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GENERALIZED RECIPROCITY FOR SELF-ADJOINT
LINEAR DIFFERENTIAL EQUATIONS

ONDREJ DoSLy

ABSTRACT. Let L(y) = ¥ 4 gn_q (t)y("_l) + -4+ go(t)y, t € [a,b), be an n-th
order differential operator, L* be its adjoint and p,w be positive functions. It is
proved that the self-adjoint equation L* (p(t)L(y)) = w(t)y is nonoscillatory at b if
and only if the equation L(w™!(t)L*(y)) = p~1(¢)y is nonoscillatory at b. Using
this result a new necessary condition for property BD of the self-adjoint differential
operators with middle terms is obtained.

1. INTRODUCTION.

Consider the self-adjoint, two term, even order, linear differential equation

(L) (=)™ (p(1)y")™ = w(t)y,

where t € I = [a,b), —c0 < a < b < 0o and p,w € C™(I) are positive real-valued
functions. It is known that equation (1.1) is nonoscillatory at b if and only if the
so-called reciprocal equation

1
1.2 —1) (——y M) = —y
(12) 1 (™) =
is nonoscillatory at b, see [1] (for necessary definitions and terminology see Section
2). This statement is a consequence of a more general result concerning linear
Hamiltonian systems (further LHS) which states that a LHS

(1.3) u' = A(t)u+ B(t)v, v =-C(t)u— AT (t)v

with nonnegative definite n x n matrices B, C' is nonoscillatory at b if and only if
the reciprocal system

(1.4) i = —AT(a+Ct)s, v =-B(t)a+ A(t)s
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is nonoscillatory at b, see [18,19]. The last statement may be viewed as follows.
The transformation

05 ()= (Ko 30) ()

where H, K, M, N are n x n matrices of differentiable functions, transforms (1.3)
into another LHS if and only if the matrix

H M
RI(K N)
1s J — unitary, 1. e.,
(1.6) ROIRT () =RTM)TRE) = T,

where

(0 1

I being the n x n identity matrix. System (1.4) results from (1.3) upon transforma-
tion (1.5) with R(¢) = J and the relationship between oscillation of (1.3) and (1.4)
shows that if the matrices B, C' are nonnegative definite then this transformation
preserves oscillation behaviour of transformed systems.

Recently, the author extended this result by proving that under an additional
assumption (which reduces to nonnegativity of B,C if R = J) transformation
(1.5) preserves oscillation behaviour provided the matrix M is nonsingular, see
[8]. Here we use this result in order to assign to a self-adjoint equation

n

(1.8) S (=D (e 0y E) = w(tyy,

k=0

where p, € C*(I), p, > 0, an equation of the same form which is nonoscillatory
if and only if (1.8) is nonoscillatory. Particularly, if p = 0, £ = 0,...,n — 1,
our result complies with the relationship between oscillation of (1.1) and (1.2).
This generalized reciprocity is then used, similar to [4,7], for the investigation of
spectral properties of singular differential operators generated by the differential
expression on the left-hand-side of (1.8). In the last section we give an alternative
proof of the statement that transformation (1.5) preserves oscillation behaviour if
the matrix M (¢) is nonsingular.

2. AUXILIARY RESULTS.

First recall some basic properties of LHS and their relationship to self-adjoint,
even order, differential equations. Let y be a solution of the self-adjoint equation

n

(2.1) D (=D pet)y*H*) = 0.

k=0
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Set u = (y’m’y(n—l))’ Un = Pn(t)y(n), Un—k = _U;L—k+1 -I-Pn—ky(”_k), k =
1,...,n—1. Then (u,v) is a solution of LHS (1.3) with

B(t) = diag{0,...,0,p; ' (1)},
(22) Clt) = —diag {polt)s . .-, pu_s(D)).

1, forj=¢+1, i=1,...,n—1,
A=A;; =
7 {0, elsewhere.

In this case we say that the solution (u,v) is generated by y. Simultaneously with
(1.3) consider its matrix analogy

(1.35r) U = AWU + B(t)V, V' =-Ct)U - AT )V,

where U,V are n x n matrices. A solution (U, V) of (1.337) is said to be isotropic
if UT()V(t) — VI(#)U(t) = 0. An isotropic solution (Uy, V;) of (2.3) is said to be

principal at b if Uy is nonsingular in some left neighbourhood of b and

lim (/t Ub_l(s)B(s)UbT_l(s)ds) B =0.

t—b—

The principal solution of (1.35s) at b is determined uniquely up to a right multiple
by a constant nonsingular n X n matrix.

