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Abstract. Some properties of groups endoved with a special ternary operation are investigated. 
Such groups are a natural generalization of lattice ordered groups. 
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'1. I N T R O D U C T I O N 

By a median algebra is meant an algebra with one ternary operation satisfying 
the identities 

(1) (a,a,b) = a, 

(2) ((a, d, c)f b, c) = ((b, c, d), a, c). 

Such algebras were investigated (under various names) by several authors. A survey 
of these algebras is e.g. in [1]. 

An important example of median algebras is derived from distributive lattices. 
Given a distributive lattice 3? and the operation 

3) (a, b, c) = (aA b)v (bA c)v (CA a) 

then M(J$?) = (L; (, ,)) is a median algebra. According to [10] each median algebra 
is isomorphic to a subalgebra of an algebra M(J&?). 

In an /-group 9 -= (G; + , —, 0, A , v ) the operations (3) and + are related by the 
identity 

(4) u + (a, b, c) + v -= (u + a + v, u + b + v, u + c + v). 

Definition. By a median group (m-group) there is meant an algebra (G; + , —, 0, 
( , , )) where (G; + , —, 0) is a group, (G; ( , ,)) is a median algebra and the identity 
(A) holds. 

If 9 is an /-group then the m-group (G; + , —, 0, ( , , ) ) , where the ternary opera
tion is given by (3), is said to be associated with 9. 
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The class of m-groups is much larger than that of m-groups associated with 
/-groups. Nevertheless some results which are valid for /-groups can be applied 
(possibly in a modified form) to m-groups. The present paper contains some 
examples of such results. 

Some fundamental properties of m-groups were announced in [7]. Several 
interesting results on m-groups and their important classes are contained in [9]. 

2. SOME P R O P E R T I E S OF MEDIAN ALGEBRAS 

2.1. Fundamental notions and properties. Let s4 = (A, (,,)) be a median algebra. 
If a,b, c e A and (a, b, c) = b, we say that b is between a and c (in symbols, abc). 
If ax, ...,ane A and a^a^ holds for 1 <l i <* j ^ k H n, we denote this by 
axa2,..., an. (a,b) will denote the set {x e A: axb}. ((a, b); A , v) is a distributive 
lattice where x A y = (a, x, y) and xv y = (b, x, y) [6]. aub, buc and cua imply 
(a, b,c) = u [10]. Call a mapping q>: A -+ B between two median algebras between-
ness-preserving if abc implies (q>a) (q>b) (cpc). Let # = (C; <0 be a linearly ordered 
set and let abc mean that a ^ b g c or c ^ b g a. If cp is a betweenness-preserving 
injective mapping from C to a median algebra sf, the set {cpc: ceC} will be 
called a line (in s4). A subset K of A is said to be convex if a, b e K, u e A and aub 
imply ueK One can easily check that K forms a subalgebra of s4. 

•N will denote the set of positive integers. 

2.2. The following identities hold in an m-algebra [8, Th. 2]. 

(5) (a, b, c) = (b, a, c) = (b, c, a), 

(6) ((a, b, c), d, e) = ((a, d, e), b, (c, d, e)). 

The following relations are easy to prove. 

(7) abc implies cba, 

(8) a(a, b, c) b, 

(9) [10] abc and buc imply abuc, 

(10) abc and acb imply b= c. 

These identities and relations are used freely in what follows. 

2.3. We say that the elements a, b, c, d of a median algebra form a cyclic quadruple 
(a, b, c, d) whenever abc, bed, cda and dab hold. It can be easily shown that the 
element d is uniquely determined by the elements a, b, c. 

2.4 [3, Proposition 2]. A subset L of a median algebra with card L ^ 4 is a line 
iff for any a,b,ceL one of the relations abc, bca, cab holds. Obviously a subset 
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of a line is a line. If a is an element of a line L such that for each b, c e L either abc 
or acb holds, we say that a is an end element of L. 

2.5. Let A be a line in a median algebra and 0, a e A, a =£ 0. Denote A = 
= {x e A: xOa}, Aa = A — A'. Then A = A' v Aa and xe A' together with y e Aa 

imply xOy. Routine proof omitted. 

