) if B is 
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a nontrivial block. To construct a path q wanted it suffices to construct a Hamilto-
nian path h in B2 joining z and y and containing some edge {y, y*} with y* e 
e N(y : B). If |V(2?)| == 2 or B is Hamiltonian (i.e. B is a cycle because G-and 
therefore B-is a minimal block) or B has a Hamiltonian (z, y)-path, the existence 
of such an h is obvious. So let B be a nontrivial block being not a cycle and therefore 
0 < s(B) < s(G). Now consider an admissible (y, z)-path W in the minimal block B. 
Then {y, z} e E(B) is not possible because G is a minimal block. Thus {y, z} $ E(B), 
and we may suppose that w is not a Hamiltonian path in B. Then we proceed as 
in the proof of Theorem 1 (now for B instead of G, y instead of x, and z instead 
of y, of course) with the following modification: If v(z : B) = 2 and the only 
5-neighbour z* £ V(\V) of z belongs to a component C* of B - w fulfilling C* 6 
e C2(H

?)> we choose a Hamiltonian path hc* of Bc* — 0 joining two Bc* — neighbours 
of 0 and containing the edge {z*, z'} e E(B) with some z' e N(z* : Bc*); such an hc* 
exists because of s(Bc*) < s(B) < s(G). Hence, besides (6) also (6a) is fulfilled 
by the family (hc : C e C2(w)) having been chosen, and Corollary 1 and the Lemma 
of section 1 yield the required Hamiltonian path h. 

So in every case there is a Hamiltonian path q in H2 — y joining an H-neighbour 
y* of y and the vertex x and containing the edge {z, x} e E(H), where z denotes the 
only H-neighbour of x; write q = (y*, ...,z,x) and q := (y*, ...,z) = q — z. 
Then (5""1, y) 1s a Hamiltonian path in G2 — x joining the G-neighbour z # y 
of x with the G-neighbour j> of x and containing an edge {y*, y} e E(G). But this 
is a contradiction to the assumption on G. Thus Theorem 2 is proved. o 

Now we can generalize Theorem 1 to 

Theorem 1' Let G be a block andx,y,z vertices with x ?- y. Then there is 
a G-neighbour z' of z and a Hamiltonian path in G2 joining x and y and containing 
the edge {z, z.}. 

Proof Form the graph H consisting of G, a new vertex 0 and the edges {0, x} 
and {0, y}, and apply Theorem 2 to the nontrivial block H and the vertices 0 and z 
(instead of G and x and y, respectively). • 

5. Let G be a connected graph, ze V(G) a cutpoint of G, further G1 and G2 

two connected subgraphs of G forming a non-trivial separation of G with V(G1) n 
n V(G2) = {z} (that means: V(GX) u V(G2) = V(G),E(GX) n K(G2) = E(G({z})) = 
« 0 , E(Gl) u E(G2) = £(G), and Gt,G2 # G) and hx and h2 two paths in G\ 
and G2, respectively. Now we consider the following properties: 

(12) ht is a Hamiltonian path in G\ joining two different G-neighbours of z, 
and h2 is a Hamiltonian path in G2 •— z joining two different G-neighbours of z 
if |V(G2 - z)| ^ 2 and consisting of the only G-neighbour of z in G2 if 
|V(G2 - z)| = 1. 

(13) h t is a Hamiltonian path in G\ joining z with a G-neighbour of z, and h2 

is a Hamiltdnian path in G\ joining z with a G-neighbour of z. 
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Definition. (hx,Gx) »-• (A2, G2) iff property (12) is satisfied; (At, Gj) <-• (A2, G2) 
iff property (13) is satisfied. 

Representing the paths A15A2 by vertex-sequences we see immediately 

Corollary 3.If(hl,Gl)^(h2,G2) then 

Ai + A2 := (A1 ,A2 ,z /), 

where z' is the initial vertex ofh {,is a Hamiltonian cycle in G2. If(hx, Gx) <-• (A2, G2) 
then 

h{ u A2 := (hx,h2
l) 

is a Hamiltonian cycle in G2. D 
(Of course, (Al5 G{) <-> (A2, G2) holds iff (h2

l, G2) <-+ (A]"1, Gx); however, 
(*i ,Gi) t->(A2,G2) does not imply (A2 ,G2) H ( A 1 , G 1 ) . ) 

Corollary 4. If Gx, G2 form a non-trivial separation of a connected graph G with 
V(Gj) n V(G2) = [z] for some z e V(G), arid /f /Aere exis/s a Hamiltonian cycle A 
m G2, then tAere are paths hx andh2 in Gx andG2, respectively, satisfying(A1? Gx) t-* 
t-> (A2, G2) or (A2, G2) H> (At, G,) or (A,, Gx) <-* (A2, G2). 

