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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 163 { 173SPRAYS AND HOMOGENEOUS CONNECTIONS ON R � TMAlexandr VondraAbstract. The homogeneity properties of two di�erent families of geometric ob-jects playing a crutial role in the non-autonomous �rst-order dynamics - semispraysand dynamical connections on R � TM - are studied. A natural correspondencebetween sprays and a special class of homogeneous connections is presented.1. IntroductionThe importance of the homogeneity of second-order di�erential equation �elds(briey semisprays) and of related connections on TM is well known (e.g. [7], [16],[3], [10], [9], [15], [1], [4] etc.). Namely, if we take an arbitrary semispray � on TM ,then � = �@�J (@� is Lie derivative, J is the canonical almost tangent structureon TM (see (5)) is a connection in the sense of Grifone . However, its paths arenot generally just the paths of �, because � need not be the associated semisprayto �. A homogeneous semispray is called a spray and then � = �@�J is theunique homogeneous connection without torsion, now with the same paths [3],[4].The homogeneity requirement on a regular lagrangian guarantees the associatedLagrange vector �eld to be a spray, which consequently leads to the geometricalcharacterization of the related regular autonomous dynamics. These considerationsare naturally extended to T kM = Jk0 (R �M;�;R).In addition, a canonical connection whose paths are the solutions of the Euler-Lagrange equations for only regular lagrangian are constructed in [4].The situation on R � TM was studied by de Le�on and Rodrigues. They haveshown in [6] that for any semispray on R� TM there is the so-called dynamicalconnection with the same paths (related papers are [2], [5]). However, the role ofthe homogeneity was not yet (as far as we know) studied.Our approach to the regular (generally higher-order) dynamics on an arbitrary�bred manifold with a one-dimensional base developed in [18] and [17] allows usto present the following considerations. Remark that some of them are closelyrelated to the geometrical structures on R � TM , which admit the possibility of1991 Mathematics Subject Classi�cation : 53C05, 70H35.Key words and phrases: semispray, connection, path, torsion, tension, spray, homogeneousdynamical connection.Received September 20, 1990. 163



164 ALEXANDR VONDRAtheir natural generalization to R�T kM but not to an arbitrary �rst prolongationJ1� of � with a one-dimensional baseX. On the opposite, many of the used notionsare the special cases of those de�ned on an arbitrary manifold (e.g. [12], [14], [11],[13]).In Sec. 2 we give a survey of basic structures and notions related to the geometryof R� TM (see [6], [2], [8]) within the context of [18], [17]. The main results canbe found in Sec. 3, where we study the notions like a spray, tension, strong torsionand the relation sprays  ! homogeneous connections. Finally we mention theimportance of the homogeneity for regular lagrangians.We use the following standard notation throughout the work : (Y; �;X) is a�bred manifold with the total space Y and the base X, F(Y ) denotes the set oflocally de�ned real functions on Y , SU (�) is the set of smooth local sections of �de�ned on U , �rY is the so-called r{fold alternating product of � and [ ; ] meansthe Fr�olicher-Nijenhuis bracket of the tangent valued forms.All manifolds and mappings are supposed smooth and the summation conven-tion is used as far as possible.2. Geometrical structures on R � TMIn what follows, we consider the trivial bundle (R�M;�;R) with � = pr1, whereM is an arbitrarym{dimensional manifold.We suppose t to be the canonical globalcoordinate on R ;  = (t; q�) is then a �bre chart for any local coordinate system' = (q�) , 1 � � � m , on M . Thus a section  2 SU (�) has a form(1) (t) = (t; c(t))where c : U �! M is a di�erentiable curve. The �rst jet prolongation J1� of �can be naturally identi�ed with R� TM and the �bration�1;0 : R� TM �! R�Mis obviously a vector bundle. The local coordinates on J1� associated to  = (t; q�)on V � R �M are  1 = (t; q�; q�(1)):If  = (t; q�) are some other coordinates on V � R�M and V \ V 6= ; , then(2)  �  �1(t; q�) = (t; q�(q�))and consequently(3) q�(1) = @q�@q� q�(1)on ��11;0(V \ V ) � R � TM . Due to the product structure V�1 = R � TTM andV�1;0 =< @=@q�(1) > . From (2) and (3) it holds@@q� = @q�@q� @@q� + @q�(1)@q� @@q�(1)@@q�(1) = @q�@q� @@q�(1)



