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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 97 { 115SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDSAlexandr VondraAbstract. The (in�nitesimal) symmetries of �rst and second-order partial di�er-ential equations represented by connections on �bered manifolds are studied withinthe framework of certain \strong horizontal" structures closely related to the equa-tions in question. The classi�cation and global description of the symmetries ispresented by means of some natural compatible structures, e.g. by vertical prolon-gations of connections. 1. IntroductionIn our recent paper [15], we have introduced a formalism which can be appliedfor a geometrical description of some indirrect integration methods concerningdi�erential equations for integral sections of connections, i.e. Pfa�an systems forintegral mappings of corresponding horizontal distributions. The results, moti-vated by the variational analysis over one-dimensional base [13], [14], suggest ageneralization either of the \method of characterististics" from the theory of exte-rior di�erential systems or the \method of �elds of extremals" (Hamilton-Jacobimethod) from mechanics. This is done in terms of characterizable connections on�1;0, their characteristic 2-connections on � and �elds of paths, which are localconnections on �. The crucial idea of reasoning on equations through the corre-sponding connections and their interrelations rests upon certain results on naturaltransformations [5] and it takes full advantage of the relationships between theassociated horizontal distributions.In this paper, we study in some sense complementary \strong horizontal" dis-tributions which appear within the framework of considerations on the symmetriesof such equations. It should be mentioned here that analogous structures appearin a particular case of J1� = R�TM e.g. in [3], [27], or in a slightly more generalsituation on J1� over an arbitrary one-dimensional base [26]. The importance ofthese structures either for equations themselves or for the calculus of forms along�1;0 : R� TM ! R�M is discussed e.g. in [23].1991 Mathematics Subject Classi�cation : 35A30, 53C05.Key words and phrases: connections, di�erential equations, integral sections, symmetries.Received March 28, 1993Supported by the GA CR grant No. 201/93/2125The author would like to express his gratitude to Prof. I. Kol�a�r for his advice.



98 ALEXANDR VONDRAThe notions and results are twofold, considered either \locally" for a single(mostly integrable) connection � on � or \globally" for a characterizable connec-tion � on �1;0. It turns out that the complement to the Cartan distribution C��1;0of a connection � on � in the decomposition of the tangent bundle T�(Y ), ex-pressed in terms of the vertical prolongation V� of �, has a global counterpart inthe so-called reduced connection associated to any characterizable connection on�1;0. It should be mentioned that some of these ideas are partially motivated by[2], [28], [29]. The importance of the decompositions will become apparent in thelast section, where the in�nitesimal symmetries of connections are studied. Wehope that the presented classi�cation creates a contribution to the transparentdescription of the situation. In the last part of this section, we reap the bene�tof the relations between 2-connections and their �elds of paths to the descriptionof the relations between their symmetries by means of the corresponding verticalprolongations.Our formalism and notation of the �bered manifolds theory, jet prolongationsand connections is mostly in accordance with [16], [17], [24]. For jet prolongationsof vector �elds and groups of transformations see e.g. [9], [10], [11], [19], [24]. Themotivations and results from the theory of prolongations of connections and relatedtopics are due to [7], [8], [18]. For the theory of natural operations and invariantswe refer to [9], [12]. Further theories we are dealing with are the geometry ofvector distributions and di�erential equations and their symmetries [1], [25] andmainly [6], [19], [24]. An interesting approach to these problems can be found in[2], [28], [29]. 2. Connections and equationsLet � : Y ! X be a �bered manifold with local �bered coordinates (xi; y�),i = 1; : : : ; n = dimX, � = 1; : : : ;m = dimY � dimX. The �rst jet prolongationof � as the set of all 1{jets j1x (x 2 X) of local sections  : X � U ! Y of � (theset of such sections we denote by SU (�) or generally Sloc(�)) is denoted by J1�.The induced coordinates on J1� are denoted by (xi; y� ; y�i ). The manifold J1�will be viewed as the total space both of the �bered manifold �1 : J1� ! X andof the a�ne bundle �1;0 : J1� ! Y .A connection on � is a section (generally de�ned on some open subset of Y )� : Y ! J1� of �1;0. In local �bered coordinates, the equations of � are y�i � � =��i (xi; y�), where ��i are the components of �. The horizontal form h� of � ish� = D�i 
 dxi, where D�i = @=@xi + ��i @=@y� is the i-th (absolute) derivativewith respect to �. The complementary projection to h� is the vertical form v� =I � h� and the connection � is then identi�ed with a canonical decompositionTY = V�Y �H�, where the n-dimensional �{horizontal distribution H� = Im h�is locally generated by the vector �elds D�i for i = 1; : : : ; n or equivalently by theforms dy� � ��j dxj for � = 1; : : : ;m.By a �rst-order di�erential equation on � (more precisely, a (nonlinear) systemof partial di�erential equations (PDE)) we mean any (embedded) submanifold E ofJ1�. A solution of E is a section  2 Sloc(�) such that j1 � E . An intrinsic object