2.6 [4]. A subset C of a median algebra s/ is called a Cebysev set if for each a e A 
an element ac e C exists such that aact holds for any teC. ac will be said to be 
the projection of a into C. It can be easily shown that the element ac is uniquely 
determined and that C is a convex subalgebra of stf. The mapping x -* xc is a homo-
morphism of stf into C [4, 5.8]. 

2.7. A maximal line in a median algebra stf, which is convex, is a Cebysev set. 
Proof. Let C be such a line and xe A. If for each a,beC either abx or bax 

holds then C u {x} is a line, hence x e C and xc = x is the projection. Consider 
the opposite case. If card C = 4 then xc is the element (u, x, v) where u, v are 
the end elements of C. Suppose card C ^ 4. Then u,veC exist such that neither uvx 
nor vux holds. We shall show that / = (u, x, v) is the projection xc. teC and 
/ <£ {u, v}. Let aeC and s = (x, /, a). There are three possibilities: i) auv, ii) avu, 
iii) uav, and it suffices to consider i) and iii). The case i) yields autv. This together 
with ast implies that either asut or aust holds. In the first case xst implies xut which 
together with xtu yields u = / — a contradiction. In the second case we have ustx 
and tsx, hence / = s = (x, /, a). In the case iii) either uatv or utav holds. In both 
cases this implies xta (e.g. the first possibility yields tau and xtu). 

2.8. Let srf be a median algebra and 0 e A. The algebra (A; A ) where a A b = 
= (a, 0, b), is a semilattice [10]. The corresponding order relation will be denoted 
by ^ (i.e. a ^ b means Oab). a v b will denote sup {a, b} if exists. In such a case 
(a v b) A c = (a A c) v (b A C) for any c e A (see [10, 8] and [12, 3]). 

3. E L E M E N T A R Y P R O P E R T I E S O F M E D I A N G R O U P S 

3.1. Examples of median groups 
a) To any /-group ^ there is its associated m-group M(^). Such m-groups satisfy 

the identity 

(*) (x ,0 , - x ) = 0. 

T. Marcisova [9] has shown that an m-group satisfies (*) iff it satisfies the identity 

(**) -(x, y, z) = (-x , -y, -z) 

and it does not contain any non-zero element of a finite order. 
The following examples show that there are finite m-groups. 
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b) Let 3$ = (B; A,V, ', 0, \) be a Boolean algebra. Define a + b = (a A b')v 
v (a A b), —a = a, and take the operation (3). Then (B; +, —, 0, ( , , ) ) is an 
m-group. 

c) Let # 4 be a (cyclic) group with the elements 0, 1,2, 3, and addition mod 4. 
Take the distributive lattice with the same elements as # 4 , where 0 is the least 
element and 1, 3 are atoms. The group # 4 with the operation (3) is an m-group 
different from that in b) with the four-element Boolean algebra $. 

In what follows ^ denotes an m-group. 

3.2. a ^ c and b ^ c imply (a, b, c) = av b. 
The proof is straightforward. 

3.3. Let the elements a, b e G satisfy 
(i) AA b = 0 = a/\ ( —b) = ( — a)A b. 
Then a) ( - a ) A ( - b ) = 0, b) a + b = av b = b + a. 
Proof, a) Denote ( - a ) A ( - b ) = ( - a , 0, -b) = u. Then Ou(-a) and Ou(-b) 

hold. Since aOb, a0( — b) and (— a) Ob, we get successively ( — a — b) (—b) 0, ( - a — b) 
( —b)u, ( —a)0(u + b), u0(u + b), 0( — u) b, and symmetrically 0( — u) a. This 
together with bOa yields b0( —u). Since 0( —u) b, we get u = 0. 

b) (0, b, a + b) = (— b, 0, a) + b = b, hence b ^ a + b, and similarly a ^ a + 
+ b. Using a) and 3.2 we get a + b = a + (-b, - a , 0) + b = av b. 

