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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 85 { 96GENERALIZED RECIPROCITY FOR SELF{ADJOINTLINEAR DIFFERENTIAL EQUATIONSOnd�rej Do�sl�yAbstract. Let L(y) = y(n) + qn�1(t)y(n�1) + � � � + q0(t)y; t 2 [a; b), be an n-thorder di�erential operator, L� be its adjoint and p;w be positive functions. It isproved that the self-adjoint equation L��p(t)L(y)� = w(t)y is nonoscillatory at b ifand only if the equation L�w�1(t)L�(y)� = p�1(t)y is nonoscillatory at b. Usingthis result a new necessary condition for property BD of the self-adjoint di�erentialoperators with middle terms is obtained.1. INTRODUCTION.Consider the self-adjoint, two term, even order, linear di�erential equation(1.1) (�1)n(p(t)y(n))(n) = w(t)y;where t 2 I = [a; b); �1 < a < b � 1 and p; w 2 Cn(I) are positive real-valuedfunctions. It is known that equation (1.1) is nonoscillatory at b if and only if theso-called reciprocal equation(1.2) (�1)n( 1w(t)y(n))(n) = 1p(t)yis nonoscillatory at b, see [1] (for necessary de�nitions and terminology see Section2). This statement is a consequence of a more general result concerning linearHamiltonian systems (further LHS) which states that a LHS(1.3) u0 = A(t)u +B(t)v; v0 = �C(t)u� AT (t)vwith nonnegative de�nite n� n matrices B;C is nonoscillatory at b if and only ifthe reciprocal system(1.4) ~u0 = �AT (t)~u+C(t)~v; ~v0 = �B(t)~u +A(t)~v1991 Mathematics Subject Classi�cation : 34C10.Key words and phrases: Self-adjoint equation, reciprocal equation, property BD, principalsolution, minimal di�erential operator.Supported by the Grant No. 201/93/0452 of the Czech Grant Agency.Received October 8, 1993.



86 OND�REJ DO�SL�Yis nonoscillatory at b, see [18,19]. The last statement may be viewed as follows.The transformation(1.5) �uv� = �H(t) M (t)K(t) N (t) �� ~u~v� ;where H;K;M;N are n � n matrices of di�erentiable functions, transforms (1.3)into another LHS if and only if the matrixR = �H MK N �is J � unitary, i. e.,(1.6) R(t)JRT (t) = RT (t)JR(t) = J ;where J = � 0 I�I 0� ;I being the n�n identity matrix. System (1.4) results from (1.3) upon transforma-tion (1.5) with R(t) = J and the relationship between oscillation of (1.3) and (1.4)shows that if the matrices B;C are nonnegative de�nite then this transformationpreserves oscillation behaviour of transformed systems.Recently, the author extended this result by proving that under an additionalassumption (which reduces to nonnegativity of B;C if R = J ) transformation(1.5) preserves oscillation behaviour provided the matrix M is nonsingular, see[8]. Here we use this result in order to assign to a self-adjoint equation(1.8) nXk=0(�1)k(pk(t)y(k))(k) = w(t)y;where pk 2 Ck(I); pn > 0; an equation of the same form which is nonoscillatoryif and only if (1.8) is nonoscillatory. Particularly, if pk � 0; k = 0; : : : ; n � 1;our result complies with the relationship between oscillation of (1.1) and (1.2).This generalized reciprocity is then used, similar to [4,7], for the investigation ofspectral properties of singular di�erential operators generated by the di�erentialexpression on the left-hand-side of (1.8). In the last section we give an alternativeproof of the statement that transformation (1.5) preserves oscillation behaviour ifthe matrix M (t) is nonsingular.2. AUXILIARY RESULTS.First recall some basic properties of LHS and their relationship to self-adjoint,even order, di�erential equations. Let y be a solution of the self-adjoint equation(2.1) nXk=0(�1)k(pk(t)y(k))(k) = 0:



GENERALIZED RECIPROCITY 87Set u = (y; :::; y(n�1)), vn = pn(t)y(n); vn�k = �v0n�k+1 + pn�ky(n�k); k =1; : : : ; n� 1. Then (u; v) is a solution of LHS (1.3) with(2.2) B(t) = diagf0; : : : ; 0; p�1n (t)g;C(t) = �diag fp0(t); : : : ; pn�1(t)g;A = Ai;j = � 1; for j = i+ 1; i = 1; : : : ; n� 1;0; elsewhere:In this case we say that the solution (u; v) is generated by y. Simultaneously with(1.3) consider its matrix analogy(1.3M) U 0 = A(t)U +B(t)V; V 0 = �C(t)U � AT (t)V;where U; V are n� n matrices. A solution (U; V ) of (1.3M) is said to be isotropicif UT (t)V (t)� V T (t)U (t) � 0. An isotropic solution (Ub; Vb) of (2.3) is said to beprincipal at b if Ub is nonsingular in some left neighbourhood of b andlimt!b��Z t U�1b (s)B(s)UT�1b (s)ds��1 = 0:The principal solution of (1.3M) at b is determined uniquely up to a right multipleby a constant nonsingular n� n matrix.Let y1; : : : ; yn be solutions of (2.1). If the columns of the solution (U; V ) of theLHS (1.3M) with A;B;C given by (2.2) are generated by y1; : : : ; yn and (U; V )is principal solution at b, the solutions y1; : : : ; yn are said to form the principalsysem of solutions of (2.1) at b. System (1.3) is said to be identically normal on Iwhenever the trivial solution (u; v) � (0; 0) is the only solution for which u(t) � 0on a nondegenerate subinterval I.Two points t1; t2 2 I are said to be conjugate relative to (1.3) if there exists asolution (u; v) such that u(t1) = 0 = u(t2) whereby u(t) 6� 0 between t1; t2 and theyare said to be conjugate relative to (2.1) if y(k)(t1) = 0 = y(k)(t2); k = 0; : : : ; n�1;for some nontrivial solution y of (2.1). Obviously, t1; t2 2 I are conjugate relativeto (2.1) if and only if they are conjugate relative to (1.3) with A;B;C given by(2.2). Equation (2.1) and system (1.3) are said to be disconjugate on I0 � I ifthere exists no pair of points of I0 which are conjugate relative to (2.1) and (1.3)respectively, these equation and system are said to be nonoscillatory at b if thereexists c 2 I such that they are disconjugate on (c; b).If (U; V ) is an isotropic solution of (1.3M) with U nonsingular on I0 � I thenW = V U�1 is the solution of the Riccati matrix equation(2.3) W 0 +AT (t)W +WA(t) +WB(t)W +C(t) = 0:



88 OND�REJ DO�SL�YTheorem A. [1,8]. Suppose that the matrix R = �H MK N � is J -unitary. Thentransformation (1.5) transforms (1.3) into LHS(2.4) ~u0 = �A(t)~u + �B(t)~v; ~v0 = � �C(t)~u� �AT (t)~vand the matrices �A; �B; �C are given by(2.5) �A = NT (�H0 +AH +BK) +MT (K0 +CH + ATK);�B = NT (�M 0 +AM + BN ) +MT (N 0 + CM + ATN );�C = HT (K0 +CH + ATK) +KT (�H0 +AH + BK):Moreover, if (1.3) is identically normal, the matrices B; �B are nonnegative de�niteand M is nonsingular near b then (1.3) is nonoscillatory at b if and only if (2.4) isnonoscillatory at b.Now suppose that equation (2.1) is disconjugate on an interval I0 � I. Thenthere exists a symmetric solution W = (Wi;j) of the Riccati equation (2.3) withA;B;C given by (2.2). Denote qi(t) := �Wi+1;n(t); i = 0; : : : ; n� 1; and considerthe n-th order di�erential operator(2.61) L(y) = y(n) + qn�1(t)y(n�1) + � � �+ q0(t)y:The adjoint operator is of the form(2.62) L�(y) = (�1)ny(n) + (�1)n�1(qn�1(t)y)(n�1) + � � � � (q1(t)y)0 + q0(t)y:Using these operators we have the following statement concerning factorization of(2.1).Theorem B. [5, Chap. II]. Let (2.1) be disconjugate on I0 � I: Then for anyy 2 C2n(I0) we have(2.7) nXk=0(�1)k(pk(t)y(k))(k) = L�(pn(t)L(y));where L;L� are given by (2.6).3. RECIPROCITY OF GENERAL SELF-ADJOINT EQUATIONS.Theorem 1. Suppose that equation (2.1) is nonoscillatory at b and let (2.7) beits factorization near b. The equation(3.1) nXk=0(�1)k(pk(t)y(k))(k) = w(t)y;



