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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 67 { 75CONVEX LINES IN MEDIAN GROUPSMilan KolibiarDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. There is proved that a convex maximal line in a median group G,containing 0, is a direct factor of G.1. IntroductionThe present paper is related to the paper [5]. The aim of it is to extend themain result in [5] to a class of all median groups.A basic notion in both papers is that of median algebra. By a median algebrais meant an algebra with a single ternary operation satisfying the identities(1) (a; a; b) = b,(2) ((a; b; c); d; c) = ((d; c; b); a; c).Such algebras were investigated under various names by several authors. A surveyof results is e.g. in [1]. Let L = (L;^;_) be a distributive lattice. Consider theoperation(3) (a; b; c) = (a _ b) ^ (b _ c) ^ (c _ a).M (L) = (L; (^;_)) is a median algebra. According to [7] each median algebra isisomorphic to a subalgebra of an algebra M (L).In an l-group G = (G; +;�; 0; (; ; )) the operations (3) and + are related by theidentity(4) u+ (a; b; c) + v = (u+ a + v; u+ b+ v; u+ c + v).De�nition. By a median group (m. group) there is meant an algebra (G; +;�; 0;(; ; )) where (G; +;�; 0) is a group, (G; (; ; )) is a median algebra and the identity(4) in G holds.If G is an l-group then the m. group (G; +;�; 0; (; ; )) where the ternary oper-ation is given by (3), is said to be associated with G. There are median groupswhich are not associated with any l-group. Examples of such m. groups are in [5].1991 Mathematics Subject Classi�cation : 20F99, 08A99.Key words and phrases: median algebra, group, line, direct product.Received October 21, 1991. 67



68 MILAN KOLIBIAR2. Some properties of median algebras and median groupsLet A = (A; (; ; )) be a median algebra. If a; b; c 2 A and (a; b; c) = b we saythat b is between a and c (in symbols abc). If a1; a2; : : : ; an 2 A and aiajak holdsfor 1 5 i 5 j 5 k 5 n we denote it by a1a2 : : :an. A subset K of A is said to beconvex if a; b 2 K, u 2 A and aub imply u 2 K.Given an element u 2 A, then the rule x ^ y = (x; u; y) gives an idempotent,commutative and associative operation in A and (A;^) is a semilattice with theleast element u. In what follows we shall use such operation in median groupssetting u = 0. Then x 5 y in the semilattice (G;^) i� 0xy. (a; b) will denote theset fx 2 A : axbg. The algebra ((a; b);^;_), where x^y = (x; a; y), x_y = (x; b; y)is a distributive lattice with the least and the greatest elements a; b, respectively[7]. Call a mapping f : A ! B between two median algebras A;B betweennesspreserving if abc implies (fa)(fb)(fc). A subset L of a median algebra A is calleda line if there is a betweenness preserving injective mapping f from a chain C toA such that L = ffa : a 2 cg.2.1[3, Proposition 2]. A subset L of a median algebra with cardL 6= 4 is a linei� for any a; b; c 2 L one of the relations abc, bca, acb holds. Obviously a subset ofa line is a line. If a is an element of a line L such that for each b; c 2 L either abcor acb holds, we say that a is an end element of L.2.2. Let A be a line in a median algebra and 0; a 2 A, a 6= 0. Denote A0 = fx 2A : x0ag, Aa = A�A0. Then A = A0 [Aa and x 2 A0 together with y 2 Aa implyx0y. Routine proof omitted.2.3. De�nition [4]. A subset C of a median algebra is called a �Ceby�sev subsetif for each a 2 A an element aC 2 C exists such that aaCx for any x 2 C.Obviously a �Ceby�sev set is a convex subset of A.2.4 [5; 2.7]. Any convex maximal line in a median algebra is a �Ceby�sev subset.Some elementary properties of median algebras and median groups are in [5].Let us recall some of them.(a; b; c) = (b; a; c) = (b; c; a),((a; b; c); d; e) = ((a; d; e); b; (c; d; e)),abc implies cba,abc and buc imply abuc,abc and acb imply b = c,aub, buc and cua hold i� u = (a; b; c).G will denote an m. group.These properties as well as the lemmas 2.5, 2.6 and 2.7 below will be used freelyin what follows.The following lemma is obvious.2.5. Lemma. Let a; b; c; u be elements of an m. group then abc implies (a+u)(b+u)(c+ u), (u+ a)(u+ b)(u+ c).