3.4. Elements a, b e G satisfying (i) in 3.3 will be said to be orthogonal (in symbols, 
a l b ) . 

In /-groups the relation a Lb is defined to mean (ii) | a | A | b | = 0 , where 
| a | = av ( - a ) [2, 3.1]. It can be readily proved that in an m-group associated 
with an /-group, (i) and (ii) are equivalent. 

3.5. a L b iff (0, a, a + b, b) is a cyclic quadruple. 
We omit the easy proof. 

3.6. Given a,beG,a + b = av b iff a Lb. 
Proof, a + b = av b implies a = aA (a + b) = (a, 0, a + b) = a + (0, - a , b), 

hence ( - a ) A b = 0, and similarly, a A ( - b ) = 0. Using 3.2 we get a + b = 
= (a, a + b, b) = a + ( - b , 0, - a ) + b, hence ( - a ) A ( - b ) = 0 and a 1 b. The 
converse implication was proved in 3.3b). 

3.7. Let a,x,yeG and a L x, a L y. Then a A (X + y) = 0. 
Proof. First (a, 0, x + y) = ((a, 0, x), a,x + y) = ((a, a, x + y), 0, (x, a, x + y)) = 

= (a, 0, (x, a, x + y)). Now (x, a, x + y) = x + (0, - * + a, y). Since - * X a, 
- x + a = ( - x ) v a ((3.3b)), hence (0, - x + a, y) == ( ( - * ) v a) A j ; = ( ( - * ) A 

A j ) v (aA ;>) = ( - X ) A y (see 2.8). Using this we get (x, a, x + y) = x + 
+ ( - x , 0, y) = (0, x, x + y) hence (a, 0, x + y) = (<*, 0, (0, x, x + y)) = 
= ((a, 0, 0), (a, 0, x), x + y) = (0, 0, x + y) = 0. 
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3.8. a 1 x and a J_ y imply a _L x + y. 
Proof. From the suppositions it follows - a l x , - a l j l , a 1 - x a n d a 1 —y> 

Using 3.7 we get ( - a ) A (x + y) = 0 = a A ( - ( x + y)). 

3.9. Let ae G. The set H = {x e G: a J_ x} forms a subgroup of K. 
Proof. From the definition of the orthogonality it follows that xeH impliex 

— xeH. This together with 3.8 proves the assertion. 

4. C O N V E X M A X I M A L L I N E S 

If (i) cp : <$ ;__ stf x & is a direct decomposition of an m-group <& then the 
/w-group stf is isomorphic to the m-subgroup of ^ , whose elements are <p_1(a, 0), 
a e A. An analogous assertion holds for 38. In what follows we shall suppose that 
in the direct decomposition (i), stf and $ are m-subgroups of ^ . 

We shall deal with direct decompositions (i) in which srf is a line. In this case 
convex maximal lines (i.e. maximal lines which are convex) prove to be important. 

4.1. Theorem. Let an m-group $ satisfy the identity (*) and let Abe a line in M(^) 
such that Oe A. The following are equivalent. 

(a) A forms a subgroup of (G; + , —, 0) and a direct factor of (S. 
(b) A is a convex maximal line in M(&). 

Corollary [5, Th. 1]. Let & be an l-group. A maximal chain in t§ which is convex 
and contains 0, is a direct factor of <$. 

Remark. The following assertion is easy to prove. Let ^ be an /-group. A convex 
line in M(^) containing 0 is a (convex) chain. 

The proof of Theorem 4.1 is divided into a sequence of lemmas. ^ is supposed 
to satisfy (*) unless other is said. 

4.2. Let % = s4x@l where srf is a non-singleton line. Then Al = {(a, 0): ae A} 

is a maximal line in <& and it is convex. 

Corollary. Let <3 be an l-group and let $ = s4'xJ where stf is a non-singleton 
chain. Then {(a, 0): ae A} is a convex maximal chain (and contains (0, 0)). 