GENERALIZED RECIPROCITY 89i. e., the equation L�(pn(t)L(y)) = w(t)y, is nonoscillatory at b if and only if theequation(3.2) L( 1w(t)L�(y)) = 1pn(t)yis nonoscillatory at b.Proof. Let W be a symmetric solution of Riccati equation (2.3) with A;B;Cgiven by (2.2) which exists near b and consider the transformation(3.3) �uv � = � 0 I�I W (t)�� ~u~v � :This transformation transforms the LHS corresponding to (3.1), i. e. the LHS withA;B; given by (2.2) andC = � diagf�w + p0; p1; : : : ; pn�1ginto the LHS(3.4) ~u0 = �(A +BW )T ~u+ diagfw; 0; : : :; 0g~v;~v0 = �diagf0; : : : ; 0; p�1n g~u+ (A +BW )~v;as follows from Theorem A. By a direct computation one may verify that (3.4) isthe LHS which corresponds to the self-adjiont equation(3.5) L(w�1(t)L�(y)) = p�1n (t)yfor y = ~un, where ~un is the last component of ~u. Since M (t) � I is nonsingular,LHS (1.3) with A;B;C given by (2.2) is identically normal and diagfw; 0; : : : ; 0g;diagf0; : : : ; 0; p�1n g are nonnegative de�nite, by the second part of Theorem A sys-tem (3.4) is nonoscillatory at b if and only if LHS corresonding to (3.1) is nonoscil-latory at b . To �nish the proof, it remains to prove that (3.4) is nonoscillatory ifand only if (3.5) is nonoscillatory. The �rst equation in (3.4) reads~u01 = �p�1n W1;n~u1 +w~v1;~u02 = �~u1 � p�1n W2;n~u2;...~u0n�1 = �~un�2 � p�1n Wn�1;n~un�1;~u0n = �~un�1 � p�1n Wn;n~un;where Wi;j are entries of W . If t1; t2 are conjugate relative to (3.4), i. e. ~ui(t1) =0 = ~ui(t2); i = 1; : : : ; n, from the above equations we get ~u(j)n (t1) = 0 = ~u(j)n (t2),



90 OND�REJ DO�SL�Yj = 0; : : : ; n� 1, hence t1; t2 are conjugate relative to (3.4) if and only if they areconjugate relative to (3.5) what we needed to prove. �If p0 � 0; : : : ; pn�1 � 0 in (2.1) then the Riccati equation associated with thisequation is of the form(3.6) W 0 + ATW +WA +WB(t)W = 0which has symetric solution W � 0. Hence, in this case the transformation matrixin (3.3) equals J ; L = dndtn and Theorem 1 complies with relationship between (1.1)and (1.2) mentioned in Section 1. Of course, one may chose another symmetricsolution of (3.6) which exists up to b. For example, such a solution is(3.7) W (t) = �Z tH�1(s) diagf0; : : : ; 0; p�1n (s)gHT�1(s)ds��1 ;where H is the solution of H0 = AH satisfying H(0) = I, i. e.(3.8) Hij(t) = ( t(j�i)(j�i)! for j � i;0 for i > j:Applying this idea to the fourth order equation (with p2 � 1) we have the followingstatement.Corollary 1. Suppose that b = 1. Equation y(iv) = w(t)y is nonoscillatory at1 if and only if the equation(3.9) (w�1y00)00 � �( w0tw2 + 4t2w )y0�0 + �4w02t2w3 � 2w00t2w2 + 12� 2tw0t4w � 1�y = 0is nonoscillatory at 1.Proof. Computing (3.6), (3.7) for n = 2 and B = diagf0; 1g, we haveW (t) = � 12t�3 �6t�2�6t�2 4t�1 � ;hence L(y) = y00 � 4t�1y0 + 6t�2y; L�(y) = y00 + 4t�1y + 2t�2y and a directcomputation gives that L�w�1L�(y)� = y complies with (3.9). �In order to apply Theorem 1 in particular cases, one needs to know the factor-ization of the operator nXk=0(�1)k(pk(t)y(k))(k) =:M (y);



GENERALIZED RECIPROCITY 91which is the same, in general, as to know the solutions of the equation M (y) = 0.Besides of the most frequent case M (y) = (�1)n(pn(t)y(n))(n), the solutions of theequation M (y) = 0 can be computed for example if M (y) is the Kneser operatorM (y) = y(2n) � �nt2n y;where �n = P �2n�12 � is the so-called Kneser constant and P (�) = �(��1) : : : (��2n+1). Oscillation criteria for the equation M (y) = p(t)y, which may be used forthe reciprocal type criteria along the line suggested by Theorem 1 were investigatedin [10].4. BD CRITERIA FOR SINGULARDIFFERENTIAL