CONVEX LINES IN MEDIAN GROUPS 692.6. Lemma. Let a; b; u 2 G. If (a; b) is a line then (a+u; b+u) and (u+a; u+b)are lines too.Proof. The lemma is an immediate corollary of 2.1 and 2.5. �The following assertion is easy to proove.2.7. Let a; b; c; d be elements of a line and let abc, bcd and b 6= c hold. Then abcdholds. 3. Direct factorsIn this paragraph G denotes a median group.3.1. We say that a subset A of G forms a direct factor of G whenever a directproduct decomposition f : G! B �C exists such that A = f�1(f(b; 0) : b 2 Bg).3.2. Lemma [6; 3.9]. A subset A in G forms a direct factor of G if and only ifit is a �Ceby�sev subset in M (G) and forms a subgroup of the group (G; +;�; 0).3.3. Theorem. Any convex maximal line in G, containing 0, is a direct factorof G.In view of 3.2 and 2.4 it su�ces to prove the following lemma.3.4. Lemma. Any convex maximal line L inM (G) forms a subgroup of the group(G; +;�; 0) whenever 0 2 L.The proof of lemma 3.4 is divided into a series of lemmas and ends in 3.15.3.5. Remark. A short proof of lemma 3.4 has been given (not yet published) byT. Marcisov�a.3.6. Let a 2 G and let (0; a) be a line. Then one of the cases(�a)0a; 0(�a)a; 0a(�a)occurs.Proof. Denote u := (�a; 0; a). From 0u(�a) it follows that a(a + u)0 and, since0ua and (0; a) is a line, one of the casesa) 0u(a+ u)a; b)0(a+u)uaoccurs. In the case a) we get (�a)(�a + u)u, which together with a(a + u)u andau(�a) yields a(a+u)u(�a+u)(�a). From (a+u)u(�a+u) it follows a0(�a). Inthe case b) we get (�u)a0(a�u) and, according to au0, (�u)au0(a�u). Since (0; a)is a line, (�u; a�u) is a line, too, (see 2.6) and, according to (�u; u) � (�u; a�u),(u;�u) is a line.We shall show that(i) a;�a 2 (u;�u):



70 MILAN KOLIBIARFirst from the above relation we get (�u)au. From 0(a+u)a we get u(a+2u)(a+u)which together with au(a + u) yields au(a + 2u), hence (add �a on the left and�u on the right side) (�u)(�a)u. Hence (i) holds. Since (u;�u) is a line, using2.1 we get that one of the following cases occurs.b1) ua(�a)(�u), b2) u(�a)a(�u).In the case b1) we get ua(�a) and, since au(�a), u = a hence (0; a;�a) = a,i.e. 0a(�a). In the case b2) u(�a)a and au(�a) yield u = �a hence 0(�a)a. Thisproves the assertion 3.6. �3.7. Let (0; a), (0; b) be lines and neither 0ab nor 0ba hold. Then a ^ b = 0 (i.e.a0b).Proof. Let a ^ b = (a; 0; b) = u. According to 3.6 there occurs one of the cases1. a0(�a), 2. 0a(�a), 3. 0(�a)aand one of the cases10: b0(�b); 2'. 