Let y1, ..., yn be solutions of (2.1). If the columns of the solution (U, V) of the
LHS (1.35) with A, B,C given by (2.2) are generated by yi,...,y, and (U, V)
is principal solution at b, the solutions y,...,y, are said to form the principal
sysem of solutions of (2.1) at b. System (1.3) is said to be identically normalon I
whenever the trivial solution (u,v) = (0,0) is the only solution for which u(¢) =0
on a nondegenerate subinterval 7.

Two points t1,t2 € I are said to be conjugate relative to (1.3) if there exists a
solution (u, v) such that u(t1) = 0 = u(t2) whereby u(t) # 0 between ¢1, 5 and they
are said to be conjugate relative to (2.1) if y(k)(tl) =0= y(k)(tz), k=0,...,n—1,
for some nontrivial solution y of (2.1). Obviously, ¢1,t2 € I are conjugate relative
to (2.1) if and only if they are conjugate relative to (1.3) with A, B, C given by
(2.2). Equation (2.1) and system (1.3) are said to be disconjugate on Iy C I if
there exists no pair of points of Iy which are conjugate relative to (2.1) and (1.3)
respectively, these equation and system are said to be nonoscillatory at b if there
exists ¢ € T such that they are disconjugate on (e, b).

If (U, V) is an isotropic solution of (1.337) with U nonsingular on Iy C T then
W = VU1 is the solution of the Riccati matrix equation

(2.3) W+ AT(OW + WA + WBOW +C(t) = 0.
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H M

Theorem A. [1,8]. Suppose that the matrix R = KN

) is J-unitary. Then
transformation (1.5) transforms (1.3) into LHS

B

(2.4) @ = At)ya+ B(t)s, o =-Ct)ya— AT(t)v

and the matrices A, B, C are given by

A=N"(-H'+ AH + BK)+ M*(K'+ CH + ATK),
(2.5) B=N"(—M'+ AM + BN) 4+ MT(N' + CM + AT N),
C=H"(K'+CH+ ATK)+ K" (-H' + AH + BK).

Moreover, if (1.3) is identically normal, the matrices B, B are nonnegative definite
and M is nonsingular near b then (1.3) is nonoscillatory at b if and only if (2.4) is
nonoscillatory at b.

Now suppose that equation (2.1) is disconjugate on an interval Iy C I. Then
there exists a symmetric solution W = (W; ;) of the Riccati equation (2.3) with
A, B, C given by (2.2). Denote ¢;(t) := —W;y1,(f), i=0,...,n—1, and consider
the n-th order differential operator

(2.61) L) = "™ + a1 ()" + - 4 qo(t)y.

The adjoint operator is of the form

(262)  L7(») = (=1)"y™ + (=1)" " gn-r (D) + = (01 (D)) + q0(t)y.
Using these operators we have the following statement concerning factorization of
(2.1).

Theorem B. [5, Chap. II]. Let (2.1) be disconjugate on Iy C I. Then for any
y € C*"(Iy) we have

n

(2.7) YD ey = L (pa(t) L(y)),

k=0

where L, L* are given by (2.6).

3. RECIPROCITY OF GENERAL SELF-ADJOINT EQUATIONS.

Theorem 1. Suppose that equation (2.1) is nonoscillatory at b and let (2.7) be
its factorization near b. The equation

n

(3.1) ST (=D e 0y ™®) = w(tyy,

k=0
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i. e., the equation L*(p,(t)L(y)) = w(t)y, is nonoscillatory at b if and only if the
equation

(3.2) L(——L"(y)) = Y

is nonoscillatory at b.

Proof. Let W be a symmetric solution of Riccati equation (2.3) with A, B,C
given by (2.2) which exists near b and consider the transformation

(33) ()= wio) (3)

This transformation transforms the LHS corresponding to (3.1), i. e. the LHS with
A, B, given by (2.2) and

C=—diag{—w+po,p1,. .-, Pn-1}
into the LHS

o' = —(A+ BW)Ta + diag{w,0,...,0},
v = —diag{0,...,0,p; i+ (A + BW)7,

=
(l

(3.4)

as follows from Theorem A. By a direct computation one may verify that (3.4) is
the LHS which corresponds to the self-adjiont equation