OPERATORS.Oscillation theory od self-adjoint equations is closely related to the spectraltheory of singular di�erential operators. Recall briey some basic concepts ofthis theory (for a more comprehensive introduction the reader is referred to themonographs [11,13,16]).Let w(t) be a positive continuous weight function and consider the formallyself-adjoint di�erential operatorl(y) = 1w(t) nXk=0(�1)k(pk(t)y(k))(k); t 2 I = [a; b):We suppose that a is the regular and b the singular point of l. This operators gen-erates the so-called minimal di�erential operator l0 in the Hilbert space L2(I; w)consisting of all functions y for which R ba w(t)y2(t) dt < 1. Following [14], theoperator l is said to possess property BD if every self-adjoint extension of l0 hasspectrum discrete and bounded below. The following result relates oscillation andspectral theory od singular di�erential operators.Theorem C. [13]. A necessary and su�cient condition that l has property BDis that the equation l(y) = � be nonoscillatory at b for all � 2 R.It is known that the one term di�erential operator (�1)n(p(t)y(n))(n) has prop-erty BD in L2(I) with b =1 (i. e. w � 1) if and only if(4.2) limt!1 t2n�1 Z 1t p�1(s) ds = 0:The su�ciency of this criterion was established by Tkachenko [13] and the necessityby Lewis [15] using certain oscillation criterion for (1.2) with w � 1 and therelationship between oscillation of (1.1) and (1.2). This idea has been extended invarious directions in [4,7,14,16]. Here we present another generalization which isbased on Theorem 1 and the following oscillation criterion for (3.1) given in [7].



92 OND�REJ DO�SL�YTheorem D. [7]. Let y1; : : : ; yn be the principal system of solutions of (2.1) atb: If there exists c = (c1; : : : ; cn)T 2 Rn such that(4.3) lim supt!b� R bt w(s)(c1y1(s) + � � �+ cnyn(s))2dscT �R t U�1(s)B(s)UT�1(s)��1 c > 1;where U is the Wronski matrix of y1; : : : ; yn; B = diagf0; : : : ; 0; p�1n (t)g; then(3.1) is oscillatory at b.Theorem 2. Let M (y) = Pnk=0(�1)k(pk(t)y(k))(k). Suppose that the equationM (y) = 0 is nonoscillatory at b; M (y) = L��pnL(y)� is its any factorization near band y1; : : : ; yn is a principal system of solutions at b of the equation L�w�1L�(y)�=0. If the operator (4.1) has property BD in the weightened space L2(I; w); thenfor any c = (c1; : : : ; cn)T 2 Rn we have(4.4) limt!b� R bt p�1n (s)(c1y1(s) + � � �+ cnyn(s))2dscT �R tU�1(s) �B(s)UT�1(s)��1 c = 0;where U is the Wronski matrix of y1; : : : ; yn and �B = diagf0; : : : ; 0; w�1(t)g;Proof. If the operator l has property BD, by Theorem C the equation M (y) =�w(t)y is nonoscillatory at b for any � 2 R. Suppose that (4.4) fails to hold, i. e.lim supt!b� R bt p�1n (s)(c1y1(s) + � � �+ cnyn(s))2dscT �R t U�1(s) �B(s)UT�1(s)��1 c = " > 0;for some c = (c1; : : : ; cn)T 2 Rn: It follows, by Theorem D, that for � = 12" theequation L�w�1L�(y)� = �p�1n y is oscillatory at b. Hence, in view of Theorem 1,the equation L��pn(L(y)� = �wy is also oscillatory at b, but this is a contradictionsince the equation L��pnL(y)� = M (y) = �wy is nonoscillatory at b for any� 2 R. �Remarks. i) If b = 1; w � 1 and L = dndtn then one may directly verify thaty1 = 1; y2 = t; : : : ; yn = tn�1=(n � 1)! form the principal system of solutions at1 of L��w�1L(y)� = (�1)ny(2n) = 0 with the Wronski matrix U (t) = H(t), H(t)being given by (3.7). In this case for c = en = (0; : : : ; 0; 1)T we havecT �Z tH�1(s) diagf0; : : : ; 0; 1gHT�1(s) ds��1c = Kt�(2n�1);(K being a real constant whose value may be computed explicitely, but for ourconsiderations its value is immaterial) and hence (4.4) reduces to (4.2).



