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ANTIMORPHISMS OF PARTIALLY 
ORDERED SETS 

MILAN R. TASKOVIC 

(Received October 4,1985) 

Abstract. In this paper we prove some fixed point theorems for local antimorphisms which need 
not be either isotone or antitone mappings. We give, in a way necessary and sufficient conditions 
for the existence of fixed points on partially ordered sets. We also introduce the concepts: inf, 
sup-antimorphisms, and, in connection with that we also have some additional results. With such 
an extension, a general fixed point theorem is obtained which includes a recent result of the author, 
and also contains, as special cases, some results of Abian, Shmuely, Kurepa, Metcalf and Payne, 
and some others. 
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1. I N T R O D U C T I O N AND COMMENTARY 

Let P be a partially ordered set. A function / from P to P is order-preserving 
(or isotone or increasing) if for all x, y e P, x < y implies f(x) < f(y). If/satisfies 
the condition that for JC, y e P, x < y implies f(y) < f(x)9 then / is said to be 
antitone (or decreasing). P has a fixed point under•/ if f(x) = x for some xeP. 
P has the fixed point property if it has a fixed point under all order-preserving 
functions. 

An ordered set P is said to be complete provided any non-void subset X of P 
determines its own infimum inf Xe P and supremum sup XeP. 

Several authors have treated the problem of characterizing posets with the fixed 
point property: Abian A., Abian and Brown, Davis A., Edelman, Hoft H. and 
Hoft M., Kurepa D., Rival, Smithson, Tarski, Taskovid, Ward and Wong, among 
others. 

Tarski [12], Abian and Brown [2], and others have studied fixed points of 
isotone mappings on partially ordered sets. In [1] and [11] fixed points of certain 
antitone mappings are studied. 

In a poset P functions / are considered such that, for any nonempty A <z P 

(1) f(supA)~inff(A), where f(A)~ {f(a) \ae A}. : 
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A function/in a poset P satisfying (1) is referred to as a join antimorphism. One 
considers also nieet antimorphism satisfying, for any nonempty A a P9 

(2) /(inf A) = sup f(A)9 where f(A) = {f(a) \aeA}. 

It is easily seen that every function / , defined on a complete poset (lattice) L9 

satisfying (1) or (2) is also antitone, that is, join or meet antimorphisms are antitone 
mappings. On the other hand, it is easy to construct an antitone mapping on 
a complete poset (lattice) which is neither a join antomorphism nor a meet anti
morphism. Namely, let L be the lattice on the Figure 1 a n d / : L -* L defined by 

/(0) = / (b )= / (a ) = l,/(c) = a,/(l) = 0. Evidently,/is antitone, but/(sup {a, b}) = 
= /(c) = 0 # inf {/(a), f(b)} = inf {1, 1} = 1. The mapping / is not a join 
antimorphism. If we define g : {0, a9 b9 1} -> {0, a9 b9 1}, g({a9 b, 1}) = {0} and 
g(0) = 1, then g is antitone, but not a meet antimorphism (Fig. 2.). 

Sufficiency for antimorphisms. Let P be a complete partially ordered set(poset) 
andf: P -+ P an antitone mapping satisfying the conditions: f(x) < x or f2(x) < x 
for all xeP. Then f is a meet antimorphism. 

The analogous statement for join antimorphisms is also valid, when x < f(x) 
or x <: f\x) for all xeP (see [11]). 

Proof. Let A cz P be a nonempty set, f(x) < x(xeP) and / = inf A. Then 
f(x) < /(/) for every x e A. Thus, /(/) is an upper bound for f(A). Let s = sup f(A)9 

and then s £ f(i). Assume s < /(/). From f(x) < s (xe A)9 it follows that s < 
< f(i) <: i and hence s < /(/) < /($), i.e., s < /(s)-contradiction. That is /(/) = s9 

i.e., /(inf A) = sup/04). 
When f2(x) < x9 x e P we have s £ /(/). From f(x) < s9 x e A9 it follows that 

f{s) £ f\x)9 i.e., f(s) £x9 xe A. We conclude that f(s) is a lower bound for A. 
Then /(/) < s9 which implies /(/) -= s9 i.e., /(inf A) = sup f(A). This completes 
the proof of sufficiency for antimorphisms. 

