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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 205 { 216INDUCED ISOMORPHISMS OF CERTAIN TERNARYSEMIGROUPSANTONI CHRONOWSKI AND MIROSLAV NOVOTN�YAbstract. If X1; Y1 are relational structures of the same type, then theset of all ordered pairs (p; q) constitutes a ternary semigroup with a naturallyde�ned operation where p denotes a homomorphism ofX1 intoY1 and q is ahomomorphismofY1 intoX1. If f1 is an isomorphismofX1 onto a relationalstructure X2 and f2 an isomorphism of Y1 onto a relational structure Y2,then the ordered pair (f1; f2) of isomorphisms de�nes an isomorphism ofthe ternary semigroup de�ned on the basis of X1 and Y1 onto the ternarysemigroup de�ned on the basis of X2 and Y2; this isomorphism is said tobe induced. We prove that there exist isomorphisms of ternary semigroupsde�ned by pairs of relational structures that are not induced and formulatea criterion recognizing induced isomorphisms.1. INTRODUCTIONTernary semigroups provide natural examples of ternary algebras. In the presentpaper, we study ternary semigroups constructed on the basis of two relationalstructures of the same type. The carrier of the ternary semigroup is formed ofall ordered pairs of homomorphisms where the �rst member of the pair is a ho-momorphism of the �rst structure into the second and the second member is ahomomorphism of the second structure into the �rst. The ternary operation onthe set of these pairs of homomorphisms is de�ned in a natural way using thecomposition of homomorphisms.If X1; X2 are isomorphic relational structures and Y1; Y2 are isomorphic aswell where we suppose that all structures are of the same type, then the ternarysemigroup of homomorphisms formed on the basis of X1 and Y1 is isomomorphic1991 Mathematics Subject Classi�cation. 20N15.Key words and phrases. ternary semigroup, mono-n-ary relational structure, homomorphism,isomorphism, induced isomorphism.Received January 13, 1995



206 ANTONI CHRONOWSKI AND MIROSLAV NOVOTN�Yto the ternary semigroup of homomorphisms formed on the basis of X2 and Y2.Our main problem consists in characterizing such isomorphisms that are calledinduced. This problem seems to be natural because there exist some relationalstructures X1; X2; Y1; Y2 of the same type such that the ternary semigroup ofhomomorphisms formed on the basis of X1 and Y1 is isomorphic to the ternarysemigroup of homomorphisms formed on the basis of X2 and Y2 while the corre-sponding isomorphism is not induced in the above mentioned sense.We now present the details of our considerations.2. DECOMPOSABLE MAPPINGSLet X1; X2; Y1; Y2 be sets, f a mapping of the set X1�Y1 into the set X2�Y2.Suppose that there exists a mapping f1 of X1 into X2 and a mapping f2 of Y1 intoY2 such that f(x1; y1) = (f1(x1); f2(y1)) holds for any (x1; y1) 2 X1�Y1. Then themapping f is said to be decomposable; the mappings f1; f2 are called componentsof f . We write f = f1 � f2. The reader must be warned that the symbol � doesnot mean a Cartesian product in this formula; we identify ((x1; y1); (x2; y2)) with((x1; x2); (y1; y2)) where ((x1; y1); (x2; y2)) 2 f; (x1; x2) 2 f1; (y1; y2) 2 f2 and,hence, ((x1; x2); (y1; y2)) 2 f1 � f2.This is a slight generalization of the de�nition appearing in [6].We see that the decomposability of f depends on the �xed decompositions ofX1�Y1 and X2�Y2 into factors X1; Y1 and X2; Y2, respectively. If these factorsare given, the components f1; f2 of f are de�ned in a unique way.2.1. Lemma. Let X1; X2; Y1; Y2 be sets, f a mapping of the set X1 � Y1 intothe set X2 � Y2. If f1 � f2 = f = f 01 � f 02, then f1 = f 01; f2 = f 02.Proof. If (x; y) 2 X1�Y1 is arbitrary, then (f1(x); f2(y)) = f(x; y) = (f 01(x); f 02(y))which implies f1(x) = f 01(x); f2(y) = f 02(y).The following result enables to recognize decomposable mappings.2.2. Theorem. Let X1; X2; Y1; Y2 be sets, f a mapping of the set X1 � Y1 intoX2 � Y2. Then the following assertions are equivalent.