Proof. Obviously At is convex. Let c = (u, v) e AxB and Av u {c} be a line. 
Then either (i) c is an end element of A1 u {c} or (ii) c is between some two elements 
of Ax. The case (ii) yields c e Ai immediately. In the case (i) recall that 0 and 2u 
belong to A hence either u0(2u) or u(2u) 0 holds. Combining this with 0u(2u) 
(a consequence of ('—w) 0u) we get u = 0. Then for any ae A either 0tf(—a) or 
0( — a) a holds. Because of a0( — a) this gives a = 0. This contradiction shows that 
the case (i) is not possible. 
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4.3. Suppose <0 satisfies (**). Then Oxy implies 0(y - x)y and 0(-x + y) y. 
Proof. From the supposition we get 0 ( - x ) ( - y ) , hence y - x = y + (0, - x , 

—y) =z (y9y — x, 0). The proof of the second relation is similar. 

4.4. Let & satisfy (**). Let A, B be convex lines in <& with the end element 0. 
If p e A — B and qe B — A then p A q = 0. 

Proof. Denote p/\ q = r. (r,p, q) = ((p, 0, q),p, q) = r and Orp, Orq. For the 
elementsp' = p — rand*?' = q — rwegetp'A q' = (0,p — r,q — r) = (r,p,q) — 
— r = 0. According to 4.3, Op'p and Oq'q. Hence there hold 

either al) Op'r or a2) rp'p, and 

either bl) Oq'r or b2) rq'q. 

al) and bl) yield Op'q' or Oq'p', hence p' = p' A q' = 0 i.e. p = r or q' = 0 i.e. 
q = r. This is a contradiction, since r e A n B. al) and b2) yield Op'q' — a contradic
tion as above. The case a2) and bl) is symmetric. If a2) and b2) hold then 0 = 
= p' A q' = r (since r ^ p' g p, r ^ q' ^ q and p A q = r). 

4.5. Let <$, A, B be as in 4.4. If neither A a B nor B c A then a A b = Ofor 
each ae A and each b e B. 

Proof. Let p, q have the same meaning as in 4.4. Then p A q = 0. For a e Ay 

be B there hold either al) Oap or a2) Opa, and either bl) Obq or b2) Oqb. a2) and b2) 
yield ae A — B andb e B — A hence a A b = 0 according to 4.4. al) and b2) yield 
a A b = aA pA b. Butp A b = 0 by 4.4. The case a2) and bl) is symmetric and a l ) 
and bl) give aA b = aA pA bA q = 0. 

4.6. Let & be arbitrary, ueG, and let A be a line in <&. Then u + A = {u + a: ae A} 
is a line. If A is a maximal line (convex line) then so is u + A. 

Routine proof omitted. 

4.7. (see [9]). For each aeG and each ne N, Oa(na) holds. 

4.8. If aeG and m,ne N, m < n, then 0(ma) (na). 
The proof proceeds by induction on m. For m = 1 the assertion holds by 4.7. 

Assume 0((m — 1) a) (na) (m < n). According to 4.7 0a((n + 1 — m) a) hence 
((m — 1) a) (ma) (na) which, together with the assumption, yields 0(ma) (na). 

4.9. Let aeG. If(0, a) is a line then ( — a, a) is a line too. 
Proof. Since ( - a , 0 ) = - a + (0, a), (-a,0) is a line by 4.6. Because of 

(-a) 0a, (-a, 0) u (0, a) is a line. It suffices to show: 
(i) / e(-a, a)implies / € (-a, 0) or / e (0, a). 
Denote w = (0, /, -a), v = (0, /, a). Then - v = (0, - /, - a) and (0, w, - v) = 

= (0, (0, /, - a), (0, - / , -a)) = ((0, / , - / ) , 0, -a) = (0, 0, - a ) = 0. From Ova 
we get 0(—v) ( — a) and, because of 0w( —a), either 0w( — v) or 0( — v) u holds. In 
the first case u = (0, w, —v) = 0, in the second 0 = 0 . w = 0 implies t0(-a) which 
together with at(-a) yields atO i.e. / e (0,a). Similarly, if v = 0 then / e (0, - a ) . 
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4.10. If aeG and (0, a) is a line then ( — na, na) is a line for each ne N. 
Proof. For n = 1 this holds by 4.9. Suppose ( — (n — 1) a, (n — 1) a) = B 

is a line (n > 1). According to 4.6, a + B = (( — n + 2) a, na) is a line. By 4.8 
0((n — 2) a) (na) hence 0(( — n + 2) a) ( — na) which together with (na)0( — na) 
yields 0 e (na, ( — n + 2) a) hence (0, na) is a line. Now 4.9 is applicable. 