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 99related to E is the Cartan distribution CE�1;0 of E de�ned by CE�1;0 = C�1;0 \ TE ,where C�1;0 is the canonical Cartan distribution on J1�.Evidently, the (n+m)-dimensional submanifold �(Y ) � J1� can be viewed asa global counterpart of a �rst-order di�erential equation \explicitly solved withrespect to derivatives". Thus a section  2 Sloc(�) is called a path or an integralsection of the connection � if j1 = � � , which locally means the equations for on its domain @�@xi = ��i (xj; �) :Recall that  is an integral section of � if and only if the image of  is an integralmanifold of the horizontal distribution H�. Accordingly, the Frobenius integrabil-ity conditions for �, locally expressed by@��i@xj + @��i@y� ��j = @��j@xi + @��j@y� ��i ;means equivalently that there exists a unique maximal integral section of � passingthrough each point y 2 Y or that the distribution H� is involutive or �nally thatfor the curvature R� of the connection � it holds R� = 0.The second (holonomic) prolongation of � is the set J2� of 2{jets of localsections of � with local coordinates (xi; y� ; y�i ; y�ij).The �rst jet prolongation J1�1;0 of the bundle �1;0 : J1�! Y is the set of 1-jetsof local connections on � with the induced coordinates (xi; y�; y�i ; z�ij; z�i�).A 2-connection on � is a section �(2) : J1� ! J2� of �2;1. In coordinates,y�ij � �(2) = ��ij , where ��ij = ��ji are the components of �(2). The horizontalform of �(2) is locally expressed by h�(2) = D�(2)i 
 dxi, where D�(2)i = @=@xi +y�i @=@y� + ��ij@=@y�j is the i-th absolute derivative with respect to �(2). Thecanonical decomposition generated by h�(2) is TJ1� = V�1J1� �H�(2) , where then-dimensional �1{horizontal distribution H�(2) = Im h�(2) is locally generated bythe vector �elds D�(2)i or by the forms dy� = y�j dxj, dy�i = ��ijdxj.Since H�(2) � C�1;0 , a path or an integral section of the connection �(2) isde�ned to be a section  2 Sloc(�) such that j2 = �(2) � j1. Consequently, 2-connections on � are geometric counterparts of systems of second-order di�erentialequations solved with respect to highest derivatives of the form@2�@xi@xj = ��ij �xk; �; @�@xk� :Recall that  is an integral section of �(2) if and only if the image of j1 is anintegral manifold of the horizontal distribution H�(2) .Finally, a connection on �1;0 is a section �: J1� ! J1�1;0 of (�1;0)1;0. Thehorizontal form of � is locally expressed by h� = D�j 
 dxj +D�� 
 dy�, whereD�j = @=@xj + ��ij@=@y�i and D�� = @=@y� + ��i�@=@y�i for j = 1; : : : ; n and� = 1; : : : ;m, are the j-th or the �-th absolute derivative with respect to �,



100 ALEXANDR VONDRArespectively. The canonical decomposition generated by h� is TJ1� = V�1;0J1��H�, where the (n + m)-dimensional �1;0{horizontal distribution H� = Im h� islocally generated by the vector �elds D�j and D�� or equivalently by the formsdy�i = ��ij dxj +��i� dy�.Evidently, the integral sections of connections on �1;0 are just local connectionson �. Such a connection � 2 Sloc(�1;0) is an integral section of � if and only ifj1� = � � �, which in �bered coordinates means a system of (n +m) �rst orderPDE of the form@��i@xj = ��ij(xk; y� ;��k); @��i@y� = ��i�(xk; y� ;��k)for the components of �, or equivalently if and only if the image of � is an integralmanifold of the horizontal distribution H�.We refer to [15] for the more detailed discussion of the following notions andresults.It was shown in [5] that there is a unique 2-connection �(2) on � naturallyassigned to any connection � on �1;0. A connection � on �1;0 is then calledcharacterizable if H�(2) � H� or equivalently H�(2) = H� \ C�1;0 for the above2-connection �(2), called now the characteristic connection of �. Since the localconditions for � to be characterizable are ��ij � ��ji + ��i�y�j � ��j�y�i = 0, thecomponents of its characteristic connection are ��ij = ��ij + ��i�y�j . The integralmanifolds of H�(2) of maximal dimension, which are just �rst jet prolongationsof integral sections of the characteristic connection, are called characteristics ofthe connection � and the most important fact for the theory of equations underconsideration is that the integral sections of � are foliated by the characteristics.A connection �: Y � V ! J1� on � is called a �eld of paths of a 2-connection�(2) on � if on V(2.1) J1(�; idX ) � � = �(2) � � ;where J1(�; idX) is the �rst jet prolongation of the �bered morphism � over X.An arbitrary �eld of paths of �(2) is integrable and a connection �: Y � V ! J1�is a �eld of paths of �(2) if and only if the submanifold �(V ) � J1� is foliatedby �rst jet prolongations of integral sections of �(2), i.e. if H�(2) j�(V ) � C��1;0 . In�ber coordinates, (2.1) reads ��ij � � = D�j(��i ). Since �(2) � j1 = �(2) � � �  =J1(�; idX) � � �  = j1(� � ) = j1(j1) = j2, if � is a �eld of paths of �(2) and is an integral section of � then  is an integral section (a path) of �(2). Thus if� : Y � V ! J1� is a �eld of paths of �(2) then H� de�nes a foliation of V suchthat each leaf of this foliation is the image of an integral section of �(2).By the above results, the problem of �nding all the integral sections of a givenintegrable 2-connection is equivalent to the problem of solving all �elds of paths of�(2). This is not much surprising within the context of the theory of prolongationsof di�erential equations. Clearly, the submanifold J1(�; idX) ��(Y ) � J2� is justthe �rst prolongation of the equation �(Y ) � J1�. Conversely, each �eld of paths �of �(2) represents a (local) reduction of the order of the equation �(2)(J1�) � J2�.



