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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 221 { 228ON THE OSCILLATORY BEHAVIOR OF CERTAIN THIRDORDER NONLINEAR DIFFERENTIAL EQUATIONMichal Gregu�sDedicated to Professor V. �Seda on the occasion of his sixtieth birthdayAbstract. In this paper we shall study some oscillatory and nonoscillatory prop-erties of solutions of a nonlinear third order di�erential equation, using the resultsand methods of the linear di�erential equation of the third order.The aim of this paper is to study the oscillatory or nonoscillatory properties ofsolutions of the nonlinear di�erential equation(1) u000 + q(t)u0 + p(t)h(u) = 0where q0(t) and p(t) are continuous function of t 2 (a;1), �1 < a <1; h(u) iscontinuous function of u 2 (�1;1) and(i) h(u)u > 0 for u 6= 0,(ii) limu!0 h(u)u = �, 0 � � <1.In this paper, a solution of equation (1) we will understand a nontrivial solutionof (1) de�ned on the interval [T;1], T > a. A nontrivial solution of (1) is saidto be oscillatory if it has zeros for arbitrarily large values of (the independentvariable) t. Otherwise a solution is called nonoscillatory.The object of generalization are the results of the paper [1] concerning oscilla-tory or nonoscillatory solutions of equation (1) in the case q(t) � 0 on (a;1) andresults of the paper [2].In this paper we use the results and the methods of proofs of the theory of athird order linear di�erential equation, [3] and [5].1. First of all we list some results for the linear di�erential equation(a) y000 + 2A(t)y0 + [A0(t) + b(t)] y = 01991 Mathematics Subject Classi�cation : 34C15.Key words and phrases: nonlinear third order di�erential equation, oscillatory or nonoscilla-tory solutions.Received July 13, 1992. 221



222 MICHAL GREGU�Swhere A0(t), b(t) are continuous function on (a;1) and b(t) has the property (v),i.e. b(t) � 0, t 2 (a;1) such that b(t) 6� 0 on each subinterval.The adjoint equation to (a) is(b) z000 + 2A(t) z0 + [A0(t)� b(t)] z = 0Suppose w(t) > 0, t 2 (t0;1), a < t0 <1 is a solutions of equation (b). Thenthere exists two-parameter family of solutions y of (a) that satisfy the second orderequation(c) w y00 � w0y0 + (w00 + 2Aw) y = 0If w(t0) = w0(t0) = 0, w00(t0) > 0, w(t) > 0 for t > t0 and y are the solutionsof (a) such that y(t0) = 0, than each member of this family satis�es equation (c)and is called a band of solutions of the di�erential equation (a) at the point t0.If an equation of the band at the point t0 is oscillatory to the right of t0, thaneach solution of the equation (a) with one zero oscillates to the right of this zero.If we introduce the substitution y = pwv into (c), then for t > t0 equation (c)becomes(c1) v00 + �32 w00w � 34w02w2 + 2A� v = 0:Beside (a) let us consider the equation(a1) Y 000 + 2A(t)y0 + [A0(t) + b1(t)] Y = 0where b1(t) � 0 is continuous in (a;1).The following theorems [3], [4] will be useful.Theorem A. [3, Theorem 2.5 and Corollary 2.5]Let b(t) have the property (v) and let b(t) � b1(t) for t 2 (a;1).If the di�erential equation (a) is oscillatory in (a;1) (i.e. each solution withone zero oscillates to the right of this zero) then the di�erential equation (a1) isoscillatory, too. If (a1) is nonoscillatory, then also (a) is nonoscillatory in (a;1).Theorem B. [3, Theorem 2.1]Let b(t) have the property (v) for t 2 (a;1) andlet A(t) � 0; t 2 (a;1) and jA(t)j � tZt0 b(� ) d�; t0 > a;t � t0 2 (a;1). Then the di�erential equation (a) is disconjugated on (a;1)(i.e. each solution of (a) has at most two zeros, or one double zero).Theorem B was originally formulated and proved by G. Sansone [5].