(i) The mapping f is decomposable.(ii) For any x1 2 X1; x01 2 X1; y1 2 Y1; y01 2 Y1 there exist elementsx2 2 X2; x02 2 X2; y2 2 Y2; y02 2 Y2 such that f(x1; y1) = (x2; y2),f(x1; y01) = (x2; y02); f(x01; y1) = (x02; y2).Proof. If (i) holds and x1 2 X1; x01 2 X1; y1 2 Y1; y01 2 Y1 are arbitrary,we put x2 = f1(x1); x02 = f1(x01); y2 = f2(y1); y02 = f2(y01). Then f(x1; y1) =(f1(x1); f2(y1)) = (x2; y2); f(x1; y01) = (f1(x1); f2(y01)) = (x2; y02); f(x01; y1) =(f1(x01); f2(y1)) = (x02; y2). Thus, (ii) holds.Let (ii) hold. Suppose that x1 2 X1; y1 2 Y1 are �xed elements. For any x01 2X1 there exists exactly one x02 2 X2 such that f(x01; y1) = (x02; y2) where y2 2 Y2.Thus, there exists a mapping f1 of X1 into X2 such that f(x01; y1) = (f1(x01); y2)



INDUCED ISOMORPHISMS OF CERTAIN TERNARY SEMIGROUPS 207for some y2 2 Y2. Similarly, there exists a mapping f2 of Y1 into Y2 such thatf(x1; y01) = (x2; f2(y01)) for some x2 2 X2.By (ii) for x01 2 X1; x1 2 X1; y01 2 Y1; y1 2 Y1 there exist elements u02 2X2; u2 2 X2; v02 2 Y2; v2 2 Y2 such that f(x01; y01) = (u02; v02); f(x01; y1) =(u02; v2); f(x1; y01) = (u2; v02). We have obtained u02 = f1(x01); v2 = y2; u2 =x2; v02 = f2(y01). It follows that f(x01; y01) = (f1(x01); f2(y01)). Thus, (i) holds.2.3. Remark. Let X1; X2; Y1; Y2 be sets. It is easy to see that a bijection f ofX1 � Y1 onto X2 � Y2 is decomposable if and only if there exists a bijection f1 ofX1 onto X2 and a bijection f2 of Y1 onto Y2 such that f = f1 � f2.3. TERNARY SEMIGROUPSThe fundamental notions of the theory of universal algebras can be easily found,e.g., in [3], Chapter 1.IfX is a set and n � 1 an integer, we write Xn for X�� � ��X where X appearsn times.A ternary semigroup (cf. [4], [7], [1], [2]) is an algebraic structure (A; f) suchthat A is a nonempty set and f : A3 ! A is a ternary operation satisfying theassociative law:f(f(x1; x2; x3); x4; x5) = f(x1; f(x2; x3; x4); x5) = f(x1; x2; f(x3; x4; x5))for any x1; : : : ; x5 in A.LetM � A be a closed subset of (A; f), i.e., a subset such that for any x1; x2; x3in M the condition f(x1; x2; x3) 2 M holds. Then f \ (M3 � M ) is a ternaryoperation on the set M ; it is said to be the restriction of f to M .3.1. Example. Let A be a nonempty set. For any (x1; x2; x3) 2 A3 putf(x1; x2; x3) = x1. Then (A; f) is a ternary semigroup; an operation f de�ned inthis way is said to be trivial.If X; Y are nonempty sets, de�ne o((x1; y1); (x2; y2); (x3; y3)) = (x1; y1) for any(x1; y1); (x2; y2); (x3; y3) in X � Y . Then (X � Y; o) is a ternary semigroup witha trivial operation.3.2. Lemma. Let (A; f); (A0; f 0) be ternary semigroups with trivial operations.Then the following assertions hold.(i) Any mapping of A into A0 is a homomorphism of (A; f) into (A0; f 0).(ii) Any bijection of A onto A0 is an isomorphism of (A; f) onto (A0; f 0).Let (A; f) be a ternary semigroup. An element x0 2 A is said to be a left zeroof (A; f) (cf. [1]) if f(x0; x1; x2) = x0 for any elements x1; x2 in A.3.3. Lemma. Let (A; f) be a ternary semigroup. Then the following assertionsare equivalent.(i) The operation f is trivial.(ii) Any element in A is a left zero of (A; f).