(3.5) L{w™ ()L (y) = p; ' (O)y

for y = 4y, where @y, is the last component of @&. Since M (¢) = I is nonsingular,
LHS (1.3) with A, B, C given by (2.2) is identically normal and diag{w,0,...,0},
diag{0,...,0,p, '} are nonnegative definite, by the second part of Theorem A sys-
tem (3.4) is nonoscillatory at b if and only if LHS corresonding to (3.1) is nonoscil-
latory at b . To finish the proof, it remains to prove that (3.4) is nonoscillatory if
and only if (3.5) is nonoscillatory. The first equation in (3.4) reads

~r —1 ~ ~
Uy = —p, Wit +wiy,
~r ~ —1 ~
Uy = —ty — p, Wa pts,
~f _ ~ _1W ~
Uy 1= —Up—2— Py n—1nlUn—-1,
~r ~ —1 ~
U, = —Up—1— Py Wn,nuna

where W; ; are entries of W. If 1, ¢, are conjugate relative to (3.4), 1.

i
0 = 4;(t2),i = 1,...,n, from the above equations we get ﬂg)(tl) =0=
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J=0,...,n—1, hence t1,ts are conjugate relative to (3.4) if and only if they are
conjugate relative to (3.5) what we needed to prove. |

Ifpo=0,...,pn—1 = 0in (2.1) then the Riccati equation associated with this
equation is of the form

(3.6) W'+ ATW 4+ WA+ WBHW =0

which has symetric solution W = 0. Hence, in this case the transformation matrix
in(3.3)equals 7, L = jt—n and Theorem 1 complies with relationship between (1.1)
and (1.2) mentioned in Section 1. Of course, one may chose another symmetric

solution of (3.6) which exists up to b. For example, such a solution is

-1

(3.7) W) = [/ H=(s)diag{0,...,0,p;'(s)} HT =1 (s)ds ,

where I is the solution of H' = AH satisfying H(0) =1, i. e.

=9 . .
(39 s =4 G0 =
0 for ¢ > j.

Applying this idea to the fourth order equation (with p; = 1) we have the following
statement.

Corollary 1. Suppose that b = co. Equation y(*") = w(t)y Is nonoscillatory at
oo Iif and only if the equation

! 4 4w'? 2" 12 — 2w
3.9 =1, 1Nt i T N\a _
(3.9)  (wy") ((th + t2w)y) + <t2w3 1202 +w

/

—1)y:0

1s nonoscillatory at co.

Proof. Computing (3.6), (3.7) for n = 2 and B = diag{0, 1}, we have

1273 —6t~2
W(t) = (—6t_2 4t_1 ) ’

hence L(y) = ¢’ — 471y + 6172y, L*(y) = ¥’ + 4~y + 2t=%y and a direct
computation gives that L(w_lL* (y)) =y complies with (3.9). O

In order to apply Theorem 1 in particular cases, one needs to know the factor-
ization of the operator

n

> D ey ) = M(y),

k=0



GENERALIZED RECIPROCITY 91

which is the same, in general, as to know the solutions of the equation M (y) = 0.
Besides of the most frequent case M (y) = (—=1)"(pn(t)y'™))™), the solutions of the
equation M (y) = 0 can be computed for example if M (y) is the Kneser operator

n Hn
M(y) = y(z ) — ﬁ_”y’

where pi, = P (22=1) is the so-called Kneser constant and P(X) = A(A—1)...(A—
2n+1). Oscillation criteria for the equation M (y) = p(¢)y, which may be used for
the reciprocal type criteria along the line suggested by Theorem 1 were investigated

in [10].

4. BD CRITERIA FOR SINGULAR DIFFERENTIAL OPERATORS.

Oscillation theory od self-adjoint equations is closely related to the spectral
theory of singular differential operators. Recall briefly some basic concepts of
this theory (for a more comprehensive introduction the reader is referred to the
monographs [11,13,16]).

Let w(t) be a positive continuous weight function and consider the formally
self-adjoint differential operator

n

l(y) = ﬁZ(_l)k(Pk(t)y(k))(k), tel=1lab).

k=0

We suppose that a is the regular and b the singular point of I. This operators gen-
erates the so-called minimal differential operator I in the Hilbert space £(I, w)
consisting of all functions y for which fab w(t)y?(t)dt < oco. Following [14], the
operator [ 1s said to possess property BD if every self-adjoint extension of [y has
spectrum discrete and bounded below. The following result relates oscillation and
spectral theory od singular differential operators.

