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ABSTRACT. In this paper we shall study some oscillatory and nonoscillatory prop-
erties of solutions of a nonlinear third order differential equation, using the results
and methods of the linear differential equation of the third order.

The aim of this paper 1s to study the oscillatory or nonoscillatory properties of
solutions of the nonlinear differential equation

(1) u” + q(t)u’ + p(t) h(u) =0

where ¢'(t) and p(t) are continuous function of ¢ € (a,0), —00 < a < 00; h(u) is
continuous function of u € (—oo, o0) and
(1) h(w)u>0 foru#0,
h
(ii) lirr})ﬂ:@, 0<0 <oo.
U— u
In this paper, a solution of equation (1) we will understand a nontrivial solution

of (1) defined on the interval [T, 00], T > a. A nontrivial solution of (1) is said
to be oscillatory if it has zeros for arbitrarily large values of (the independent
variable) t. Otherwise a solution is called nonoscillatory.

The object of generalization are the results of the paper [1] concerning oscilla-
tory or nonoscillatory solutions of equation (1) in the case ¢(¢t) =0 on (a,o0) and
results of the paper [2].

In this paper we use the results and the methods of proofs of the theory of a
third order linear differential equation, [3] and [5].

1. First of all we list some results for the linear differential equation

(a) v+ 240y + [A(0) + b1 y =0
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where A’(1), b(t) are continuous function on (a,co0) and b(¢) has the property (v),
ie. b(t) > 0,1t € (a,00) such that b(¢t) #Z 0 on each subinterval.
The adjoint equation to (a) is

(b) S 2A() 2+ [A() — b(1)] 2 = 0

Suppose w(t) > 0,1 € (tp,00), a < ty < oo is a solutions of equation (b). Then
there exists two-parameter family of solutions y of (a) that satisfy the second order
equation

(¢) wy’ —uw'y + (W +24w) y =0

If w(ty) = w'(te) = 0, w”(tp) > 0, w(t) > 0 for t >ty and y are the solutions
of (a) such that y(ty) = 0, than each member of this family satisfies equation (c)
and is called a band of solutions of the differential equation (a) at the point ¢y.

If an equation of the band at the point ¢y is oscillatory to the right of ¢y, than
each solution of the equation (a) with one zero oscillates to the right of this zero.

If we introduce the substitution y = v/wv into (¢), then for ¢ > ¢35 equation (c)
becomes

(c1) o+ ____F—i—QA v=0.

Beside (a) let us consider the equation
(a1) Y4+ 240)Y +[A () +b61(1)] Y =0

where b1(t) > 0 is continuous in (a, o0).
The following theorems [3], [4] will be useful.

Theorem A. [3, Theorem 2.5 and Corollary 2.5]
Let b(t) have the property (v) and let b(t) < by(t) fort € (a,00).

If the differential equation (a) is oscillatory in (a,0) (i.e. each solution with
one zero oscillates to the right of this zero) then the differential equation (a;) is
oscillatory, too. If (a1) is nonoscillatory, then also (a) is nonoscillatory in (a, c0).

Theorem B. [3, Theorem 2.1]
Let b(t) have the property (v) fort € (a,o0) and
¢
let A(t) <0, t€(a,00)and |A(t)| > /b(r) dr, tg > a,
to
t >ty € (a,00). Then the differential equation (a) is disconjugated on (a, o)

(i.e. each solution of (a) has at most two zeros, or one double zero).

Theorem B was originally formulated and proved by G. Sansone [5].
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Theorem C. [ 3, Theorem 3.1]

Let A(t) > m > 0, A'(t) + b6(t) > m, b(t) — A'(t) > 0 for every t € (a,00). Then
every solution of the differential equation (a) is oscillatory in (a,00) except one
solution y (up to the linear dependence) for which tlirgo y(t) = 0, tlirgo y(t) =0

/ Y2 (t) dt < oo.
to

Theorem D. [ 3, Theorem 2.17 and Corollary 2.3 ]
Let b(t) have the property (v) on (a,00) and let the differential equation y"' +

and y is in the class L?, i.e

§A(t) y = 0 be oscillatory in (a,0). A necessary and sufficient condition for a

nontrivial solution y of the differential equation (a) to be nonoscillatory in (a, o)
is that

1
YOy (1) = 57 () + AW v (1) > 0
for every t >ty > a.

2. Let ¢(t) and p(¢) be continuous functions of t € (a, 00) and let (%), (é¢) hold.
Let u; be a nontrivial solution of (1) on [T,00), T > a. Then wu; fulfils linear
differential equation

(2) W4 gty o+ plt) H(u) u =0,
where

Alua)  fop gy #0
3 H(uy) = U1
® (1) { © for uq =0

The adjoint differential equation to the equation (2) is
(4) v+ q(t) v+ [¢'(t) — p(t) H(u1)] v =0.