SPRAYS AND HOMOGENEOUS CONNECTIONS ON R � TM 165and dq� = @q�@q� dq�dq�(1) = @q�(1)@q� dq� + @q�@q� dq�(1)on T (R� TM ) and T �(R� TM ) respectively.A tangent valued r{form on J1� is (in accordance with [12]) a section of thebundle TJ1� 
 �rT �J1� �! J1� :Tangent valued 1{forms, called also a�nors, are tensors of type (1,1) on J1�i.e. endomorphisms on TJ1� ; especially �1;0{vertical a�nors are called solderingforms. They are locally expressed by(4) ' = '� @@q�(1) 
 dt+ '�j @@q�(1) 
 dqjwith '�; '�j 2 F(J1�) . In terms of natural bundles and operators it can be shown[8] that there is an essential subset (more precisely a linear subspace) of the so-called natural a�nors. Any such natural a�nor has a form� ITM + � J +  IR + � C 
 dt ;where ITM = @@q� 
 dq� + @@q�(1) 
 dq�(1)and(5) J = @@q�(1) 
 dq�are the unique two natural a�nors on TM ;C = q�(1) @@q�(1)is the Liouville vector �eld on TM and �; �; ; � 2 F(R) . The most importantnatural soldering form is the endomorphismS = J � C 
 dtlocally given by(6) S = @@q�(1) 
 !� ;



166 ALEXANDR VONDRAwhere(7) !� = dq� � q�(1) dtare the well-known canonical contact forms. Obviously rank S = dimV�1;0 = mand S2 = 0 . If we put J = S + (C + @@t )
 dt ;it is easy to see that R � TM is endowed with a particular case of the so-calledalmost stable tangent structure, which means a triple (J; @@t ; dt) satisfyingi @@t dt = 1 ; J2 = @@t 
 dt ; rank J = m + 1 :This structure may be used for example to an intrinsic description of the inverseproblem (see [5]).A distinguished vector �eld on J1� = R � TM is a (global) semispray whichcan be characterized by means of any of the following conditions:(i) � = @@t + q�(1) @@q� + ��(1) @@q�(1)in any �bre coordinates, where ��(1) 2 F(J1�);(ii) T�1;0 � � = �1;0where �1;0 : J1� �! T (R�M ) is a canonical injective mapping (in fact, a vector�eld along �1;0, called total derivative with respect to t), de�ned for any given 1-jetJ1t  2 J1� by �1;0(J1t ) = � dds(t + s)�0 ;(iii) �1;0 � � = dds (�1;0 � �)for any integral curve � of � ;(iv) S� = 0 ^ J� = C ;(v) !�(�) = 0 ^ dt(�) = 1for !� given by (7) and 1 � � � m.A section  2 SU (�) given by (1) is called a path of the semispray � if and onlyif any of the following conditions holds :(i) d2c�dt2 = ��(t; c; dcdt )



SPRAYS AND HOMOGENEOUS CONNECTIONS ON R � TM 167on U for any �bre coordinates, 1 � � � m ;(ii) J1 is an integral curve of � ;(iii) J1 is an integral mapping of the so-called (one-dimensional) semispraydistribution �10[�], generated by � ;(iv) � � J1 = �2;1 � J2on U , where �2;1 : J2� = R � T 2M �! T (R � TM ) is analogously to �1;0de�ned by �2;1(J2t ) = � ddsJ1t+s�0 :The one-dimensional semispray distribution �10[�] on R � TM , spanned by �,can be naturally identi�ed with the connection � of order 2 on � by(8) ��(2) = ��(1) :Any such a connection is a section � : J1� �! J2� locally given by(t; q�; q�(1); q�(2)) � � = (t; q�; q�(1);��(2))for ��(2) 2 F(J1�) , characterized among others uniquely by its horizontal formh� =  @@t + q�(1) @@q� + ��(2) @@q�(1)!
 dt :The path (or integral section) of � is a section  2 SU (�) such thatJ2 = � � J1on U . It is easy to see that � and � identi�ed by (8) (� is called associated to �)have the same paths and h� = � 
 dt :Furthermore, there is also another kind of connections closely related to the givensemispray.Let �d be a connection on �1;0 , i.e. a section�d : J1� �! J1�1;0locally given by(t; q�; q�(1); q�(1;0); q�(1;0)�) � �d = (t; q�; q�(1);��;���) ;where ��;��� 2 F(J1�). The horizontal form of �d is(9) h�d =  @@t + �� @@q�(1)!
 dt + @@q� 
 dq� + ��� @@q�(1) 
 dq�



168 ALEXANDR VONDRAand the (m + 1)-dimensional �1;0-horizontal subbundle Im h�d =: H�d is locallygenerated by the vector �elds@@t + �� @@q�(1) ; @@q� + ��� @@q�(1)or equivalently by the forms �(2) = dq�(1) � �� dt� ��� dq� :A section  2 SU (�) is called a (dynamical) path of �d if J1 is horizontal withrespect to �d, which means T (J1 ) � H�d :An endomorphism F on TJ1� = R�TM is called an f(3,-1) structure on R�TMif F 3 � F = 0. A special class of such structures is generated by the conditions(10) JFd = SFd = S ; FdS = �S ; FdJ = �J :Any endomorphism Fd given by (10), called dynamical f(3,-1) structure, is locallyexpressed by Fd =  F � @@q�(1) � q�(1) @@q�!
 dt ++F �� @@q�(1) 
 dq� + @@q� 
 dq� � @@q�(1) 
 dq�(1) ;where F � ; F �� 2 F(J1�) . Thus Fd generates (by means of its eigenspaces) adirect sum decompositionT (R � TM ) = V�1;0 �HFd � Im (F 2d � I) ;where V�1;0 = Im (F 2d � Fd) and HFd = Im (F 2d + Fd) is called a strong horizontalsubbundle (dimHFd = m). It is generated by the vector �elds(11) @@q� + 12 F �� @@q�(1) :Im (F 2d � I) is generated by the semisprays(12) @@t + q�(1) @@q� + (F � + F �� q�(1)) @@q�(1) :The generators (11) and (12) constitute a weak horizontal subbundleH0Fd = Im (F 2d � I) �HFd :



SPRAYS AND HOMOGENEOUS CONNECTIONS ON R � TM 169There is a bijective correspondence between dynamical f(3,-1) structures on R�TM and connections on �1;0 , arranged by means of their horizontal subbundles;thus Fd and �d are called associated ifH�d = H0Fd :The local expression of this correspondence isF � = �� � ��� q�(1) ; F �� = 2 ��� ;or �� = F � + 12 F �� q�(1) ; ��� = 12 F �� :This is the reason for connections on �1;0 to be also called dynamical connectionson R� TM .A connection � of order 2 on � is called associated to a dynamical connection�d if ��(2) = �� + ��� q�(1) = F � + F �� q�(1) :It is so if and only if �10[�] = Im h� � H�d :Thus if we take an arbitrary connection � of order 2 on � and any dynamicalconnection �d on R�TM such that � is associated to �d , then both connectionshave the same (dynamical) paths and in additionIm (F 2d � I) = �10[�] :Consequently, there is the whole family of dynamical connections �d on R� TMwith the same paths for any semispray � on R � TM . The dynamical f(3,-1)structure Fd associated to any such �d generates a direct sum decompositionT (R� TM ) = V�1;0 ��10[�]�HFd :However, there is a canonical choice of such a dynamical connection �d . Usingthe natural soldering form S given by (6), one can construct a dynamical f(3,-1)structure Fd = �@�S ;locally given by F �� = @��(1)@q�(1) ; F � = ��(1) � @��(1)@q�(1) q�(1) :The associated dynamical connection �d has the components(13) ��� = 12 @��(1)@q�(1) ; �� = ��(1) � 12 @��(1)@q�(1) q�(1) :This �d will be called natural dynamical connection associated to � .