Theorem C. [13]. A necessary and sufficient condition that | has property BD
is that the equation l(y) = A be nonoscillatory at b for all A € R.

It is known that the one term differential operator (—1)”(p(t)y™))(®) has prop-
erty BD in £%(I) with b = oo (i. e. w = 1) if and only if

(4.2) lim tzn_l/ p~l(s) ds = 0.
t

t—o0

The sufficiency of this criterion was established by Tkachenko [13] and the necessity
by Lewis [15] using certain oscillation criterion for (1.2) with w = 1 and the
relationship between oscillation of (1.1) and (1.2). This idea has been extended in
various directions in [4,7,14,16]. Here we present another generalization which is
based on Theorem 1 and the following oscillation criterion for (3.1) given in [7].
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Theorem D. [7]. Let y1,...,y, be the principal system of solutions of (2.1) at
b. If there exists ¢ = (cy,...,¢,)T € R™ such that

(4.3) lim sup Jy w(s)(eryi(s) + -+ cnyn(SZ)lzds
t—b— T (ft U—l(s)B(s)UT_l(s)) B

> 1,

where U is the Wronski matrix of y1,...,y,, B = diag{0,...,0,p;1(t)}, then
(3.1) is oscillatory at b.

Theorem 2. Let M(y) = ZZIO(—l)k(pk(t)y(k))(k). Suppose that the equation
M (y) = 0 is nonoscillatory at b, M (y) = L* (an(y)) Is its any factorization near b
and yy, ..., yn Is a principal system of solutions at b of the equation L(w_lL*(y)) =
0. If the operator (4.1) has property BD in the weightened space L£L*(I,w), then
for any ¢ = (c1,...,c,)T € R™ we have

(4.4) lim ftb prt(s)(ciy(s) + -+ coyn(s))?ds _o

b (ftU—l(s)B(s)UT—l(s))_lc

where U is the Wronski matrix of y1, .. .,y, and B = diag{0,...,0,w™'(t)},

Proof. If the operator | has property BD, by Theorem C the equation M(y) =
Aw(t)y is nonoscillatory at b for any A € R. Suppose that (4.4) fails to hold, i. e.

i sup 2 ()eatn(s) 4 co(s)Pds
= (U B)UT)) e

=¢>0,

for some ¢ = (ey1,...,c,)T € R™. It follows, by Theorem D, that for A = % the
equation L(w_lL*(y)) = Ap,ly is oscillatory at b. Hence, in view of Theorem 1,
the equation L* (pn(L(y)) = Awy is also oscillatory at b, but this is a contradiction

since the equation L* (an(y)) = M(y) = Awy is nonoscillatory at b for any
AeR. O

Remarks. i) If b = oo, w = 1 and L = jt—T; then one may directly verify that
y1 = Lya = t,...,yn = 1"71/(n — 1)! form the principal system of solutions at
oo of L* (w_lL(y)) = (=1)"y®") = 0 with the Wronski matrix U(¢) = H(t), H(t)

being given by (3.7). In this case for ¢ = e, = (0,...,0,1)” we have
t 1
T (/ H—l(S) diag{0,...,0, 1}HT—1(5) ds)_ = Kt_(zn_l)’

(K being a real constant whose value may be computed explicitely, but for our
considerations its value is immaterial) and hence (4.4) reduces to (4.2).
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i IfL = jt—i Theorem 2 complies with necessary condition for property BD of
the one term operator

n 1 n n
(4.5) M(y) = (=1)" oy Oy ™)™
given in [7].

ii1) In [14] the following sufficient condition for property BD of (4.5) was intro-
duced:

Theorem E. Let the positive functions My, M, ..., M, satisfy M| > w, My =
ME/M, ... .M, =M2_,/M_,. If

(4.6) tlir& Mp(t) /too ]%ds =0

than M has property BD in L*((a,o0),w)).

For w(t) = t“, & € R, condition (4.6) was shown to be also necessary for prop-
erty BD of M| see [4,7]. It would be interesting to find what is the ”gap” between
sufficient condition (4.6) and the necessary one given by Theorem 2 for general
weight functions w.