0b(�b), 30: 0(�b)b.Case (1:10). From the assumptions we get au0(�a) hence (2a)(a+ u)a0. Fromthis we get (a + u)au0 and a(a� u)0. Similarly b(b� u)0.Denote a0 = a � u, b0 = b� u. Then a0 ^ b0 = (a � u; 0; b� u) = (a; u; b)� u =u� u = 0, 0a0a and 0b0b. Since 0ua and 0ub, there holdeither a) 0a0u or b) ua0aand either a0) 0b0u or b0) ub0b:a) and a0) yield (since (0; u) is a line) 0a0b0 or 0b0a0 hence a0 = a0^ b0 = 0 i.e. a = uor b0 = 0 i.e. b = u and we get that 0ab or 0ba - a contradiction. The case a) andb0) yields 0a0b0 - a contradiction as above. The case b) and a0) is symmetric. Inthe case b) and b0) we get 0 = a0 ^ b0 (since u 5 a0 5 a, u 5 b0 5 b and a^ b = u).Case (1.30). Again denote u = (0; a; b). There are two possibilities:a) 0(�b)u, b) u(�b)b.The case a) yields 0(�b)ua and(1) (�a)(�b � a)(�a)0.From (�a)0a and 0(�b)a we get (�a)0(�b)a. This together with (1) yields (�a)(�b� a)(u� a)0(�b)a. From this we get successively0(�b)ua(�b + a)(2a); b0(b+ u)(b+ a)a(b+ 2a):From this we get b0a hence u = (a; 0; b) = 0. Since 0(�b)u, we get 0(�b)0 henceb = 0 - a contradiction.In the case b) we get 0(�b)b, u(�b)b and 0ub. This yields 0u(�b) hence b(u+b)0so that(*) u; u+ b 2 (0; b):



CONVEX LINES IN MEDIAN GROUPS 71a0(�a) and au0 yield au0(�a). From au0 we get 0(u� a)(�a). From this we getsuccessively au0(u�a)(�a), (�u+a)0(�u)(�a)(�u�a), (�u+2u)a(�u+a)0(�u).From au0 and a0(�u) we get(+) au0(�u):According to (�) there are two cases possibleb1) 0(u+ b)ub, b2) 0u(u+ b)bCase b1) yields(1) (�u)b0(�a + b)From bu0 and u(�b)b we get(2) b(�b)u0:But from (1) (�u)b0. This together with (1) yields (�u)b(�b)u0. From this we get(�u)u0. But according to (+) u0(�u) hence u = 0.In the case b2) from 0u(u + b)b it follows (�u)0b(�u + b). From this we getsuccessively (�u)0ub(�u + b), (�2u)0(�u + b) and 0u(2u)b. Combining the lasttwo relations we get (�2u)0ub(�u+b). From aub and u(2u)b we get au(2u). Hencethe elements 0; u; a 2u ful�l the conditions in the case (1:10). 0 = a (2u) = a b = u.This completes the case (1:30).In the case (1:20) 0 5 b 5 �b hence u = a ^ b 5 a ^ (�b) = v so that0 5 u 5 v 5 a, 0uv(�b) and 0ub(�b).(0; b) is a line hence (�b; 0) = �b + (0; b) is a line. Since b; v 2 (0;�b), uvb orbv(�b) hold. The second case yields 0ubv(�b) hence 0 5 b 5 v. Since u 5 v 5 a,we get 0 5 b 5 a i.e. 0ba - a contradiction. Hence uvb holds. Then v 5 a and v 5 byield v 5 a ^ b = u. Since u 5 v, we get u = v. The elements 0; u; a;�b ful�l theconditions of the case (1:30), hence u = 0.Case (3:30). Recall that u = (0; a; b), 0ua, 0ub hence 0(u�a)(�a), 0(u� b)(�b).Since (0; a), (0; b) are lines and u belongs to both (0; a) and (0; b) the followingcases are possible.1. 0u(u� a)(�a)a, 0u(u� b)(�b)b,2. 0u(u� a)(�a)a, 0(u� b)(�b)b,3. 0u(u� a)(�a)a, 0(u� b)(�b)ub,4. 0(u� a)u(�a)a, 0u(u� b)(�b)b,5. 0(u� a)u(�a)a, 0(u� b)u(�b)b,6. 0(u� a)u(�a)a, 0(u� b)(�b)ub,7. 0(u� a)(�a)ua, 0u(u� b)(�b)b,8. 0(u� a)(�a)ua, 0(u� b)u(�b)b,9. 0(u� a)(�a)ua, 0(u� b)(�b)ub.Because of the symmetry it su�ces to settle the cases 1,2,3,5,6,9.Case 1. From the suppositions we get (u�a; 0; u� b) = u, (�a;�u;�b) = �u+(u� a; 0; u� b) = 0, u = (0;�a;�b) = ((�u;�a;�b);�a;�b) = (�u;�a;�b) = 0.