GENERALIZED RECIPROCITY 93ii) If L = dndtn Theorem 2 complies with necessary condition for property BD ofthe one term operator(4.5) M (y) = (�1)n 1w(t) (p(t)y(n))(n)given in [7].iii) In [14] the following su�cient condition for property BD of (4.5) was intro-duced:Theorem E. Let the positive functions M1;M2; : : : ;Mn satisfy M 01 � w; M2 =M21=M 01; : : : ;Mn = M2n�1=M 0n�1: If(4.6) limt!1Mn(t) Z 1t 1p(s)ds = 0than M has property BD in L2((a;1); w)):For w(t) = t�; � 2 R, condition (4.6) was shown to be also necessary for prop-erty BD of M , see [4,7]. It would be interesting to �nd what is the "gap" betweensu�cient condition (4.6) and the necessary one given by Theorem 2 for generalweight functions w.5. AN ALTERNATIVE PROOF OF THEOREM A.Recall the main idea of the proof of the second part of Theorem A which statesthat transformation (1.5) with M nonsingular preserves oscillation properties ifthe matrices B; �B are nonnegative de�nite. This proof is based on the so-calledtrigonometric transformation of LHS introduced in [6]. A trigonometric trans-formation is the transformation (1.5) with M (t) � 0 (hence it trivially preservesoscillation behaviour { see de�nition of conjugate points) which transforms (1.3)into the so-called trigonometric system(5.11) ~u0 = Q(t)~v; ~v0 = �Q(t)~u;where Q is a nonnegative de�nite n� n matrix. System (2.4) which results from(1.3) upon transformation (1.5) can be trasformed into another trigonometric sys-tem(5.12) ~u0 = �Q(t)~v; ~v0 = � �Q(t)~u:It is known (c. f. [18, Chap. V.10]) that trigonometric system (5.11) is nonoscilla-tory at b if and only if R b TrQ(t) dt < 1 (Tr(�) stands for the trace of a matrix).In [8] it was proved that nonsingularity of M (t) in (1.5) implies j R bTr (Q(t) ��Q(t))dtj � m� for some m 2 N. This together with nonnegativity of B and �B im-ply that (5.11), (5.22) are both oscillatory or nonoscillatory. The statement then



94 OND�REJ DO�SL�Yfollows from the fact that trigonometric transformations of (1.3) and (2.4) into(5.11), (5.22) respectively, preserve oscillation behaviour of transformed systems.Here we give an alternative proof which is based on relationship between os-cillation of reciprocal systems (1.3), (1.4) and certain factorization of J -unitarymatrices which is given by the following theorem. For its easier formulation wewill adopt the following terminology: A J -unitary 2n�2n matrixR(t) consistingof n� n matrices(5.2) R(t) = �H(t) M (t)K(t) N (t) �is said to be triangular if M (t) � 0.Theorem 3. Let R(t) be a J -unitary 2n� 2n matrix of the form (5.2) with Mnonsingular. Then there exist triangular J -unitary 2n� 2n matrices R1(t), R2(t)such that(5.3) R(t) = R2(t)JR1(t):Moreover, if the matrix B in (1.3) is nonnegative de�nite and (1.5) transformsthis LHS into (2.4) with �B nonnegative de�nite, the matrix R2(t) can be chosenin such a way that (1.5) with transformation matrix R2(t) transforms (1.3) into asystem with both �B; �C nonnegative de�nite.Proof. Directly one may verify that 2n � 2n matrix R of the form (5.2) is J -unitary if and only if(5.41) HTK = KTH; MTN = NTM; HTN �KTM = Iwhich is equivalent to(5.42) HMT = MHT ; KNT = NKT ; HNT �MKT = I:Set(5.5) R2 = � I 0M�1N I � ; R1 = �MT�1 0N M � :Using (5.4) it is easy to see that R1;R2 are J -unitary and (5.3) holds. It remainsto prove the statement concerning the choise of the matrix R2 if B and �B =NT (�M 0 + AM +BN ) �MT (�N 0 �CM �ATN ) are nonnegative de�nite.Since by (2.5) transformation (1.5) with the transformation matrix R2 gives�B = B, it su�ces to prove that�C = �(NM�1)T (A +BNM�1)� (NM�1)0 � C �ATNM�1= MT�1�NT (AM + BN ) �MT (N 0 � NM�1M 0 � CM �ATN )�M�1= MT�1�NT (�M 0 + AM +BN ) �MT (�N 0 �CM �ATN )�M�1is nonnegative de�nite, but this follows from nonnegativity of �B upon (1.5) withthe transformationmatrixR since the matrix in the last equality isMT�1 �BM�1.�Having proved Theorem 3, the second part of Theorem A now easily followsfrom relationship between mutually reciprocal systems (1.3), (1.4) with B;C non-negative de�nite and the fact that transformation (1.5) with triangular matricesR1; R2 preserves oscillation behaviour of transformed systems.