4.11. Let A be a convex maximal line in <&, containing 0. Then 
i) For each a e A and ne N, na belongs to A. 
ii) ae A implies —ae A. 

iii) a, b e A imply a + b e A. 
Proof, i) If a = 0 the assertion is trivial. Suppose a ^ 0. Let A' and Aa be 

as in 2.5. We apply 4.5 to the convex lines Aa and (0, na) (see 4.10). There are three 
possibilities. 

a) (0, na) c= Aa, b) Aa c (0, na), 
c) x A y = 0 for each x e Aa and each y e (0, na). 

The case a) yields nae A immediately. In the case c) we get, using the relation 0a(na) 
(4.7), that a = a A na = 0 —a contradiction. Consider the case b). Take ye A' 
and set (y, 0, net) = u. Then yuOa. Since a and u belong to (0, na), either Oau or 
Oua holds. The first case together with aOu yields a = 0 — a contradiction. In the 
second case u = 0, so that y0(na). Hence y0(na) for each ye A' and A' u (0, na) 
is a line and A = A' u Aa c: A' u (0, na). The maximality of A implies na e A. 

ii) The set B' = — a + A is a convex maximal line (4.6) and contains the elements 0 
and —a. By i) — 2a e B, hence —aea + B = A. 

iii) There are three possibilities: 1. Oab, 2. Oba, and 3. aOb. In the case 1. 
b(a + b) (2b). Using i) we get a + b e A. The case 2. is similar. In the third 
case (-a) 0(-b), hence 0a(a - b) and b(a + b) a so that again a + be A. 

4.12. Let A be as in 4.11 andbeG.IfO^aeAandbLa then bA = 0. 
Proof. bLa implies 60a and b0(-a). This together with a0(-a) yields 

(b, a, -a) = 0. For the element / = bA there hold te A, bta and bt(-a). There 
are three possibilities: a( — a)t, ( — a) at, and ( — a) ta. In the first case we get 
a( — a) tb, hence 0 = (b, —a, a) = —a —a contradiction. Similarly the second case 
is not possible. In the last case we get (b, a, —a) = t hence / = 0. 

4.13. Let A be as in 4.11. If 0 ^ ae A and b JL a then b L x for each xe A. 
Proof. By 4.12 and 4.11, 60x and M)(-x). Since -b La too, (-b) Ox. Hence 

bLx. 

4.14. Let A be as in 4.11. Denote B == {— xA + x: xe G}9 xv = xA and x2 = 
= —X! + x. Then x = xt + x 2 , xteA9 x2eB and xt L x2. 

Note that x t + x2 = x2 + x t (see 3.3). 
Proof. The element u = (x t , 0, x2) belongs to A. By 4.11 iii) xt + ue A, hence 

(x, xlyxt + u) = x x , so that 0 = -xt + (x, xt, xt + u) = (x 2 , 0, u) = u i.e. 
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(x,, 0, x2) = 0- Further ( - x i , 0, x2) = -(xX , 0, - x t + x) = -* - + (0, xt, x) = 
-_= LXl + Xt = 0 and (Xl, 0, -x2) = 0 by (**). 

In what follows we shall use the notations from 4.14. 

4.15. For each xeG, (-x)A = -xA. 
Proof. According to 4.14 xt 1 x2. We have to show that (-x)(-xx) a for 

eachaeAI. Since(-x, - x l 5 a) = ( - x 2 - xl9 —xl9 a) = (-x2,0,a + xt) - x{, 
it suffices to show 

(i) ( - x 2 , 0 , a + xa) = 0. 
If xj = 0 then xOl for each t e A, hence x20( —a) and, according to (**), ( — x2) 0a, 
which yields (i). If xt ^ 0 then x2 X xt by 4.14 and according to 4.12, (x2)A = 0, 
hence x20( —xt — a) and ( —x2)0(a + xt) i.e. (i) holds. 