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 101It is easy to prove that if � is a characterizable connection on �1;0 and �(2) itscharacteristic 2-connection on � then each integral section � of � is a �eld of pathsof �(2). Consequently, if � is integrable then �(2) is integrable and each integralsection of �(2) is locally imbedded in a �eld of paths �, which is an integral sectionof �. 3. Strong horizontal distributionsFirst recall the structure of vertical bundles on Y and J1�. The vertical sub-bundle V�Y to � of TY , representing the family of vectors tangent to the �bersof �, can be viewed as the total space of the �bered manifold � : V�Y ! X,� = � � �Y . Consequently, there is an identi�cation of the tangent space TYx of Yxwith the �ber ��1(x) of �. There are two canonical vertical subbundles of TJ1�,namely V�1J1� or V�1;0J1� of �1 or �1;0{vertical vectors on J1�, respectively. Torelate them with V�Y , we have to recall that there is a canonical isomorphismbetween J1� and V�1J1� over ��1;0(V�Y ). The isomorphism is represented lo-cally by a rearrangement; if the induced coordinates on J1� are (xi; y�; _y� ; y�i ; _y�i )then those on V�1J1� are (xi; y�; y�i ; _y� ; _y�i ). Thus there is a natural identi�ca-tion of the tangent space T (J1�)x of a �ber (J1�)x = ��11 (x) with ��11 (x) andT (J1�)y �= ��11;0(y).Using a canonical vertical functor V for a connection �: Y ! J1� on � oneobtains a mapping V �: V�Y ! V�1J1�, representing a �1-vertical lift of �-verticalvectors by(3.1) �� @@y� jy V �7�! �� @@y� j�(y) + @��i@y� �� @@y�i j�(y) :Using the above identi�cation V�1J1� �= J1� we get the so-called vertical prolon-gation V� of �, realizing the only connection on � naturally determined by thegiven connection � on � [7]. This vertical prolongation �nds wide application forexample in the theory of prolongations of connections on � to connections on �1(see [7], [8], [9], [18] and references therein). In what follows we would like to showthat it also provides a natural description of the geometry related to the equation�(Y ) � J1� in terms of its symmetries. It is to be remarked that this approach isnot quite so original (cf. [28]).First we will be interested in a decomposition of the tangent bundle T�(Y ),expressing the internal geometry of the corresponding equation �(Y ) � J1�. Sincewe will have frequent occasion for expressing the results with reference to jetprolongations of vector �elds, we recall that � being a vector �eld on Y , locallyexpressed by � = �i@=@xi + ��@=@y� , its �rst jet prolongation J 1� is(3.2) J 1� = �i @@xi + �� @@y� + �Di(��) �Di(�j)y�j � @@y�i :For a �-projectable vector �eld � on Y , the ow of J 1� is the jet prolongation ofthat of �, which consists of �bered isomorphisms of �.Since J 1D�i �� = T��D�i if and only if � is integrable, the following assertioncan be easily proved.



102 ALEXANDR VONDRALemma 3.1. Let � be an integrable connection on �. Then for any �-horizontalvector �eld � on Y holds(3.3) J 1� � � = T� � � 2 C��1;0 :It is trivial to verify that the tangent bundle T�(Y ) splits into the direct sumT�(Y ) = C��1;0 � V�(V�Y ) accordingly to the decomposition TY = H� � V�Ycorresponding to �.Considering T�(Y ) in obvious sense as an subbundle of TJ1� we �nd the asser-tion concerning a natural decomposition associated to any integrable connectionon �. This proposition is to be considered as an inner version of Proposition 3.3.Proposition 3.1. Let � be an integrable connection on � and � a vector �eld onY . Then J 1� � � = J 1(h� � �) � � + V� � v� � � + (J 1� � �)�1;0 ;where J 1(h� � �) � � 2 C��1;0V� � v� � � 2 V�(V�Y )(J 1� � �)�1;0 2 V�1;0J1� :Moreover, V� � v� � � + (J 1� � �)�1;0 = J 1(v� � �) � �J 1D�i � � = Di � J1(�; idX) � � :The whole situation will become apparent in terms of decompositions of char-acterizable connections on �1;0. Recall that a non-vanishing (1,1) tensor �eld F ofconstant rank on a manifoldM is called an f(3,-1) structure on M if F 3 �F = 0,which yields a canonical direct sum decomposition of TM induced by any suchf(3,-1) structure. The eigenspaces corresponding to the eigenvalues 0, �1, +1 areIm(F 2 � I), Im(F 2 � F ), Im(F 2 + F ), respectively.Proposition 3.2. Let � be a characterizable connection on �1;0 and �(2) itscharacteristic 2-connection on �. Then F� = 2h��h�(2) � I is an f(3,-1) structureon J1� of rank m(n + 1).Proof. Since h� � h�(2) = h�(2) � h� = h�(2) ; it is easy to see that F 2� = v�(2) ,which immediately gives F 3� � F� = 0. The rank of F� is evident from the localexpressionF� = �F �ij @@y�i � y�j @@y� �
 dxj ++ @@y� 
 dy� � @@y�i 
 dy�i + F �i� @@y�i 
 dy� ;where the functions F �ij = ��ij � ��i�y�j and F �i� = 2��i� are the components ofF�. �Since F 2� � I = �h�(2) , F 2� + F� = 2(h� � h�(2)) and F 2� � F� = 2 v�, theassertion follows.