In this paper we examine fixpd points of mappings / : P -+ P which are com
parable to the identity mapping iP : P -• P, in the sense that for any x e P9 f(x) ^ x 
or x £ /(*). For any / : P -> P it is natural to consider the following sets 

Pf:=*{x\xePA x £f(x)}9 Pf :== {x|xePA/(;c) ^ x}. 
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If/: P -• P is any mapping of P into P, let / (P , / ) be the set of all invariant 
points of P relative to / ; i.e., I(P9f) := {x \ x e PA f(x) = x}. 

In this paper we prove some fixed point theorems for local antimorphisms which 
need not be either isotone or antitone mappings. We give, in a way, necessary 
and sufficient conditions for the existence of fixed points on partialy ordered sets. 

Inf9 Sup-antimorphisms. We also introduce the concepts: inf, sup-antimorphisms, 
and, in connection with that we also prove a result. 

Let P be a poset. The mapping / : P -• P satisfying, for nonempty sets Pf
9 

Pf c P, the condition 

/(inf P') = inff(Pf)9 where f(Pf) = {f(x) \ x e Pf}9 

is called an inf-antimorphism. Similarly, iff satisfies the condition 

/(sup P') = sup f(Pf)9 for 0 * Pf
9 Pf c P, 

then such an / i s said to be a sup-antimorphism. 

2. F I X E D POINTS OF LOCALLY MEET AND LOCALLY J O I N 
A N T I M O R P H I S M S 

We start with a statement on join or meet antimorphisms. 
Theorem 1. Let (P, <) be a partially ordered set and fa mapping from P into P 

such that: 
(A) The set Pf is nonempty, the point s := sup Pf exists and satisfies f(s) <, s9 

(B) s is a lower bound (minorant) for the set f(Pf), 
(C) (Locally join antimorphism) /(sup Pf) = inff(Pf). 
Then: 
(1.1.) The set /(P,/) := / is nonempty, 
(1.2.) Neither of the conditions (A), (B), (C) can be deleted if (I.I) is to be valid. 
Dually 9 if 
(A!) The set Pf is nonempty, the point Im := infPf exists and satisfies Im ^ 

<f(Im\ 
(B') Im is an upper bound (majorant) for the setf(Pf)9 

(C) (Locally meet antimorphism) /(inf Pf) = sup/CP/); 
then the set I(P9f) is nonempty and neither of the conditions (A'), (B'), (C) can be 
deleted */(1.1.) is to be valid. 

Proof. By the assumption (A), the setP ' is nonempty, the point s = supP ' 
exists and/(s) < s. From (B), we have, for all x e Pf is s < f(x)9 which using (C) 
implies s < inff(Pf) =f(supPf) =f(s). Our conclusion follows from (A) and 
s <, f(s)9 that is f(s) = s and thus s e /(P ,/), i.e., the set /(P,/) is nonempty. This 
completes the proof of (1.1). 
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(1.2). Now we prove that the conditions (A), (B) and (C) cannot be removed. 
We show that by the following examples (1,2, 3). 

Example 1. (Fig. 3.) Let P be the set (interval) [0, 2] and define/: P -• P by 
f(x) = 2 for x e [0, 1] and f(x) = 1 for x e (l, 2], where P is totally ordered by 
the ordinary ordering <. Then conditions (B) and (C) are satisfied. Condition (A) 
is not satisfied (f(s) = / ( l ) = 2 1> 1). The set I is empty. 

2 
/ 

У 
0 1 

{1 8-4 

Example 2. (Fig. 4.) Let P = [0,2] and define / : [0, 2] - [0, 2] by fix) = 1 
for x e [0, 1) and/(x) = 0 for x e [1, 2], where P is totally ordered by the ordinary 
ordering <. Condition (A) is satisfied (/(supP') =/(s ) = / ( l ) = 0 < 1 = s), 
condition (B) is satisfied (s = 1 is a minorant for the set f(Pf) = {1}), but condi
tion (C) is not satisfied (/(sup Pf) = / ( l ) = 0 *- 1 = inf/(P-0). Again 7 = 0. 