170 ALEXANDR VONDRA3. Sprays and homogeneous connectionsLet �d be a dynamical connection on R� TM , ' an arbitrary soldering formon R� TM . The (weak) torsion of �d of type ' is�' = [h�d; '] :Following (4) and (9), this tangent valued 2-form can be expressed by�' =  @'�j@qi + ��i @'�j@q�(1) � @��i@q�(1) '�j! @@q�(1) 
 dqi ^ dqj++ @'�j@t � @'�@qj + �� @'�j@q�(1) � ��j @'�@q�(1) � @��@q�(1) '�j + @��j@q�(1) '�! @@q�(1) 
 dt ^ dqj :The weak torsion of �d of type S (briey weak torsion) is then�S =  � @��i@qj(1)! @@q�(1) 
 dqi ^ dqj++ ��j � @��@qj(1) � @��j@q�(1) q�(1)! @@q�(1) 
 dt^ dqj :Let � be an arbitrary semispray on R� TM . Then the contraction of �S by � isi��S =  @��@qj(1) qj(1) + @��i@q�(1) q�(1)qi(1) � ��i qi(1)! @@q�(1) 
 dt+(14) + ��j � @��i@qj(1) qi(1) � @��@qj(1)! @@q�(1) 
 dqj :A tension of a dynamical connection �d is the soldering formH = �[C; h�d] = �@Ch�d ;which locally means(15) H =  �� � @��@qj(1) qj(1)! @@q�(1) 
 dt+  ��i � @��i@qj(1) qj(1)! @@q�(1) 
 dqi :De�nition 1. A dynamical connection �d on R � TM is called homogeneous ifits tension vanishes.



SPRAYS AND HOMOGENEOUS CONNECTIONS ON R � TM 171By means of (15) it means that the components �� and ��� of �d are homoge-neous of order one in qj(1) . Consequently we denote��ij = @��i@qj(1) :The strong torsion of �d will be the soldering formT = i��S �Hwhere i��S and H are de�ned by (14) and (15).All the previous objects are of the particular meaning in the case of the naturaldynamical connection associated to the semispray � on R � TM . Owing to (13)it holds �S =  �12 @2��(1)@qi(1)@qj(1)! @@q�(1) 
 dqi ^ dqji��S = 0 ;and H =  ��(1) + 12 @2��(1)@qi(1)@qj(1) qi(1) qj(1) � @��(1)@qi(1) qi(1)! @@q�(1) 
 dt+(16) +12  @��(1)@qj(1) � @2��(1)@qi(1)@qj(1) qi(1)! @@q�(1) 
 dqj(1) :Consequently T = �H :De�nition 2. A semispray � on R�TM is called a spray , if ��(1) are homogeneousfunctions of order two in qj(1) , which means(17) @��(1)@qj(1) qj(1) = 2 ��(1):Immediately we haveProposition 1. The natural dynamical connection �d associated to � is homo-geneous if and only if � is a spray.Notice that for the above mentioned homogeneous �d it holds :��ij = 12 @2��(1)@qi(1)@qj(1)



172 ALEXANDR VONDRAand(18) �� = 0 :Proposition 2. Let �d be an arbitrary homogeneous dynamical connection. Thenits associated semispray � given by��(1) = �� + ��j qj(1)is a spray if and only if �� = 0 :Proof. By the coordinate relations. �Corollary 1. There is a bijective correspondence between the set of all sprays onR�TM and the set of all homogeneous connections on R�TM whose componentssatisfy (18) .Proof. By the previous two propositions, this correspondence identi�es spray �with its associated natural dynamical connection �d , which is the unique homo-geneous dynamical connection with the same paths whose strong torsion vanishes.� Finally we note the corresponding direct sum decomposition generated by anarbitrary spray. The generators of the weak horizontal subbundle H�d are@@t ; @@qi + 12 ��ijqj(1) @@q�(1) ;where the latter ones are the generators of the strong horizontal subbundle HFd .In particular, for an autonomous case on R � TM (i.e. ��(1) depend on q�; q�(1)only) we obtain nothing else than a theory concerning the \graphs" of geodesicsof homogeneous (resp. linear) connections on TM . Then the following assertionis not much surprising.A lagrangian � = Ldt on R� TM is called homogeneous if L is homogeneousof order two in q�(1). Its Lagrange vector �eld is the solution of the so-called char-acteristic equation (see [6], [18]).Proposition 3. Let a lagrangian � = L : dt on R � TM be regular and homo-geneous. Then its Lagrange vector �eld � is a spray if and only if L depends onq�; q�(1) only.
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