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 103Proposition 3.3. Let � be a characterizable connection on �1;0 and �(2) itscharacteristic 2-connection on �. Then there is a canonically determined directsum decomposition(3.4) TJ1� = V�1;0J1� �H�(2) �HF� ;given for any �(1) 2 TJ1� by�(1) = v�(�(1)) + h�(2) (�(1)) + (h� � h�(2))(�(1)) ;where H�(2) �HF� = H�.The m-dimensional HF� = Im(h� � h�(2) ) will be called a strong horizontaldistribution. By the strong horizontality of H� we mean the decompositionV�1J1� = V�1;0J1� �HF� :Using coordinates, for �(1) = �i@=@xi + ��@=@y� + ��j @=@y�j the decomposition(3.4) means v�(�(1)) = ���j � ��ji�i � ��j���� @@y�j ;h�(2)(�(1)) = �i @@xi + y�i @@y� + (��ij +��i�y�j ) @@y�j ! ;(h� � h�(2))(�(1)) = (�� � �iy�i ) @@y� + ��j� @@y�j ! :It appears that there is further interesting object closely related with the resultsjust referred to (cf. [2], [28], [29]).De�nition 3.1. A reduced connection of type (1,0) on � is a section�(1;0) : ��1;0(V�Y )! V�1J1�which is linear in _y� , i.e. whose local expression is _y�i � �(1;0) = ��i�(xj; y� ; y�i ) _y�.In other words, �(1;0) represents a lift of vector �elds expressed by�j1x; �� @@y� j(x)� �(1;0)���! �� @@y� jj1x + ��i� �� @@y�i jj1x ;and thus it generates a decompositionV�1J1� = V�1;0J1� �H�(1;0) ;with H�(1;0) = Im�(1;0) generated by the vector �elds @=@y� + ��i�@=@y�i for � =1; : : : ;m.



104 ALEXANDR VONDRADe�nition 3.2. A �-vertical vector �eld � on Y will be called an integral sectionof a reduced connection �(1;0) on � if for any j1x holds(3.5) J 1�(j1x) = �(1;0) �j1x; �((x))� :Using coordinates, (3.5) means(3.6) @��@xi + @��@y� y�i = ��i� �� :Remark that if we are given �(1;0) then obviously each connection � on � gen-erates a connection �(1;0) � � on � : V�Y ! X by the compositionV�Y �Y � id����! Y �Y V�Y �� id���! J1� �Y V�Y �(1;0)���! V�1J1� :Locally(3.7) �� @@y� jy �(1;0)�������! �� @@y� j�(y) + ��i� �� @@y�i j�(y) :Considering h� : ��1;0(TY )! TJ1� as the horizontal lift with respect to a givencharacterizable connection � on �1;0, Prop. 3.3 can be reformulated.Theorem 3.1. Each characterizable connection on �1;0 splits into the direct sumof a 2-connection on � and a reduced connection of type (1; 0) on �. The decom-position is given by H� = H�(2) �H�(1;0) ;where �(2) is the characteristic connection of � and �(1;0) = h�j��1;0(V�Y ), i.e.locally(3.8) ��i� = ��i� :The last assertion of this section imply the meaning of reduced connections (orin other words of the corresponding strong horizontal subbundles) in the theoryof symmetries. By (3.1), (3.7) and (3.8):Proposition 3.4. Let � be a characterizable connection on �1;0, �(1;0) the as-sociated reduced connection of type (1; 0) on �. Let � 2 SV (�1;0) be an integralsection of �. Then �(1;0) � � � V� on ��1Y (V ) � V�Y .4. SymmetriesIn this section we will discuss the symmetries of connections in keeping withprevious considerations. It should be noticed that we follow the in�nitesimalapproach, so that symmetries will be vector �elds as the generators of the groupsof invariant transformations.