4.16. If aA = 0 then a X t for each t e A. 
Proof. By 4.15 (-a)A = 0 hence for each t e A there holds (-a)0t (and aOt, 

a0(-t)). 

4.17. The mapping x -• xA is a homomorphism from the group (G; + , —, 0) onto 
its subgroup A. 

Proof. It suffices to show that for each a e A and x, y e G, (x + y, xt + yi,a) = 
= x! + yt. Since (x + y,xx + yv, a) = xt + (x2 + y2,0, -xx + a - yd+y^ 
it suffices to prove x2 + y2 X —xt + a — yx, i.e., according to 3.9, 

(i) x2 X -xt + a - yt, 
(ii) y2 X - x ! + a - yY. 

If x, = 0, (i) holds by 4.16. If x{ ?- 0, (i) follows from x2 J_ xi by 4.13. The 
proof of (ii) is similar. 

4.18. The following holds for any x e G. 
(i) The representation x = a + b, a e A, b e B, is unique. 
(ii) If ae A then at = a and a2 = 0 . IfbeB then bt = 0 and.b2 = b. 
(iii) ae A and be B imply (a + b)t = a, (a + b)2 = b. 
(iv) ae A and b e B imply a X b. 
(v) a + b = b + a for each ae A and be B. 

Proof, (i) b = —yA + y for some y e G (see 4.14). x = a + b hence y — x = 
= yx ~ a> a nd using 4.11 and 4.17 we get yA — a = (y — x)A = yA — xA. Thus 
a = xA and b = — xA + x. 

(ii) The assertion on a is obvious. IfbeB, there is ye G such that b = —y{ + y. 
According to 4.17, bt = bA = —y1 + yt = 0 aod b2 = b. (iii) follows from 4.17 
and (ii), (iv) follows from (ii) and 4.16, and (v) follows from (iv) and 3.3. 

4.19. Ifx = xj + x2 and y = yt + y2 are the representations in 4.18 (i) then 
x + y = (xt + yx) + (x2 +y2), - x = (~xt) + (-x2) where xx + yt and -xt 

belong to A and x2 + y2, - x 2 belong to B. 
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Proof. By 4.17, (x + y)x = xx + yt. Further (x + y)2 = - ( x + y)x + 
+ (x + y) = x2 + y2. This proves the first assertion. The proof of the second 
assertion is similar. 

4.20. B forms a subgroup of the group <&. 
Proof. The assertion follows from 4.18 and 4.19. 

4.21. B is a Cebysev set and x -> —xA + x is the corresponding projection. 
Proof. Let xe G and let x = xx + x2 be the representation in 4.18 (i). For 

each b e B we get (x, x 2 , b) = (xx + x2, x2, b) = (xx, 0, b — x2) + x2. b — x2 

belongs to B (4.20) and by 4.18 (iv), xx ± b — x2, so that (x x , 0, b — x2) = 0. 
Hence x2 is the desired projection. 

The following theorem, together with 4.2, completes the proof of the theorem 4.1. 

4.22. The mapping <p: x -» (xx, x2) is an isomorphism of m-groups & and stfxffl 
where stf and $ are m-subgroups of & with carriers A and B respectively. 

Proof. According to [4, 5.8] the projection into a Cebysev subset is a homo-
morphism of median algebras. This together with 4.18 and 4.19 implies that <p is 
a homomorphism of m-groups. Consider the mapping \JJ: AxB -> G with \j/(a9 b) = 
= a + b. From the definition of <p it follows that \p o <p = idG and by 4.18 <p o \jj = 
= id^ x i S , hence <p is a bijection. 

4.23. Theorem. Let & be an m-group satisfying (*) and let Abe a convex maximal 
line in (S. If ae A then —a + Aisa direct factor of K. 

The theorem follows from 4.6 and 4.1. 
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