Example 3. (Fig. 5.) Let the poset P = {a, 6, c, d,e,g,gn (n = 1,2, 3,...)} 
be ordered by the order relation <> so that a <c,a <> d,b < e,b < c,g <e,g <.d9 

g ^ c, gi <> g> gn+x ^ gH (n e N)» an<J -f the elements a, g, 6 are incomparable, 
then the elements c, rf, e are also incomparable. Define f\P-*P by /(a) = d, 
/(*)-=*, f(d) = Ae)=f(c)~g, m = gi and /&,)=*,,+! (* = 1,2,...). 
Condition (A) is satisfied (Pf = {a, &}, /(sup P') =/(c) = g ^ c = sup P ' = 
= sup {a, b) = .?), condition (C) is satisfied (/(sup Pf) ==/(c) = g = inf/(P') = 
=-=-• inf {rf, e) « g), but condition (B) is not satisfied ($ = sup Pf = c is not minorant 
for the set /(&) = {</, *}). Furthermore, / does not have a fixed point. 

By dual considerations one proves the part of the Theorem which concerns the 
point i«-infP/. It sufficies to make the following substitutions: sup-* inf, 
Pf -> P/» £ -+ ^* This completes the proof of the Theorem. 
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Some corollaries. Now we shall apply the results above by considering the 
following consequence. They bring into connection the results (sufficient condi
tions) which were obtained in the case when the set I(P,f) is nonempty. 

Corollary 1. (Kurepa [6]) Let P be a nonempty right conditionally complete set 
and fa decreasing selfmapping ofP such that for at least one member xeP we have 

x<f(x) or f(x)<x9 i.e., 1 (VxeP, x \ \f(x)). 

Let us assume that 
l.f(supA) = inff(A), 
2. Each point of Pf is comparable with each point of Pf

9 

3.1fs:= sup Pf eP exists then f(s) < s. 
Then the set I(P,f) is nonempty and f(s) = s = inf Pf. 

Proof. Let us prove that the sufficient conditions of this statement implies 
the validity of the sufficient conditions (A), (B) and (C). First, direct condition 1) 
implies (C), because 1) is valid for each A c P, also A == Pf. Otherwise, as the 
set Pf is bounded (from condition 2)) then according to conditional completeness; 
has the supremum denoted by s : = sup Pf

9 and from 3) we have f(s) £ s9 i.e., our 
condition (A) is valid. 

We prove that the condition (B) is valid, i.e. that s is a minorant for the setf(P0. 
From 2) also each point of Pf is comparable to each point of Pf. So, the sets Pf 

and Pf have minorants and majorants respectively. But, the set P is conditionally 
complete and so these sets of minorants and majorants have a supremum and 
infimum denoted by s and /. Also, from the conditions of the Corollary f: P -> P 
is an antitone mapping, so f(Pf) c Pf9 and as s is a minorant for Pf9 s will be 
a minorant for f(Pf), i.e;,the condition (B) is valid. It means that Corollary 1 is 
the consequence of our Theorem 1. 

Corollary 2. (Taskovid [14]) Let (P, <) be a partially ordered set and fa mapping 
from P into P such that (A), (C) and 

(a) x9yePfAx <y=>f(y) <f(x)9 

(b) Pf is a totally ordered set. 

Then the set I(P,f) is nonempty. 
Proof. Sincef: P -* P is a decreasing mapping on Pf (from (a)) and the condi

tion (b) is valid, condition (B) is satisfied. This, with (A) and (C) proves Corollary 2. 
In the following (P, <) will denote a nonempty partially ordered set P with 

partial order <,. A subset A of P is a toset (chain) just in case A is totally ordered. 
For xePandATeP, defineL(x) = {y:yeP>y£ x}9 M(x) « {y : y eP,x g y}>. 
and M(A) =-=- u{M(x) :x<~A}. 
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A partially ordered set (P, <) is a mod if and only if the following hold: 
(1) For all x9yePsup {x9y} exists, 
(2) For all xeP9 L(x) is a toset, 
(3) Each nonempty subset of P which is bounded above (below) has a supremum 

(infimum) in P, 
(4) If x < y9 then there is a z e P such that x < z < y. 
A function / : P -* P is nonoscillatory from above if and only if for each non-

maximal x and maximal toset A c M(x)\{x}9 n{f[x9 u]) : u e A} = {f(x)}. The 
function / is nonoscillatory from below if and only if for each nonminimal x9 

n{f([u9x]):u<x} = {f(x)}. 