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 105First recall the symmetries of distributions in accordance with [6].Let P be a regular distribution on a smooth manifold M . A vector �eld � onM is called a symmetry of the distribution P if its ow consists of di�eomorphismswhich preserve P , i.e. if f�tg is the corresponding one-parametric group of di�eo-morphisms then T�t(Px) = P�t(x) for x 2 M . The set Sym(P ) of all symmetriesof P is a Lie algebra with respect to Lie bracket of vector �elds and(4.1) � 2 Sym(P )() [�; �] 2 P for each � 2 Por equivalently(4.2) � 2 Sym(P )() L�! 2 P � for each ! 2 P �;where by P � we denote the ideal of di�erentiable forms on M , annihilating P .Denoting by vi the local generators of P , i = 1; : : : ; dimP , then (4.1) means theexistence of functions kij 2 C1(M ) such that [�; vi] =Pj kijvj for each i. Usingthe de�nition of the Lie derivative we can see that it is equivalent to the conditionT�t(vi) = Pj �ij(t)vj for the ow f�tg of � where �ij 2 C1(M ) are smoothlyparameterized by t and kij = � ddt����t=0 �ij(t) :The importance of symmetries of a completely integrable distribution rests uponthe fact that the corresponding ows preserve the set of maximal integral manifoldsof P .Example 4.1. Let P be a one-dimensional distribution locally generated by anowhere vanishing vector �eld �. Then (4.1) reads � 2 Sym(P )() [�; �] = k� fork 2 C1(M ). The notion of the maximal integral manifold of P coincides locallywith that of the maximal integral curves of �.Example 4.2. Considering the Cartan distribution C�1;0 on J1�, the symme-tries of C�1;0 are called contact vector �elds. In this case (4.2) means that theLie derivative of any contact form with respect to a contact vector �eld is againa contact form. It can be shown (e.g. [24]) that if a vector �eld �(1) on J1� isprojectable onto Y , then �(1) is a contact vector �eld if and only if it is a prolon-gation of a vector �eld on Y . Moreover, if m > 1 then every contact vector �eldis projectable and thus it is a prolongation. Notice that the singularity of the casem = 1 is induced by the same dimension n of the �bers of �1;0 and of the integralsubmanifolds j1(U ) of C�1;0 .The set of symmetries of P lying within P is denoted Char(P ). The ow ofany such characteristic symmetry of P moves integral manifolds along itself. SinceChar(P ) is an ideal in Sym(P ), the quotient algebra Shuf(P ) = Sym(P )=Char(P )of the so-called shu�ing symmetries of P can be constructed. Thus any � 2Shuf(P ) represents the whole class of symmetries whose ow rearrange the integralmanifolds of P in the same way.



106 ALEXANDR VONDRASecondly, the symmetries of equations can be studied. Let E � J1� be a �rstorder di�erential equation on �. They are two di�erent ways for understandingthe symmetries of E , closely related to their internal and external geometry. Theexternal symmetry of E is any contact vector �eld on J1� tangent to E . The owof such a symmetry preserve E and obviously the restriction of � to E de�nes asymmetry of CE�1;0 . Just the symmetries of the distribution CE�1;0 (vector �elds onE) are called internal symmetries of E .De�nition 4.1. Let � be a connection on �. A vector �eld � on Y is called asymmetry of � if and only if � and J 1� are �-related, i.e.(4.3) J 1� � � = T� � � :Corollary 4.1. If � is integrable, then each �-horizontal vector �eld � on Y is asymmetry of �.Proof. See Lemma 3.1. �Proposition 4.1. Let � be an integrable connection on �. Then a vector �eld �on Y is a symmetry of � if and only if(4.4) J 1(v� � �) � � = V� � v� � � :Proof. Since � = h�(�) + v�(�) and due to Prop. 3.1 and Corollary 4.1, � is asymmetry of � if and only if v�(�) is a symmetry. Since evidently V� � v� � � =T� � v� � �, the assertion is then an immediate consequence of Prop. 3.1. �The condition (4.3) can be represented in terms of (generalized) Lie derivative[9]. Actually, a vector �eld � on Y is a symmetry of � if and only if a generalizedLie derivative eL(�;J 1�)� = T� � � �J 1� � �of � with respect to � and J 1� vanishes. In this context, previous proposition canbe obtained (again using Lemma 3.1) by(4.5) eL(�;J1�)� = eL(h���+v���;J 1(h���)+J 1(v���))� == eL(h���;J 1(h���))� + eL(v���;J 1(v���))� = eL(v���;J 1(v���))� :The relation (4.4) locally means a system of PDE for the generating functions'� = �� � ��j �j of v�(�) = '�@=@y� expressed by D�i('�) = Lv�(�)��i or equiva-lently(4.6) @'�@xi + @'�@y� ��i = @��i@y� '�for i = 1; : : : ; n, � = 1; : : : ;m.Directly by calculations in coordinates we see that :



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 107Corollary 4.2. A vector �eld � on Y is a symmetry of an integrable connection� if and only if(4.7) Lv�(�)h� = 0 :In other words, due to the canonical vertical splittingV�1;0J1� �= J1� �Y (V�Y 
 �� (T �X))and accordingly to (4.5), the generalized Lie derivative eL(�;J1�)� of an integrableconnection � reads(4.8) eL(�;J1�)� = ��;Lv�(�)h�� :If we are asked to give an explicit formula for the symmetry � of an integrable� then if � = �i@=@xi+��@=@y� , we can see that [v�(�); D�i] = [��h�(�); D�i] =[�;D�i]� [�jD�j; D�i] and since Lv�(�)h� = [v�(�); D�i]
 dxi, � is a symmetry of� if and only if(4.9) [�;D�i] = �D�i(�j)D�jfor any i = 1; : : : ; n. In this arrangement, symmetries of � are vector �elds � suchthat J 1�j�(Y ) are the symmetries of C��1;0 . Accordingly, the symmetries of anintegrable connection � are just the symmetries of the horizontal distribution H�.An additional characterization can be given in the case of projectable symme-tries, the ow of which consists of �-morphisms. By means of direct calculationswe obtain :Lemma 4.1. Let � be a vector �eld on Y . Then Lh�(�)h� = 0 if and only if � isprojectable.Previous assertion means that L�h� = Lv�(�)h� and equivalently(4.10) eL(�;J1�)� = (�;L�h�)if and only if � is projectable.Corollary 4.3. A projectable vector �eld � on Y is a symmetry of � if and onlyif(4.11) L�h� = 0 :Notice that in the case of projectable symmetry � of �, (4.9) reads [�;D�i] =�Di(�j)D�j .Remark 4.1. To prove the importance of the projectability, we recall a result of[24]. Namely; if � is a vector �eld on Y with the ow f�tg and R is a (1,1) tensor�eld on Y then L�R = 0 if and only if T�t �R = R � T�t for each t.