If we multiply equation (2) by u and equation (4) by v and integrate from ¢y to
t we obtain identities

(V) w3+ g+ [ ) () - 54/

uz(r) dr = const.

(V) v — %v’z + %qu _/t [p(7) H(u (1)) = 54 (7)]
v?(7)dr = const.

The following lemma follows immediately from identities (U) and (V):
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Lemma 1. Let p(t) > 0, ¢'() < 0 fort € (a,00). Then every solution u of
the differential equation (2) defined on [T, 00), T > a, with the property u(ty) =
w'(tg) = 0, u”(tg) > 0, tog > T has no zeros to the left of ty, and every solution v
of the differential equation (4) with the property v(ty) = v'(to) = 0, v"(tg) > 0,
to > T, has no zeros to the right of ty. Every solution u of (2) and every solution
v of (4) has at most one double zero.

Let w(?) be a solution of the differential equation (4) with the property w(t) > 0
for t > tg. Then the set of solutions of the linear differential equation of the second
order

(5) wu — w4 [w +qt)w]u=0

fulfils at the same time equation (2) on the interval [tg, 00) [3].
Via the substitution u(t) = \/w(?) y(t) we obtain from equation (5) the equation

(6) Vit |5 o ta)] v=

Theorem 1. Let p(t) > 0,¢'(t) < 0 fort € (a,0) and let () (¢7) hold. Let f(1)
be a given positive function defined on (a, o) with continuous third derivative on
this interval. Let u; be a solution of the differential equation (1) defined on [ty, o0)
with the property

(7) = F()

and let the differential equation

® v [§E0 30 w) w=o

be nonoscillatory on [ty, o). Then the solution uy of (1) is nonoscillatory on [tg, 00).

Proof. Let the solution u; of (1) satisfy (7) on [tg, o). Together with equation
(2) let us consider equation

1
(9) a0+ [0+ 70) w0
obtained by differentiating the second order differential equation

(10) =Y+ (4 q@) f) v=0.

As we did earlier, the substitution v = \/f y transforms equation (10) into (8).
Since equation (8) is nonoscillatory, equation (10) is nonoscillatory. This implies
that equation (9) is nonoscillatory. By Theorem A (Comparison Theorem) and
condition (7) we have that equation (2) is nonoscillatory. Thus the solution u; of
(1) is nonoscillatory, too. d
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Corollary 1. Let ¢q(t) = 0, p(t) > 0 for t >ty > 1. Let uy be a solution of the
equation

u” +p(t) h(u) =0
on [tg, o0) with the property

1 6
(11) H(ui(t)) < T OBPE=1) t >t

Then the solution u; is nonoscillatory on [tg, o0).

Proof. Let g > 1 and f(¢) = t—%. Then f'(t) = 1—1—%2, () = _t%’ ) = t%
and

371 3R 3 1(t? +1)?

O 2O R Y [HZ T ] =0

F(t) = =) for t > tg.

Therefore the differential equation (8) in this case is nonoscillatory and hence
equation (10) is nonoscillatory. This implies that equation (9), where (11) holds is
nonoscillatory and Theorem 1 implies the assertion of Corollary 1. |

Theorem 2. Let p(t) > 0 fort € (a,o0) and let (4), (i1) hold. Further, let B(t) > 0
be continuous function of t € (a,o0) and B(t) £0 on any subinterval of (a, ) and
let the differential equation

(B) S+l + a0+ 50| v =0

be oscillatory on (a, 00). If uy is a solution of (1) defined on [ty, o0) and ifu1(t1) = 0
t1 > to and wy fulfils the condition

(12) B(t) < p(t) H(ur (1)) — %q’(t) for t € [ty, o)

then wy Is oscillatory in [t1, 00).
The proof follows immediately from Theorem A by comparing equation (B)

with equation (2) where (12) holds.

Corollary 2. Let ¢'(1) <0, p(t) > 0 fort € (a,00) and ¢'(t) # 0 in any subinterval
of (a,00). Let, further, the differential equation of the second order y"' +q(t)y =0
be oscillatory on (a,c0) and (i), (i1) hold.

Then every solution u; of (1) defined on [tg, 0] tp > a with one zero is oscilla-
tory.

1
The proof follows from Theorem 2 in the case if we take B(t) = —=¢'(¥).
2
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Theorem 3. Let ¢'(¢t) < 0, p(¢t) > 0 for ¢ € (a,00) and let (i), (ii) hold. Let
f(t) > 0 and F(¢t) > 0 have the properties as in Theorem 1 and let F(t) # 0 in
any subinterval of (a,00). Further let the differential equation (8) be oscillatory
on (a,00).

If wy is a solution of (1), defined on [ty, o) and moreover F(t) < p(t) H(ui(t)) —

1
§q’(t) fort € (tg, 00), then uy is oscillatory in [tg, 00).
Using Theorem A the method of proof is the same as in the case of Theorem 1.