5. AN ALTERNATIVE PROOF OF THEOREM A.

Recall the main idea of the proof of the second part of Theorem A which states
that transformation (1.5) with M nonsingular preserves oscillation properties if
the matrices B, B are nonnegative definite. This proof is based on the so-called
trigonometric transformation of LHS introduced in [6]. A trigonometric trans-
formation is the transformation (1.5) with M (¢) = 0 (hence it trivially preserves
oscillation behaviour — see definition of conjugate points) which transforms (1.3)
into the so-called trigonometric system

(5.11) W= Q) ¥ =-Q()i,

where @) is a nonnegative definite n X n matrix. System (2.4) which results from
(1.3) upon transformation (1.5) can be trasformed into another trigonometric sys-
tem

(5.12) i =Q)w, ¥ =-Q@)i.

It is known (c. f. [18, Chap. V.10]) that trigonometric system (5.1;1) is nonoscilla-
tory at b if and only if fb TrQ(t) dt < oo (Tr(-) stands for the trace of a matrix).
In [8] it was proved that nonsingularity of M (?) in (1.5) implies |fb Tr (Q(t) —
Q(t))dt] < mz for some m € N. This together with nonnegativity of B and B im-
ply that (5.11), (5.25) are both oscillatory or nonoscillatory. The statement then
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follows from the fact that trigonometric transformations of (1.3) and (2.4) into
(5.11), (5.24) respectively, preserve oscillation behaviour of transformed systems.

Here we give an alternative proof which is based on relationship between os-
cillation of reciprocal systems (1.3), (1.4) and certain factorization of J-unitary
matrices which is given by the following theorem. For its easier formulation we
will adopt the following terminology: A J-unitary 2n x 2n matrix R(¢) consisting
of n X n matrices

_ [ H(t) M(t)

(5.2) R(t) = (K(t) N (1)
is said to be triangularif M () = 0.

Theorem 3. Let R(t) be a J-unitary 2n x 2n matrix of the form (5.2) with M
nonsingular. Then there exist triangular J-unitary 2n x 2n matrices R1(t), Ra(t)
such that

(5.3) R() = Ra(t)TR1(1).
Moreover, if the matrix B in (1.3) is nonnegative definite and (1.5) transforms
this LHS into (2.4) with B nonnegative definite, the matrix Ro(t) can be chosen

in such a way that (1.5) with transformation matrix R»(t) transforms (1.3) into a
system with both B, C' nonnegative definite.

Proof. Directly one may verify that 2n x 2n matrix R of the form (5.2) is J-
unitary if and only if

(5.41) H'K =K"H, M'N=N"M, H'N-K'M=1I
which is equivalent to
(5.49) HMT = MH", KNT =NK", HNT —MKT =1
Set

I 0 MT-1 0
(5.5) R2_<M_1N I), R1_< N M).

Using (5.4) it is easy to see that R1, R2 are J-unitary and (5.3) holds. Tt remains
to prove the statement concerning the choise of the matrix Ry if B and B =
NT(—=M'+ AM 4+ BN) — MT(=N' — CM — AT N) are nonnegative definite.

Since by (2.5) transformation (1.5) with the transformation matrix Ry gives
B = B, it suffices to prove that

C=—-NMYHY'A+BNM Y)Y —(NM~YY —C—-ATNM™?
= MT ' INT(AM + BN) = MT(N' = NM™'M’' — CM — ATN)| M ~*
= M= [NT(=M' 4+ AM + BN) - M* (=N’ = CM — ATN)|M~*
is nonnegative definite, but this follows from nonnegativity of B upon (1.5) with
the transformation matrix R since the matrix in the last equality is M7 ~'BM ~1.0J

Having proved Theorem 3, the second part of Theorem A now easily follows
from relationship between mutually reciprocal systems (1.3), (1.4) with B, C' non-
negative definite and the fact that transformation (1.5) with triangular matrices
R1, Ro preserves oscillation behaviour of transformed systems.
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Remarks. i) To prove that a J-unitary matrix (5.2) with M nonsingular may be
expressed in the form (5.3) with Ry, Ra triangular is relatively easy. Substantial
in this factorization is the second part of Theorem 3 which states that under the
assumption of nonnegativity of B and NT(—~M'+ AM +BN)— MT(-N'—-CM —
AT N)) the "middle” transformation with the transformation matrix J is applied to
a system with both B, C' nonnegative definite, hence this transformation preserved
oscillation behaviour.

i) The factorization of a J-unitary matrix R (5.2) with M nonsingular given
by (5.3) yields also an alternative proof of the main statement of [9]. In this paper
the conditions are given under which transformation (1.5) transforms principal
and nonprincipal solutions of (1.337) into the principal and nonprincipal solutions
of (2.4). Using Theorem 3 this result may be inferred from [2], where this problem
has been investigated in case R = J.
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