72 MILAN KOLIBIARIn the case 2 (0;�a;�b) = u. But 0(u � b)u(u � a) hence (�u)(�b)0(�a) sothat u = (0;�a;�b) = 0.In the case 3 we have 0u(u�a), 0(u� b)u hence (u�a)u(u� b) and (�a)0(�b).From 0(�b)u and 0u(�a) we get 0(�b)(�a). Combining this with the above rela-tion we get b = 0 2 (0; a) - a contradiction.Case 5. Let e.g. 0(u � b)(u � a)a (the second possibility is symmetric to this).Then from u(u � a)(u � b) we get 0(�a)(�b) hence u = (0;�a;�b) = �a. Thenfrom 0(u� b)u we get 0(u� b)(�a) so that a(�b)0 and �a = u = (a; 0;�b) = �bhence a = b - a contradiction.In the case 6 we have (u� b)(�b)u hence (add �u on the left and b on the rightside)(1) 0(�u)b.Next (u � a)u(�a) gives (�a)0(�u � a) and 0a(�u). This together with (1)gives 0ab - a contradiction.Case 9. Let e.g. 0(�a)(�b) (the case 0(�b)(�a) is symmetric). Then u(u �a)(u � b) which together with u(u � b)0 gives u(u� a)(u � b)0. Combining theserelations with au(�a)(u�a)0 we get au(�b)(�a)(u�a)(u�b)0. From the relationau(�a)(u�a) we get (2a)(u+a)0u, (2a)(u+a)0(u�b)u. From the last relation weget au(u�b�a). But from 0(u�b)(u�a) we get a (u�b+a)u, which together withthe above relation gives a(u�b+a)u(u�b�a). From this we get (�b+a)0(�b�a)hence ab(�a) so that b 2 (a;�a) � (0; a) - a contradiction.This settles the case (3:30).Case (2:20). We have 0 5 u 5 a 5 �a, 0 5 u 5 b 5 �b. We claim that �a =2(0;�b). Suppose �a 2 (0;�b). Then 0a(�a)(�b). Since b 2 (0;�b) and 0ba donot hold the possibility 0ab(�b) remains which is a contradiction. Symmetrically,�b =2 (0;�a). Using the consideration in the case (3; 30) for the intervals (0;�a)and (0;�b) we get (�a) ^ (�b) = 0 hence a ^ b = 0.In the remaining case (2; 30) we have 0a(�a) and 0(�b)b. �a 2 (0; b) wouldgive 0ab - a contradiction. Hence �a =2 (0; b). Suppose b 2 (0;�a) i.e. 0b(�a).Since a 2 (0;�a) one of the relations 0ab and 0ba(�a) would hold which is acontradiction. Hence b =2 (0;�a). The elements b1 = b and a1 = �a ful�l theconditions of the case (3; 30) so that a1 ^ b1 = 0 hence also a ^ b = 0.Summarizing the results, we proved the assertion 3.7 in the cases (1; 10), (1; 30),(1; 20), (3; 30), (2; 20) and (2; 30). Because of the symmetry this settles also the cases(3; 10), (2; 10) and (3; 20). This completes the proof. �3.8. Let A and B be lines with the end element 0. If neither A � B nor B � Aholds then a ^ b = 0 for any a 2 A, b 2 B.Proof. The assertion is a corollary of 3.7. �3.9. Let A be a convex maximal line in G and 0; a 2 A. Then �a =2 A or a0(�a).Proof. According to 3.6 one of the following three cases occurs.1) 0(�a)a, 2) 0a(�a), 3) a0(�a).Case 1) yields �a 2 A.Case 2). We use the notations used in 2.2. There are two possibilities:



CONVEX LINES IN MEDIAN GROUPS 732a) Aa � (0;�a), 2b) Aa � (0; a) =2 ;.Case 2a). Let b 2 A0. Set t := (b; a;�a). There are two possibilities:2a1) bt0, 2a2) 0ta.In the case 2a1) b0a and bt0 imply t0a. But at(�a) and 0a(�a) yield 0at. Hencea = 0 and �a 2 A.In the case 2a2) 0ta and 0a(�a) yield ta(�a). Since at(�a), we get t = a, hence(b; a;�a) = a so that ba(�a) and b0a(�a). From this it follows that A0 [ (0;�a)is a line. CombiningA = A0[Aa and the supposition 2a) we get A � A0[ (0;�a).This and the maximality of A yields A = A0 [ (0;�a), hence �a 2 A.Case 2b). Let c 2 Aa � (0;�a). If (0;�a) � Aa then �a 2 A. If (0;�a) 6� Aathen, according to 3.8, c0(�a) holds. Since c 2 Aa, 0ca or 0ac holds. The �rstrelation together with 0a(�a) yields 0c(�a) i.e. c 2 (0;�a) - a contradiction.Summarizing the above procedure we get that either �a 2 A or a0(�a) hold. Thiscompletes the proof of 3.9. �3.10. Let A be a convex maximal line inG and 0; a 2 A,�a 2 A. Then (�a)A = 0.Proof. Denote (�a)A = t. There are three cases possible:1) 0at, 2) 0ta, 3) t0a.In the case 1) the relations 0at and (�a)t0 yield (�a)a0. But by 3.9 a0(�a), hencea = 0 and �a 2 A - a contradiction.In the case 2) 0ta and a0(�a) (see 3.9) yield t0(�a). But (�a)t0 according to thede�nition of t. Hence t = 0.Case 3). According to 3.8 there are three possibilities (we use the notation from2.2): 3a) (0;�a) � A0, 3b) A0 � (0;�a), 3c) x0y for each x 2 A0 and y 2(0;�a).In the case 3a) �a 2 A - a contradiction.Case 3b). Let b 2 Aa. Then either 0ba or 0ab holds. In the �rst case (�a)ta,t0a and 0ba yield (�a)t0ba, hence (�a)0b. In the second case t0a and 0ab yield t0b(see 2.7). This together with (�a)tb yield (�a)0b. Hence for any b 2 Aa (�a)0bholds. This follows that (�a; 0)[Aa is a line. Using the supposition A0 � (0; a) weget A � (�a; 0) [Aa so that A = (�a; 0) [Aa, hence �a 2 A - a contradiction.In the case 3c) we get t0(�a) (t 2 A0!). This and (�a)t0 yield t = 0. Thiscompletes the proof of 3.10. �3.11. Let A be a convex maximal line in G and 0; a 2 A, a 6= 0. Then b 2 A existssuch that b 6= 0 and b0a.Proof. If such an element did not exist, then 0 would be an end element of A.According to 3.10 (�a)0t for any t 2 A, hence (�a; 0)[A would be a line, so that(�a; 0) [A = A and �a 2 A - a contradiction. �3.12. If A is a convex maximal line in G and 0 2 A then a 2 A implies �a 2 A.Proof. Assume, on the contrary, that there is a 2 A such that �a 2 A. Accordingto 3.11 b 2 A exists such that b0a and b 6= 0. Then 0(�b)(a� b) and (0; a� b) is aline (see 2.5). According to 3.7 one of the following three cases occurs.