ON THE OSCILLATORY BEHAVIOR OF CERTAIN THIRD ORDER 223Theorem C. [ 3, Theorem 3.1]Let A(t) � m > 0, A0(t) + b(t) � m, b(t) � A0(t) � 0 for every t 2 (a;1). Thenevery solution of the di�erential equation (a) is oscillatory in (a;1) except onesolution y (up to the linear dependence) for which limt!1 y(t) = 0, limt!1 y0(t) = 0and y is in the class L2, i.e. Z 1t0 y2(t) dt <1:Theorem D. [ 3, Theorem 2.17 and Corollary 2.3 ]Let b(t) have the property (v) on (a;1) and let the di�erential equation y00 +12A(t) y = 0 be oscillatory in (a;1). A necessary and su�cient condition for anontrivial solution y of the di�erential equation (a) to be nonoscillatory in (a;1)is that y(t)y00(t) � 12 y02(t) +A(t) y2(t) > 0for every t � t0 > a.2. Let q0(t) and p(t) be continuous functions of t 2 (a;1) and let (i), (ii) hold.Let u1 be a nontrivial solution of (1) on [T;1), T > a. Then u1 ful�ls lineardi�erential equation(2) u000 + q(t)u0 + p(t)H(u1) u = 0;where(3) H(u1) = ( h(u1)u1 for u1 6= 0� for u1 = 0The adjoint di�erential equation to the equation (2) is(4) v000 + q(t) v0 + [q0(t) � p(t)H(u1)] v = 0:If we multiply equation (2) by u and equation (4) by v and integrate from t0 tot we obtain identitiesuu00 � 12u02 + 12qu2 + Z tT [p(� )H(u1(� )) � 12q0(� )](U) u2(� ) d� = const:and v v00 � 12v02 + 12qv2 � Z tt0 [p(� )H(u1(� )) � 12q0(� )](V) v2(� ) d� = const:The following lemma follows immediately from identities (U) and (V):



224 MICHAL GREGU�SLemma 1. Let p(t) > 0, q0(t) � 0 for t 2 (a;1). Then every solution u ofthe di�erential equation (2) de�ned on [T;1), T > a, with the property u(t0) =u0(t0) = 0, u00(t0) > 0, t0 � T has no zeros to the left of t0, and every solution vof the di�erential equation (4) with the property v(t0) = v0(t0) = 0, v00(t0) > 0,t0 > T , has no zeros to the right of t0. Every solution u of (2) and every solutionv of (4) has at most one double zero.Let w(t) be a solution of the di�erential equation (4) with the property w(t) > 0for t � t0. Then the set of solutions of the linear di�erential equation of the secondorder(5) w u00 � w0u0 + [w00 + q(t)w] u = 0ful�ls at the same time equation (2) on the interval [t0;1) [3].Via the substitution u(t) =pw(t) y(t) we obtain from equation (5) the equation(6) y00 + �32 w00w � 34 w02w2 + q(t)� y = 0:Theorem 1. Let p(t) > 0; q0(t) � 0 for t 2 (a;1) and let (i) (ii) hold. Let f(t)be a given positive function de�ned on (a;1) with continuous third derivative onthis interval. Let u1 be a solution of the di�erential equation (1) de�ned on [t0;1)with the property p(t)H(u1(t)) � 12q0(t) �f 00(t) + q(t) f 0(t) + 12q0(t) f(t)f(t) = F (t)(7)and let the di�erential equation(8) y00 + �32 f 00(t)f(t) � 34 f 02(t)f2(t) + q(t)� y = 0be nonoscillatory on [t0;1). Then the solution u1 of (1) is nonoscillatory on [t0;1).Proof. Let the solution u1 of (1) satisfy (7) on [t0;1). Together with equation(2) let us consider equation(9) v000 + q(t) v0 + �12q0(t) + F (t)� v = 0obtained by di�erentiating the second order di�erential equation(10) fv00 � f 0v0 + (f 00 + q(t) f) v = 0:As we did earlier, the substitution v = pf y transforms equation (10) into (8).Since equation (8) is nonoscillatory, equation (10) is nonoscillatory. This impliesthat equation (9) is nonoscillatory. By Theorem A (Comparison Theorem) andcondition (7) we have that equation (2) is nonoscillatory. Thus the solution u1 of(1) is nonoscillatory, too. �



ON THE OSCILLATORY BEHAVIOR OF CERTAIN THIRD ORDER 225Corollary 1. Let q(t) � 0, p(t) > 0 for t � t0 > 1. Let u1 be a solution of theequation u000 + p(t)h(u) = 0on [t0;1) with the property(11) H(u1(t)) � 1p(t) 6t3(t2 � 1) ; t � t0Then the solution u1 is nonoscillatory on [t0;1).Proof. Let t0 > 1 and f(t) = t� 1t . Then f 0(t) = 1+ 1t2 , f 00(t) = � 2t3 , f 000(t) = 6t4and 32 f 00(t)f(t) � 34 f 02(t)f2(t) = � 3t2(t2 � 1) �1 + 14 (t2 + 1)2t2 � 1 � � 0;F (t) = 6t3(t2 � 1) for t > t0:Therefore the di�erential equation (8) in this case is nonoscillatory and henceequation (10) is nonoscillatory. This implies that equation (9), where (11) holds isnonoscillatory and Theorem 1 implies the assertion of Corollary 1. �Theorem 2. Let p(t) > 0 for t 2 (a;1) and let (i), (ii) hold. Further, let B(t) � 0be continuous function of t 2 (a;1) and B(t) 6�0 on any subinterval of (a;1) andlet the di�erential equation(B) y000 + q(t) y0 + �12q0(t) + B(t)� y = 0be oscillatory on (a;1). If u1 is a solution of (1) de�ned on [t0;1) and if u1(t1) = 0t1 > t0 and u1 ful�ls the condition(12) B(t) � p(t)H(u1(t)) � 12q0(t) for t 2 [t1;1)then u1 is oscillatory in [t1;1).The proof follows immediately from Theorem A by comparing equation (B)with equation (2) where (12) holds.Corollary 2. Let q0(t) � 0, p(t) > 0 for t 2 (a;1) and q0(t) 6� 0 in any subintervalof (a;1). Let, further, the di�erential equation of the second order y00+ q(t) y = 0be oscillatory on (a;1) and (i), (ii) hold.Then every solution u1 of (1) de�ned on [t0;1] t0 > a with one zero is oscilla-tory.The proof follows from Theorem 2 in the case if we take B(t) = �12q0(t).



226 MICHAL GREGU�STheorem 3. Let q0(t) � 0, p(t) > 0 for t 2 (a;1) and let (i), (ii) hold. Letf(t) > 0 and F (t) � 0 have the properties as in Theorem 1 and let F (t) 6� 0 inany subinterval of (a;1). Further let the di�erential equation (8) be oscillatoryon (a;1).If u1 is a solution of (1), de�ned on [t0;1) and moreover F (t) � p(t)H(u1(t)) �12q0(t) for t 2 ht0;1), then u1 is oscillatory in [t0;1).Using Theorem A the method of proof is the same as in the case of Theorem 1.Corollary 3. Let p(t) > 0, q(t) � 0 for t 2 (a;1) and let (i), (ii) hold and � > 0.If u1 is a solution of (1) de�ned on [t0;1), t0 > 0, with one zero and(13) 6t3 � p(t)H(u1(t))for t > t0, then u1 is oscillatory on ht0;1).Proof. Let f(t) = t3. Then there isF (t) = 6t3 ; 32 f 00(t)f(t) � 34 f 02(t)f2(t) = 94t2 ;that is equation (8) is oscillatory and (13) holds and so Theorem 3 implies theassertion of Corollary 3. �Lemma 2. Let q(t) + 1 � 0 and q(t) + 1 � 12q0(t) < 0 for t 2 (a;1). Then thedi�erential equation(14) v000 + q(t) v0 + �12q0(t) + 12q0(t) � q(t) � 1� v = 0is disconjugated on (a;1) (i.e. each solution of (14) has at most two zeros, or onedouble zero on (a;1)).Proof. of Lemma 2 see in [3], the proof of Lemma 2.2.Theorem 4. Let the assumptions of Lemma 2 be ful�lled and let p(t) > 0,q0(t) � 0 for t 2 (a;1) and (i), (ii) hold. Then every solution u1 of (1) de�ned on[t0;1) with the property(15) p(t)H(u1(t)) � q0(t)� q(t)� 1 for t 2 [t0;1);is nonoscillatory on [t0;1).Proof. Let u1 be a solution of (1), de�ned on [t0;1) with property (15). It ful�lsequation (2) that can be written in the form(16) u000 + q(t)u0 + �12q0(t) + p(t)H(u1(t))� 12q0(t)� u = 0Compare equation (16) with (14). If we take into consideration (15), i.e.p(t)H(u1(t)) � 12q0(t) � 12q0(t)� q(t)� 1;then Theorem A implies the assertion of Theorem 4. �With the use of Theorem B we prove