108 ALEXANDR VONDRACorollary 4.4. A projectable vector �eld � on Y is a symmetry of an integrableconnection � on � if and only if its ow permutes the integral sections of �.Proof. Let  2 SU (�) and denote by h�j the restriction of h� to T(x)Y for anyx 2 U . Evidently  is an integral section of � if and only if h�j = T � T�.Let � be a projectable vector �eld on Y with the ow f�tg and suppose �t �  tobe de�ned. Clearly e = �t �  2 SeU (�) is an integral section of � if and only ifh�je = T�t�T�T��T��1t . The assertion is due to Corollary 4.3 and Remark 4.1,since � is a symmetry of � if and only if h�je = T�t � h�j � T��1t . �Previous results shows that in further considerations we can assume symmetriesof � to be �-vertical. The ow of such a symmetry permutes the integral sections of� without changing their parameterization since the ow consists of isomorphismsof � over X; and (4.9) reads [�;D�i] = 0. The set of all symmetries of � will bedenoted by Sym(�) and the set of �-vertical symmetries by Symv(�).Proposition 4.2. Let � be an integrable connection on �. Then it holdsSymv(�) �= Shuf(C��1;0) :Proof. The assertion accords with the evident fact thatH� �= Char(C��1;0) :Analogously as in [6] it can be shown that Shuf(C��1;0 ) �= ker��, where�� : (C1(Y ))m ! (C1(Y ))nmis an operator de�ned for each ' = ('�) by ��(') = (���i(')), where���i(') = D�i('�)� @��i@y� '� :On the other hand, also Symv(�) �= ker��. This isomorphism is given by theidenti�cation of �-vertical vector �eld with its generating functions family' = (��)by (4.4). �Next assertions can be viewed as a con�rmation of a deep relation between� and V� in terms of vertical symmetries, sections and �elds along sections. Aconnection � is again supposed to be integrable.Proposition 4.3. Let � 2 Symv(�). Then a section  of � is an integral sectionof � if and only if the section � = � �  of � is an integral section of V�.Proof. Let  be an integral section of �. Since � is vertical, (4.4) reads J 1� �� =V� � �. Then V� � � = V� � � �  = J 1� � � �  = J 1� � j1 = j1�. Conversely, ifV� � � = j1�, then V� � � �  = J 1� � j1, which implies J 1� � � �  = J 1� � j1.Since J 1� is a section, we have � �  = j1. �



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 109Corollary 4.5. For any vertical � it holds � 2 Symv(�) if and only if � = � �  isan integral section of V� for each integral section  of �.Proof. Let y 2 Y be an arbitrary point, let  be a maximal integral section of� such that (x) = y for x = �(y). Then J 1� � �(y) = J 1� � j1(x) = j1�(x) =V� � �(x) = V� � � � (x) = V� � �(y). The converse is evident from Prop. 4.3. �Remark 4.2. Since � : Y ! V�Y is a �bered morphism between � and � overX and J 1� = J1(�; idX ), the so-called covariant derivative r(�;V�)� of � withrespect to the pair of connections � and V� can be considered, see [8], [17]. Thisis de�ned as r(�;V�)� = rV� � J 1� � �. Using a canonical �bered morphismV�1J1� ���1;0(V�Y ) V�1J1� ! V�1;0J1�(realizing an ordinary di�erence of vectors in the same �ber), we can easily seethatr(�;V�)� : Y ! V�1;0J1� and moreoverr(�;V�)� = � eL(�;J 1�)� = (�;�L�h�).Consequently � 2 Symv(�) if and only if r(�;V�)� = 0. Recall [8], where the lastcondition was proved to be equivalent with �-relativity of the vertical lifts h�(�)and hV�(�) for any vector �eld � on X.This characterization can be compared to that of [28] expressing the situation bymeans of the so-called covariant derivative with respect to the canonical Bliznikasreduced connection.Remark 4.3. At the very end of the previous section, we have suggested theimportance of the reduced connection �(1;0) associated to a given characterizableconnection � on �1;0. From Def. 3.2 and Prop. 3.4 we deduce that if � is anintegral section of �(1;0) then �jV is a symmetry of an arbitrary integral section� 2 SV (�1;0) of �.De�nition 4.2. Let �(2) be an integrable 2-connection on �. A vector �eld �(1)on J1� will be called a a �rst-order symmetry of �(2) if Lv�(2) (�(1))h�(2) = 0 orequivalently(4.12) [�(1); D�(2)i] = �D�(2)i(�j)D�(2)j :Locally, �(1) must be such a vector �eld on J1� thatv�(2) (�(1)) = '� @@y� +D�(2)i('�) @@y�i ;where the equations for the generating functions '� = �� � y�i �i on J1� are(4.13) D2�(2)ij('�) = @��ij@y� '� + @��ij@y�k D�(2)k('�) ;where D2�(2)ij(f) = D�(2)j(D�(2)i(f)). The right side of (4.13) may be written asv�(2)(�(1))(��ij) and the set of these symmetries we denote by Sym(1)(�(2)).