74 MILAN KOLIBIAR1) 0a(a� b), 2) 0(a� b)a, 3) a0(a� b).In the case 1) a 2 (0; a� b) and, since b0a is a line, there are two possibilities:1a) 0a(�b)(a � b), 1b) 0(�b)a(a� b).The case 1a) yields (we add �a on the left and b on the right side) b(�a)0, hence�a 2 A - a contradiction.In the case 1b) we get b0(a+b)a and (adding�a on the left) (�a)b0. But (�a)A = 0(see 3.10) hence (�a)0b and b = 0 - a contradiction.In the case 2) we get (�a)(�b)0. According to 3.9 (�a)0a. The two last relationsyield (�b)0a. On the other hand from a0b we get (a� b)(�b)0. This together with0(a�b)a yields a(�b)0. Combining this with (�b)0a we get b = 0 - a contradiction.In the case 3), using the relation 0(�b)(a � b) which follows from b0a, we geta0(�b)(a � b). From this we get b(�a + b)(�a)0, hence b(�a)0 and �a 2 A - acontradiction. This completes the proof of 3.12. �3.13. Let A be a convex maximal line in G and 0 2 A. Then a 2 A implies 2a 2 A.Proof. There are three possibilities:1) 0a(�a), 2) 0(�a)a, 3) a0(�a).The possibility 1) yields a(2a)0, hence 2a 2 A. In the case 2) we get (�a)(�2a)0,hence �2a 2 A and 2a 2 A according to 3.12. Case 3). The interval (�a; a)is a line, hence (0; 2a) is a line, too (see 2.5). According to 3.8 there are threepossibilities: 3a) Aa � (0; 2a), 3b) (0; 2a) � Aa, 3c) x0y for each x 2 Aa andy 2 (0; 2a). In the case 3a) we get that A0 [ (0; 2a) is a convex line containing A,hence A = A0 [ (0; 2a) so that 2a 2 A. 3b) yields 2a 2 A immediately. Case 3c).From a0(�a) we get 0a(2a) hence a 2 (0; 2a) and a 2 Aa so that a0a i.e. a = 0and trivially 2a 2 A. �3.14. Let A be a convex maximal line in G and 0 2 A. Then a; b 2 A implya+ b 2 A.Proof. There are three possibilities:1) 0ab, 2) 0ba, 3) a0b.In the case 1) we get b(a+ b)(2b), b(b+a)(2b). Since 2b 2 A, a+ b and b+a belongto A. The case 2) is similar. In the case 3) we get (�b)(�a� b)(�b). Since �a;�bbelong to A (see 3.12), �(a+ b) = �a� b 2 A, hence a+ b 2 A according to 3.12.�3.15. From 3.12 and 3.14 we get that a convex maximal line in G, containing 0,forms a subgroup of the group (G; +; 0;�) which completes the proof of lemma3.4 and the proof of theorem 3.3. References[1] Bandelt H.J. and Hedl��kov�a J., Median algebras, Discrete Math. 45 (1983), 1-30.[2] Hedl��kov�a J., Chains in modular ternary latticoids, Math. Slovaca 27 (1977), 249-256.[3] Isbell J.R., Median algebra, Trans. Amer. Math. Soc. 260 (1980), 319-362.[4] Kiss S.A., A ternary operation in distributive lattices, Bull. Amer. Math. Soc. 53 (1947),749-752.



CONVEX LINES IN MEDIAN GROUPS 75[5] Kolibiar M., Median groups, Archivum Math. (Brno) 25 (1989), 73-82.[6] Kolibiar M., Discret product decompositions of median groups, General Algebra 1988, Pro-ceedings of the Conference in Krems (Australia), August 1988. North Holland 1990, 139-151.[7] Sholander M., Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952),369-381.[8] Sholander M., Medians, lattices, and trees, Proc. Amer. Math. Soc. 5 (1954), 808-812.[9] Marcisov�a T., Groups with an operation median, Komensk�y University Bratislava (1977),Thesis.Milan KolibiarFaculty of Mathematics and PhysicsComenius UniversityMlynska dolina, 842 15 BratislavaCzechosloslovakia
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