Corollary 4 can be easily proved by considering the maximal Gx-sections and 
the maximal G2-sections of A. D 

Note that the block-cutpoint-graph bc(G) of a connected graph G with |V(G)| ^ 2 
is a tree and that its endvertices (i.e. vertices of valency g 1) in every case are 
representing some (maximal) blocks of G. (If G is a block then bc(G) is a one-
vertex-tree, and this vertex is also considered to be an endvertex of bc(G).) We 
define bc(G) := 0 if |V(G)| = 1. 

Theorem 3. Let G be a connected graph with |V(G)| = 3 satisfying the property 
that G2 is Hamiltonian. Suppose that bc(G) has at least one endvertex representing 
a non-trivial (maximal) block ofG. Then there is a Hamiltonian cycle in G2 containing 
some edge I e E(G). 

Proof : If G is a block then we only need apply Theorem 2 to G. 
If G is not a block consider an endvertex of bc(G) representing a non-trivial 

block Gj of G, and let z be the cutpoint of G belonging to Gx. Then Gx and G2 : = 
:= G - (V(GX) - {z}) = G((V(G) - V(GX)) u {z}) form a non-trivial separation 
of G with V(GX) n V(G2) = {z}, and Corollary 4 implies the existence of some hx, A2 

such that (Al9 Gx) H» (A2, G2) V (A2, G2) f-> (hl9 Gx) V (Ax, Gx) <-• (A2, G2) holds 
Because G t is a non-trivial block according to Theorem 2 there is a Hamiltonian 
path h[ in G2 — z joining two G^neighbours (i.e. G-neighbours) of z and contain
ing an edge leE(Gx). 

If (A,, Gx) ^ (A2, G2) then ((z, Ax), G t) «-» ((z, A2), G2), and (z, A[) u (z, A2) is 
a Hamiltonian cycle in G2 containing / e E(G). If (A 2 , G2) H> (A!, Gt) then (A 2 ,G2) *-* 
**(h\, GXX and A2 + h[ is a Hamiltonian cycle in G2 containing / e £((?). 
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If (hx, Gx) «-* (h2, G2) then ((z, h[\ Gx <-> (h2, G2), and (z, h[) u h2 is a Hamilto

nian cycle in G2 containing / e E(g)- • 

For a connected graph G with I V(G) I = 3 we form G(1) := G - V^G), where 

VX(G) := {x e V(G): v(x : G) = 1}. Then it is easy to show 

Corollary 5. Let G be a connected graph with \ V(G) | ^ 3 satisfying the property 

that G2 is Hamiltonian. Suppose that all endvertices ofbc(G) are representing trivial 

(maximal) blocks of G. lfbc(G{i)) = 0, or ifbc(G{1)) has an endvertex representing 

a trivial (maximal) block of G(1) then there is a Hamiltonian cycle in G2 containin 

an edge le E(G). - • 

Now it remains the case that all endvertices of bc(G) are representing trivial (maximal) blocks 
of G and all endvertices of hc(G(1)) are representing non-tiivial (maximal) blocks of G(1). It is 
rather obvious that this problem could be solved if the following statement were true. 

Conjecture: For every connected graph G with | V(G) | ^ 3 fulfilling (14) and every vertex 
x e V(G(1>) with i(x : G(1)) =- v(x : G) the existence of a Hamiltonian path in G2 — x joining 
two G-neighbours of x implies the existence of a Hamiltonian path in G2 — x joining two suitable 
G-neighbours of x and containing some edge of G. 

(14) G(1> is a non-trivial block A for any different veitices x, y e Vi(G) their G-neighbours are 
different (i.e. N(x : G) # N(y : G)). 

We remark that this Conjecture holds in case that | Vi(G) | ^ 1 because of Theorem 2. 
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