Corollary 3. Let p(t) > 0, ¢(t) = 0 fort € (a,00) and let (i), (i) hold and © > 0.
If wy is a solution of (1) defined on [tg, o), tg > 0, with one zero and

(13) < Pl H (s (1)
for t > ty, then uy is oscillatory on (tg, o0).
Proof. Let f(t) = ¢3. Then there is
GO 30 30 9
372 ft) 4 AR 4
that is equation (8) is oscillatory and (13) holds and so Theorem 3 implies the
assertion of Corollary 3. |

1
Lemma 2. Let q(t)+ 1< 0 and q(t) + 1 — 5(]’(15) < 0 fort € (a,00). Then the
differential equation
1 1
(14) " 4 q(t) v + §q’(t) + §q’(t) —qt)=1fv=0

is disconjugated on (a, 00) (i.e. each solution of (14) has at most two zeros, or one
double zero on (a,0)).

Proof. of Lemma 2 see in [3], the proof of Lemma 2.2.

Theorem 4. Let the assumptions of Lemma 2 be fulfilled and let p(t) > 0,
q'(t) <0 fort € (a,00) and (i), (i) hold. Then every solution uy of (1) defined on
[to, 00) with the property

(15) p(t) H(ui(t)) < ¢'(t) — q(t) — 1 for t € [to, 00),

is nonoscillatory on [tg, 00).

Proof. Let u; be a solution of (1), defined on [tg, oo) with property (15). Tt fulfils
equation (2) that can be written in the form

(16) W g 4 |50 pl) H (1) — 2o/ ()] =0

Compare equation (16) with (14). If we take into consideration (15), i.e.

1 1
p(O) H(w (1) = 5d'(1) < 5¢'(1) = a(t) = 1,
then Theorem A implies the assertion of Theorem 4. a

With the use of Theorem B we prove
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Theorem 5. Let p(t) > 0, ¢(t) <0 and ¢'(t) <0 fort € (a,00). Let, further, (i),
(#9) hold and let H(u) < k, k > 0, for every u € (—00, 00).

If
sl 2 [ [tpn =500 a0

for t > tg € (a,00), then every solution u; of (1) defined on [tg, 00) has at most
two zeros, or one double zero in [tg, 00).

Proof. Let u; be a solution of (1). It fulfils also equation (2) which can be written
in the form (16). Equation (16) is of the form (a) and it fulfils the assumptions
of Theorem B and therefore every solution of (16) has at most two zeros, or one
double zero. Function u; is the solution of (1) and of (16). |

Now, we prove that Theorem C implies the assertion of the following theorem.

Theorem 6. Let (i), (éi) hold and let H(u) > © > 0 for every u € (—o0, ).
Further let, q(t) > M > 0, p(t) > M and Op(t) — ¢'(¢t) > 0 for t € (a,00). Then
every solution uy of (1) defined on the interval [tg,c0),tq > a is either oscillatory
on [tg, o), or it has no zeros on [ty, o0) and then ui(t) — 0, w}(t) — 0 fort —
and u1(t) € L*([to, 00)).

Proof. Let u; be a solution of (1) defined on [tg, o). It fulfils equation (16). The
coeficients of the linear differential equation (16) fulfil the assumptions of Therem

1 M
C, because A(l) = §q(t) > 5 >0, A@)+b6() = pit) Hu () > ©M,
b(t) — A'(t) = p(t) H(ur(t)) — ¢'(t) > Op(t) — ¢'(t) > 0 for t € [tg,00). if m =
min %,@M , there the assumptions of Theorem C are fulfiled. If u; has at

least one zero on [tp, o0) then it is oscillatory . (Tt follows from the theory of bands

of solutions of linear differential equation of the third order, see [3], and (16) is

linear differential equation). If u1(¢t # 0) for ¢ € [tg, o0), then from Theorem C, it

must have the properties:

up — 0, wu) —0fort— ocoandu; € L? on {tg,00). a
At the end we prove that Theorem D implies the assertion of the following

theorem.

Theorem 7. Let (i), (1) hold. Let ¢'(t) < 0,p(t) > 0 fort € (a,00) and let the
differential equation

1
u’ + Zq(t) u=20

be oscillatory in (a,o0). Then a necessary and sufficient condition for a nontrivial
solution uy of (1) defined on [tg, o0) to be nonoscillatory in [tg, c0) is that

1 1
(D) = () + Sat) ) > 0
for allt >t > tg.
Proof. Let u; be a solution of (1) defined on [ty, o0) and let the assumptions of
Theorem 7 be fulfiled. The solution u; fulfils equation (16) which is of the form (a).
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It is easy to see that the assumptions of Theorem C on the coeficients of equation
(16) are fulfiled and therefore the assertion of Theorem 7 is true. (I

Remark. The assertion of Theorem 2 of [4] is a special case of the assertion of
Theorem 7.
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