110 ALEXANDR VONDRARemark 4.4. As before, the �rst-order symmetries of an integrable connection�(2) are just the symmetries of H�(2) ; the symbol of v�(2) can be in omitted for �1-projectable symmetries and this is equivalent with the permutation of the �rst jetprolongations of integral sections of �(2). The set of �1-vertical symmetries of the�rst order of �(2) will be denoted by Sym(1)v (�(2)) and according to Prop. 4.2 it canbe shown that in view of H�(2) �= Char(C�(2)�2;1 ) it holds Sym(1)v (�(2)) �= Shuf(C�(2)�2;1 ),where C�(2)�2;1 = C�2;1 \ T�(2)(J1�) is the Cartan distribution of the second-orderequation �(2)(J1�) � J2�.Let us return to vector �elds on Y .De�nition 4.3. Let �(2) be a 2-connection on �. A vector �eld � on Y will becalled a zeroth-order symmetry or briey a symmetry of �(2) if(4.14) Lv�(2) (J 1�)h�(2) = 0 :Denote the set of these symmetries by Sym(�(2)). If �(2) is integrable then(4.14) means(4.15) [J 1�;D�(2)i] = �Di(�j)D�(2)j :Such a symmetry is determined by the functions '� = �� � y�i �i (again on J1�)satisfying(4.16) D�(2)j (Di('�)) = @��ij@y� '� + @��ij@y�k D�(2)k('�) ;where on the right side is just v�(2)(J 1�)(��ij).Remark 4.5. For �(1) = �i@=@xi + ��@=@y� + ��j @=@y�j , (4.12) means that��j = D�(2)j(��)� y�i D�(2)j(�i) :Consequently, if �(1) is �1;0-projectable then ��j = Dj(��) � y�i Dj(�i) and (ac-cording to Example 4.2) a �1;0- projectable vector �eld �(1) on J1� is a �rst-ordersymmetry of �(2) if and only if it is a prolongation of the symmetry � = T�1;0(�(1)).Proposition 4.4. A projectable vector �eld � on Y is a symmetry of an integrable2-connection �(2) on � if and only if its ow permutes the integral sections of �(2).Proof. De�nition 4.3 means that � on Y is a symmetry of �(2) if and only ifJ 1� is a symmetry of the �rst order. By previous considerations it is for anprojectable � equivalent to the fact that the ow of J 1� permutes the �rst jetprolongations j1 of integral sections  of �(2). But this ow is the prolongationof the ow of �. Hence if �t permutes the integral sections of �(2) and if j1 is theprolongation of an integral section then (J1(�t) denotes J1(�t; idX )) J1(�t)�j1 isby de�nition just j1(�t�) and thus again a jet prolongation of an integral section.



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 111Conversely, if J1(�t) permutes the prolongations j1 of integral sections and if weare given such a section , then j2(�t � ) = j1(j1(�t � )) = j1(J1(�t) � j1) =�(2) � (J1(�t) � j1) = �(2) � j1(�t � ) and consequently �t �  is an integralsection. �The remainder of the section is devoted to the study of the algebras Symv(�(2))or Symv(�) of the vertical symmetries of �(2) or �, respectively. Accordingly, theword \vertical" will be omitted if there is no danger of confusion.In (4.4), the vertical prolongation V� of � on � allowed us to characterizethe symmetries of �. In the case of 2-connections an analogous concept maybe introduced. In order to relate it with the symmetries of �(2), the second jetprolongation of a �-vertical vector �eld on Y must be recalled.For any � being a vertical vector �eld on Y , the second jet prolongation J 2� =J2(�; idX ) is a vector �eld on J2� with the ow which is the second jet prolongationof the ow of �. In coordinates(4.17) J 2� = �� @@y� +Di�� @@y�i +D2ij�� @@y�ij ;where D2ijf denotes a composition Dj(Dif) of total derivatives with respect tobase coordinates, where the inner component is a vector �eld along �1;0 while theouter one is a vector �eld along �2;1.The vertical prolongation V�(2) of a 2-connection �(2) on � can be de�nedanalogously to V� of � by means of the vertical functor V , which gives a mappingV �(2) : V�1J1� ! V�2J2�, and thus de�nes a lift(4.18) �� @@y� jz + ��i @@y�i jz V �(2)���! �� @@y� j�(2)(z) + ��i @@y�i j�(2)(z)++�@��ij@y� �� + @��ij@y�k ��k� @@y�ij j�(2)(z) :Composing V �(2) with a canonical di�eomorphism between V�2J2� and J2�for � : V�Y ! X, one obtains V�(2) as a 2-connection on �.From (4.16), (4.17) and (4.18), where '� = �� are now functions on Y , we haveProposition 4.5. A vertical vector �eld � on Y is a symmetry of a 2-connection�(2) on � if and only if(4.19) J 2� � �(2) = V�(2) � J 1� :Remark 4.6. Following Remark 4.2, it is possible to present that � 2 Symv(�(2))if and only if0 = r(�(2);V�(2))J 1� = � eL(J 1�;J 2�)�(2) = (�(2);�LJ 1�h�(2)) : J1� ! V�2;1J2� :Analogously to Corollary 4.5 we obtain