Corollary 3. (Metcalf and Payne [7]) Let P be a totally ordered mod. Suppose 
that f:P-+Pisa function satisfying: 

(5) Ifx<y andf(y) < f(x)9 then [f(y)9 f(x)] <z /([*,y]). 
(6) The function f is either nonoscillatory from above or from below. 
(7) There exists a9 beP such that a <b9 a < f(a)9 andf(b) < b. 
Then f has a fixed point. 
Proof. First, let us prove that our condition (A) of Theorem 1 is satisfied, 

i.e., that f(s) < s. The whole situation we observe on the interval [a9 b]9 according 
to condition (3) of Corollary 3. So, let us adapt pur signs for Pf and Pf for this 
situation, and let the corresponding set Pf be denoted by 

A* := {x : x e [a9 b] and / < /(f), for all / e [a9 x]}. 

By the assumptions of the Corollary, the set Af is nonempty, and the point 
s :== sup Af exists. It will first be shown that/(s) < s. Suppose, to the contrary, 
that s < f(s)9 and let 

Af := {x : s < x <f(s) and/(x) < x}9 

so that s = sup Af = inf Af. Then, for xe Af9 f(x) < x < f(s)9 so that condi
tion (5) of Corollary 3 yields 

[x9f(s)] c: [f(x)9f(s)] cz f([s9 x])9 for all xeAf. 

For xe Af the sets [x,/(-?)] are increasing as x is decreasing, while the sets/([s, x]) 
are decreasing as JC is decreasing. Thus, 

(*,/(*)] = U [*>f(s)lc f! f([s» *]); 
xeAf xeAf 

however, the intersection on the right hand side has at most one element, since/ 
is nonoscillatory from the right, which contradicts s < f(s). Thus,/(.s) < s9 i.e., the 
condition (A) is satisfied. On the other hand, in an analogous proof of Corollary 1 
we prove that the conditions (B) and (C) are satisfied. This proves Corollary 3. 

We next demonstrate that the following condition introduced by Abian [1] 
is a form of continuity. 
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Abian's conditions. Let / : P -» P where Pisa mod. If A c P is a toset, then 
/(inf A) = sup/(A) and/(sup A) = inf/(A) whenever both sides of the equalities 
exist. 

Corollary 4. (Abian [1]) Let f: P -+ P where P is a totally ordered mod. If f is 
decreasing and satisfied Abian's condition, then f has a fixed point. 

Proof. Since Abian's conditions imply our condition (C), because/(sup A) = 
= inff(A) for all A c P, we also have A := Pf. In the other hand, the set P is 
a totally ordered set and mod, thus the point s := sup Pf exists; and as s is 
a minorant for f(Pf), because s is a minorant also for the set Pf. Also, from Abian's 
conditions we have f(s) =f(infPf) = sup f(Pf) < sup Pf = : s, i.e., f(s) < s. It 
means that Abian's statement is the consequence of our Theorem 1. 

Corollary 5. (Taskovic [13]) Let P be a totally ordered conditionally complete set 
and f:P-+P antitone mapping satisfiing the conditions (4) and (5). Then f has 
a fixed point. 

Proof. Evidently, the proof of this statement is analogous to the proof of the 
preceding statement of Abian. 

Corollary 6. (Shmuely [11]) Let Lbe a complete atomic lattice and let f: L -+ L 
be an antitone mapping satisfying the conditions: 

(a) x < f2(x) for every xeL, 
(b) a < f(a) for each atom aeL. 