ON THE OSCILLATORY BEHAVIOR OF CERTAIN THIRD ORDER 227Theorem 5. Let p(t) > 0, q(t) � 0 and q0(t) � 0 for t 2 (a;1). Let, further, (i),(ii) hold and let H(u) � k, k > 0, for every u 2 (�1;1).If 12 jq(t)j � Z tt0 �k p(� ) � 12q0(� )� d�; t0 > a;for t � t0 2 (a;1), then every solution u1 of (1) de�ned on [t0;1) has at mosttwo zeros, or one double zero in [t0;1).Proof. Let u1 be a solution of (1). It ful�ls also equation (2) which can be writtenin the form (16). Equation (16) is of the form (a) and it ful�ls the assumptionsof Theorem B and therefore every solution of (16) has at most two zeros, or onedouble zero. Function u1 is the solution of (1) and of (16). �Now, we prove that Theorem C implies the assertion of the following theorem.Theorem 6. Let (i), (ii) hold and let H(u) � � > 0 for every u 2 (�1;1).Further let, q(t) � M > 0, p(t) > M and �p(t) � q0(t) � 0 for t 2 (a;1). Thenevery solution u1 of (1) de�ned on the interval [t0;1); t0 > a is either oscillatoryon [t0;1), or it has no zeros on [t0;1) and then u1(t)! 0, u01(t)! 0 for t!1and u1(t) 2 L2([t0;1)).Proof. Let u1 be a solution of (1) de�ned on [t0;1). It ful�ls equation (16). Thecoe�cients of the linear di�erential equation (16) ful�l the assumptions of TheremC, because A(t) = 12q(t) � M2 > 0, A0(t) + b(t) = p(t) H(u1(t)) � �M ,b(t) � A0(t) = p(t)H(u1(t)) � q0(t) � � p(t) � q0(t) � 0 for t 2 [t0;1). If m =min�M2 ;�M�, there the assumptions of Theorem C are ful�led. If u1 has atleast one zero on [t0;1) then it is oscillatory . (It follows from the theory of bandsof solutions of linear di�erential equation of the third order, see [3], and (16) islinear di�erential equation). If u1(t 6= 0) for t 2 [t0;1), then from Theorem C, itmust have the properties:u1 ! 0; u01 ! 0 for t!1 and u1 2 L2 on ht0;1). �At the end we prove that Theorem D implies the assertion of the followingtheorem.Theorem 7. Let (i), (ii) hold. Let q0(t) � 0; p(t) > 0 for t 2 (a;1) and let thedi�erential equation u00 + 14q(t) u = 0be oscillatory in (a;1). Then a necessary and su�cient condition for a nontrivialsolution u1 of (1) de�ned on [t0;1) to be nonoscillatory in [t0;1) is thatu1(t)u001(t) � 12u021 (t) + 12q(t)u21(t) > 0for all t � t1 � t0.Proof. Let u1 be a solution of (1) de�ned on [t0;1) and let the assumptions ofTheorem 7 be ful�led. The solution u1 ful�ls equation (16) which is of the form (a).



228 MICHAL GREGU�SIt is easy to see that the assumptions of Theorem C on the coe�cients of equation(16) are ful�led and therefore the assertion of Theorem 7 is true. �Remark. The assertion of Theorem 2 of [4] is a special case of the assertion ofTheorem 7. References[1] Cecchi, M., Marini, M., On the oscillatory behaviour of a third order nonlinear di�erentialequation, Nonlinear Analysis 15 (1990), 141-153.[2] Gregu�s, M., On a nonlinear binomial equation of the third order, Zeitschrift f�ur Analysisund ihre Anwendungen 11, (1992) 1, 117-124.[3] Gregu�s, M., Third order linear di�erential equation, Reidel Publishing Company, Dordrecht,Boston, Lancaster, Tokyo, 1982.[4] Gregu�s, M., On the third order nonlinear ordinary di�erential equation, Proc. of Equadi� 7,Prague (1989), 80 - 83.[5] Sansone, G., Studi sulle equazioni di�erenziali lineari omogenee, Rev. Math. y Fis. teor. Ser.A (1948), 195-253.Michal Gregu�sFaculty of Mathematics and PhysicsComenius UniversityDepartment of Mathematical AnalysisMlynsk�a dolina, 842 15 BratislavaCzechoslovakia
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