112 ALEXANDR VONDRACorollary 4.6. Let �(2) be an integrable 2-connection on �. Then � 2 Symv(�(2))if and only if � = � �  is an integral section of V�(2) for each integral section  of�(2).In what follows, � 2 SU (�1;0) is supposed to be a �eld of paths of a 2-connection�(2). Since any integral section of � is an integral section of �(2), due to Prop. 4.4we get an expected result.Corollary 4.7. If � is a symmetry of �(2) then �jU is a symmetry of �.One might ask on the relationships between the vertical prolongations V�(2)and V�.Proposition 4.6. A connection � on � is a �eld of paths of a 2-connection �(2)on � if and only if V� is a �eld of paths of V�(2).Proof. Let � be a �eld of paths of �(2), i.e. �(2) � � = J1(�; idX) � �. Relativeto the naturality of all morphisms, functors and structures, it is easy to see thatV�(2) �V� = V (�(2) ��) = V (J1(�; idX)��) = V J1(�; idX )�V � = J1(V�; idX)�V� which means that V� is a �eld of paths of V�(2). Note that we use theabove mentioned identi�cations of various prolongations of � : V�Y ! X withthe corresponding vertical bundles, if necessary. The converse can be obtainedanalogously. �As an immediate consequence we obtain the well-known result a�rming thatan arbitrary vertical symmetry of an equation is a symmetry of its prolongation.Corollary 4.8. If � is a symmetry of �, then � is a symmetry of �(2) � �.Proof. What we want to prove is (following (4.19))(4.20) J 2� � �(2) � � = V�(2) � J 1� � � on U :Let y 2 U be an arbitrary point,  the maximal integral section of � passingthrough y, (x) = y. Then V�(2) � J 1� � �(y) = V�(2) � J 1� � � � (x) =V�(2)�J 1��j1(x) = V�(2)�j1(��)(x) = V�(2)�j1�(x) = j2�(x) = J 2��j2(x) =J 2� � �(2) � j1(x) = J 2� � �(2) � �(y). �Clearly, the whole situation may be described diagrammatically:V�Y V�����! V�1J1� V�(2)����! V�2J2��x?? x??J 1� x??J 2�Y �����! J1� �(2)����! J2� :Example 4.3. First consider a time-dependent vector �eld v = ��(t; q�)@=@q�on M , identi�ed with the connection � on � : R� M ! R by D� = @=@t + v.A symmetry of v is then a vector �eld � = �0@=@t + ��@=@q� on R�M , such



SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS 113that [�;D�] = �D�(�0)D�. Considering �-vertical symmetries we obtain again(generally time-dependent) vector �elds � on M satisfying [�; @=@t+ v] = 0.Let now D�(2) = @@t + q�(1) @@q� + ��(2) @@q�(1)be a (global) semispray on R� TM , identi�ed with the 2-connection �(2) : R�TM ! R� T 2M . A vector �eld �(1) = �0@=@t+ ��@=@q� + ��(1)@=@q�(1) is then a�rst-order symmetry of the semispray D�(2) if(4.21) [�(1); D�(2) ] = �D�(2) (�0)D�(2)which locally means ��(1) = D�(2)(��)� q�(1)D�(2) (�0)and D2�(2)('�) = @��(2)@q� '� + @��(2)@q�(1)D�(2)('�)for the generating functions '� = ���q�(1)�0. In particular, for �(1) �1-projectableor �1-vertical (4.21) reads [�(1); D�(2) ] = �D(�0)D�(2) or [�(1); D�(2) ] = 0, respec-tively.If �(1) is projectable onto R�M then it is a prolongation of the (zeroth-order)symmetry ofD�(2) , which is a vector �eld � satisfying [J 1�;D�(2) ] = �D(�0)D�(2) .Provided D�(2) = @=@t+w, where w(q�; q�(1)) is a semispray on TM , then �(1) onTM is a �rst order symmetry of w if and only if [�(1); w] = 0 and � on M is asymmetry of w if and only if [�c; w] = 0, where �c is a complete lift of �.It is well-known that the study of symmetries play a intrinsic role in the geom-etry both of autonomous and time-dependent dynamics; we refer e.g. to [3], [4],[19], [20], [21], [22] (and references therein). From this point of view, the aboveclassi�cation of symmetries for connections might be useful e.g. in the geome-try of dynamics on an arbitrary �bered manifold over one-dimensional base (e.g.[14] and references therein). In fact, �rst order symmetries of the Hamilton vector�eld associated to a �rst-order regular lagrangian � = Ldt on J1� are nothing elsethat the so-called dynamical symmetries of � and accordingly the (zeroth-order)symmetries are just the Lie symmetries of � (cf. [20], [21]).
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