GENERALIZED RECIPROCITY 95Remarks. i) To prove that a J -unitary matrix (5.2) withM nonsingular may beexpressed in the form (5.3) with R1; R2 triangular is relatively easy. Substantialin this factorization is the second part of Theorem 3 which states that under theassumption of nonnegativity of B and NT (�M 0+AM +BN )�MT (�N 0�CM �ATN ) the "middle" transformation with the transformation matrixJ is applied toa system with both B;C nonnegative de�nite, hence this transformation preservedoscillation behaviour.ii) The factorization of a J -unitary matrix R (5.2) with M nonsingular givenby (5.3) yields also an alternative proof of the main statement of [9]. In this paperthe conditions are given under which transformation (1.5) transforms principaland nonprincipal solutions of (1.3M) into the principal and nonprincipal solutionsof (2.4). Using Theorem 3 this result may be inferred from [2], where this problemhas been investigated in case R = J .References[1] Ahlbrandt, C. D., Principal and antiprincipal solutions of selfadjoint diferential systems andtheir reciprocals, Rocky Mountain J. Math. 2 (1972), 169{189.[2] Ahlbrandt, C. D., Equivalent boundary value problems for self-adjoint di�erential systems,J. Di�. Equations 9 (1971), 420{435.[3] Ahlbrandt, C. D., Hinton, D. B., Lewis, R. T., The e�ect of variable change on oscillationand disconjugacy criteria with applications to spectral theory and asymptotic theory, J. Math.Anal. Appl. 81 (1981), 234{277.[4] Ahlbrandt, C. D., Hinton, D. B., Lewis, R. T., Necessary and su�cient conditions for thediscreteness of the spectrum of certain singular di�erential operators, Canad J. Math. 33(1981), 229{246.[5] Coppel, W. A., Disconjugacy, Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Hei-delberg 1971.[6] Do�sl�y, O., On transformation of self-adjoint linear diferential systems and their reciprocals,Annal. Pol. Math. 50 (1990), 223{234.[7] Do�sl�y, O., Oscillation criteria and the discreteness of the spectrum of self-adjoint, evenorder, di�erential operators, Proc. Roy. Soc. Edinburgh 119A (1991), 219{232.[8] Do�sl�y, O., Transformations of linear Hamiltonian systems preserving oscillatory behaviour,Arch. Math. 27 (1991), 211{219.[9] Do�sl�y, O., Principal solutions and transformations of linear Hamiltonian systems, Arch.Math. 28 (1992), 113{120.[10] Do�sl�y, O., Osi�cka, J., Kneser type oscillation criteria for self-adjoint di�erential equations,Georgian Math. J. 2 (1995), 241{258.[11] Dunford, N., Schwartz, J. T., Linear Operators II, Spectral Theory, Interscience, New York1982.[12] Evans, W. D., Kwong, M. K., Zettl, A., Lower bounds for spectrum of ordinary di�erentialoperators, J. Di�. Equations 48 (1983), 123{155.[13] Glazman, I. M., Direct Methods of Qualitative Analysis of Singular Di�erential Operators,Jerusalem 1965.[14] Hinton, D. B., Lewis, R. T., Discrete spectra criteria for singular di�erential operators withmiddle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337{347.[15] Lewis, R. T., The discreteness of the spectrum of self-adjoint, even order, di�erential oper-ators, Proc. Amer. Mat. Soc. 42 (1974), 480{482.
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