Then f has a fixed point. 
Proof. Since / : P -• P is an antitone mapping and x < f(x) for every xeLy 

we have from sufficiency for antimorphism, that our condition (C) is satisfied. 
In this paper Pf(A) denotes the family of all subsets A of L satisfying sup A < 
< f(sup A). Notice that {0} e Pf(A) and Pf(A) is ordered by set inclusion. Here we 
use the following statement of Shmuely £ l l ] : 

Lemma (Shmuely [11]) Under the assumption of Corollary 6, Pf(A) ordered 
by inclusion, has a maximal element. 

Now, let A0 <z L be a maximal element of Pf(A) and put s: = sup^0( = supPf(A)). 
Obviously, s </(s). Assuming s </(s ) we can find an atom reL and r$A0, 
such that r <f(s). Also, s <f(r)9 because / is antitone and (a) is valid. This 
together with r < f(r) yields, from (C), 

/(sup {r, s}) = inf {/(r),/(s)} > sup {r, s}> 
contradicting the maximality of A0. Thus f(s) = s, i.e., obviously f(s) ^ s, and s 
is minorant for the set f(Pf), because s = / (s ) ^f($upPf(A)) = inf/(P'(A.)). It 
means, the conditions (A) and (B) are satisfied and thus Shmuely's statement is 
the consequence of Theorem 1. 
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3. FIXED POINTS OF I N F , S U P - A N T I M O R P H I S M S 

Theorem 2. Let (P, <>)be a partially ordered set and fa mapping from P into P 
such that: 

D) The set Pf is nonempty, the point s := sup Pf exists and satisfies s < f(s), 
(E) s is an upper bound (majorant) for the set f(Pf), 
(F) (Sup-antimorphism) /(sup Pf) = sup f(Pf). 

Then: (2.1) The set I(P,f) is nonempty, (2.2) Neither of the conditions (D), (E), (F) 
can be deleted if (2.1) is to be valid, 

Dually, if 
(D') The infimum of the set Pf defined by Im = inf Pf exists and/(/m) g 7m, 
(E') Im is a lower bound (minorant) for the set f(Pf),. 
(F') (Inf-antimorphisrn) /(inf Pf) = inff(Pf)9 

then set I(P,f) is nonempty and neither of the conditions (D'), (E'), (F') can be 
deleted if(2A) is to be valid. 

Proof. The set Pf being, by assumption, nonempty, the point s = supP / 

exists, and from (D), s < f(s). From (E), it follows that s is an upper bound for 
the setf(Pf) and thus we have x e Pf,f(x) < s, i.e., sup f(Pf) < s, which implies 
f(s) =/(supPx) = sup/(P7) < s. Our conclusion follows from (D) and f(s) < s, 
that is /(-?)== s and thus s e I(P,f), i.e., the set I(P,f) is nonempty. This completes 
the proof of (2.1). 

(2.2). Now we prove that the conditions (D), (E) and (F) not be removed. We 
show that by, the following examples. 

Example 4. (Figure 6) Let P be the lattice (poset) on the Figure 6 and le t / : P ~> P 
be defined by f(a) = / (6) =/(c) = 1, f(d) = f(l) = a, f(0) = a, f(e) = 0. Condi
tions (D) and (E) are satisfied (Pf = {0, a, b, c}, s = sup Pf = c < f(s) =f(c) = 
= 1, s = c is majorant for the setf(Pr) =f({d, e, 1}) = {f(d),f(e),f(l)} = 
= {0, a}) but condition (F) is not satisfied (f(sup Pf) =f(c) = 1 ^ a = supf(Pr)). 
Furthemore,f does not have a fixed point. 

Example 5- Also, neither of the conditions (D) and (E) can be deleted if (2.1) 
is to be valid, which is illustrated by the following examples for P = [0, 2] and 
/ : P -• P, defined geometrically by 

1 2 
f ig .8 
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In Figure 7., conditions (D) and (F) are satisfied but condition (E) is not. 
Further, in Figure 8., conditions (E) and (F) are fulfilled, but condition (D) is not, 
and / (Fig. 7. and 8.) has not fixed point. 

(20 By dual considerations one proves the part of Theorem 2. ((2.1), (2.2)) 
which concerns the point Im = infPf\ it sufficies to make the following substi
tutions: s -» Im, Pf -+ Pf, sup -> inf, < -> 5*. 
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