208 ANTONI CHRONOWSKI AND MIROSLAV NOVOTN�YThis is an immediate consequence of the de�nitions.3.4. Lemma. Let (A; f) be a ternary semigroup, (M; f 0) its ternary subsemigroup,and x0 2M an element. If x0 is a left zero of (A; f), then it is a left zero of (M; f 0).This follows directly from the de�nition of a left zero.Let X; Y be nonempty sets. We denote by T (X;Y ) the set of all map-pings of X into Y . Furthermore, we put T [X;Y ] = T (X;Y ) � T (Y;X). Forany (p1; q1); (p2; q2); (p3; q3) in T [X;Y ] we set O((p1; q1); (p2; q2); (p3; q3)) =(p1 � q2 � p3; q1 � p2 � q3). Then (T [X;Y ]; O) is a ternary semigroup. The ternarysemigroup (T [X;Y ]; O) is called the ternary semigroup of mappings of sets X andY . If X \ Y = ;, then (T [X;Y ]; O) is called the disjoint ternary semigroup ofmappings of sets X and Y .It is easy to check that the ternary semigroups (T [X;Y ]; O) and (T [Y;X]; O)are isomorphic.A slightly modi�ed argument applied in the proof of Theorem 3 in [4] yieldsthe following theorem.3.5. Theorem. Every ternary semigroup (A; f) is embeddable into a disjointternary semigroup (T [X;Y ]; O) of mappings of sets X and Y .We denote by C(X;Y ) the set of all constant mappings of X into Y and putC[X;Y ] = C(X;Y ) � C(Y;X). Then C[X;Y ] � T [X;Y ] and O((p1; q1); (p2; q2);(p3; q3)) 2 C[X;Y ] for any (p1; q1); (p2; q2), and (p3; q3) in C[X;Y ]. Hence, theset C[X;Y ] is closed in the ternary semigroup (T [X;Y ]; O). Thus, if we denote byO00 the restriction of O to C[X;Y ], we obtain a ternary semigroup (C[X;Y ]; O00).In the same way as Lemma 4.1 in [1], we prove3.6. Lemma. Let X; Y be nonempty sets, (p; q) 2 T [X;Y ] an arbitrary element.Then (p; q) 2 C[X;Y ] holds if and only if (p; q) is a left zero of (T [X;Y ]; O).3.7. Lemma. Let X; Y be nonempty sets. Then the following assertions hold.(i) Any (p; q) 2 C[X;Y ] is a left zero of (C[X;Y ]; O00).(ii) The operation O00 of (C[X;Y ]; O00) is trivial.Proof. (i) follows from 3.6 and 3.4, (ii) is a consequence of (i) and 3.3.Let X; Y be nonempty sets. A constant mapping p of X into Y with the valuey 2 Y will be denoted by py. A constant mapping q of Y into X with the valuex 2 X will be denoted by qx.3.8. Lemma. Let X; Y be nonempty sets. For any x 2 X put b1(x) = qx, forany y 2 Y de�ne b2(y) = py. Put b = b2 � b1. Then b is an isomorphism of the



INDUCED ISOMORPHISMS OF CERTAIN TERNARY SEMIGROUPS 209ternary semigroup (Y �X; o) onto (C[X;Y ]; O00).Proof. Clearly, b is a bijection of Y � X onto C[X;Y ]. Since o; O00 are trivialoperations by 3.1 and 3.7, b is an isomorphism of (Y � X; o) onto (C[X;Y ]; O00)by 3.2.3.9. Lemma. Let X; Y be nonempty sets, x0 in X, and u; u0; u00 in T (X;Y ).Then u � qx0 � u0 = u00 holds if and only if u00 = pu(x0).Proof. If x 2 X is arbitrary, then (u � qx0 � u0)(x) = u(qx0(u0(x))) = u(x0) and,hence, u�qx0 �u0 = pu(x0). Thus u00 = u�qx0 �u0 holds if and only if u00 = pu(x0).3.10.Corollary. Let X; Y be nonempty sets. Let (S; f) be a ternary subsemi-group of (T [X;Y ]; O) such that C[X;Y ] � S. Then (u; v) 2 S is a left zero of(S; f) if and only if (u; v) 2 C[X;Y ].Proof. If (u; v) 2 C[X;Y ], then by 3.6 (u; v) is a left zero of (T [X;Y ]; O). SinceC[X;Y ] � S, it follows from 3.4 that (u; v) is a left zero of (S; f).Conversely, suppose that (u; v) is a left zero of (S; f). Let x0 2 X and y0 2 Ybe �xed elements and (u0; v0) 2 S. We have O((u; v); (py0; qx0); (u0; v0)) = (u; v).This implies that u � qx0 � u0 = u and v � py0 � v0 = v. By 3.9 we obtain u = pu(x0)and, similarly, v = qv(y0). Hence (u; v) 2 C[X;Y ].3.11. Corollary. Let X; Y be nonempty sets, x0 2 X; y0 2 Y; u 2 T (X;Y )arbitrary elements. Then u(x0) = y0 holds if and only if u � qx0 � py0 = py0 .Proof. By 3.9 the last equality is equivalent to py0 = pu(x0) which means y0 =u(x0).3.12. Corollary. Let X; Y be nonempty sets, x0; x00 in X; y0; y00 in Y , and(u; v) 2 T [X;Y ]. Then u(x0) = y0; v(y00) = x00 hold if and only ifO((u; v); (py00; qx0); (py0; qx00)) = (py0 ; qx00).Proof. By de�nition of O the last equality is equivalent to u � qx0 � py0 = py0 ; v �py00 � qx00 = qx00 which means u(x0) = y0; v(y00) = x00 by 3.11.4. MONO-n-ARY RELATIONAL STRUCTURESIf X is a nonempty set, n a positive integer, and r � Xn, then the ordered pairX = (X; r) is said to be a mono-n-ary relational structure. The structure is saidto be reexive if for any x 2 X the condition (x; : : : ; x) 2 r holds where x appearsn times.Let X = (X; r); Y = (Y; s) be mono-n-ary relational structures.By a cardinal product of X and Y, which will be denoted by X �Y, we meanthe set X � Y with the n-ary relation r � s where for any (x1; y1); : : : ; (xn; yn) inX�Y the condition ((x1; y1); : : : ; (xn; yn)) 2 r�s holds if and only if (x1; : : : ; xn) 2r; (y1; : : : ; yn) 2 s. The symbol � in the formula r � s does not mean a Carte-



210 ANTONI CHRONOWSKI AND MIROSLAV NOVOTN�Ysian product; we identify ((x1; y1); : : : ; (xn; yn)) with ((x1; : : : ; xn); (y1; : : : ; yn)).Clearly, X�Y = (X �Y; r� s) is a mono-n-ary relational structure. Cf [3] p.164.Let h be a mapping of X into Y . The mapping h is said to be a structurehomomorphism (abbreviated s-homomorphism) if for any (x1; : : : ; xn) 2 r thecondition (h(x1); : : : ; h(xn)) 2 s holds. A bijection b of X onto Y is said to be ans-isomorphism of X onto Y if it is an s-homomorphism of X onto Y and if b�1 isan s-homomorphism of Y onto X.It is easy to notice that a mapping b of X into Y is an s-isomorphism of X ontoY if and only if the following conditions are satis�ed.(i) b is a bijection of X onto Y .(ii) (x1; : : : ; xn) 2 r holds if and only if (b(x1); : : : ; b(xn)) 2 s for any(x1; : : : ; xn) 2 Xn.Clearly, s-isomorphisms are particular cases of strong homomorphisms in thesense of [5].4.1. Lemma. Let X1 = (X1; r1); X2 = (X2; r2); Y1 = (Y1; s1); Y2 = (Y2; s2)be reexive mono-n-ary structures and f1 : X1 ! X2; f2 : Y1 ! Y2 be bijections.The bijection f1 � f2 is an s-isomorphism of X1 �Y1 onto X2 �Y2 if and only iff1 is an s-isomorphism of X1 onto X2 and f2 is an s-isomorphism of Y1 onto Y2.Proof. Let f1; f2 be s-isomorphisms. Suppose that x1; : : : ; xn are in X1 andy1; : : : ; yn in Y1. Then any two consecutive conditions in the following sequenceare equivalent.(a) ((x1; y1); : : : ; (xn; yn)) 2 r1 � s1;(b) (x1; : : : ; xn) 2 r1; (y1; : : : ; yn) 2 s1;(c) (f1(x1); : : : ; f1(xn)) 2 r2; (f2(y1); : : : ; f2(yn)) 2 s2;(d) ((f1(x1); f2(y1)); : : : ; (f1(xn); f2(yn))) 2 r2 � s2;(e) ((f1 � f2)(x1; y1); : : : ; (f1 � f2)(xn; yn)) 2 r2 � s2.The equivalence of (a) and (e) implies that f1 � f2 is an s-isomorphism ofX1 �Y1 onto X2 �Y2.Let f1 � f2 be an s-isomorphism of X1 � Y1 onto X2 � Y2. Suppose thatx1; : : : ; xn are inX1. Let y 2 Y1 be arbitrary. Then any two consecutive conditionsin the following sequence are equivalent.(f) (x1; : : : ; xn) 2 r1;(g) (x1; : : : ; xn) 2 r1; (y; : : : ; y) 2 s1;(h) ((x1; y); : : : ; (xn; y)) 2 r1 � s1;(k) ((f1 � f2)(x1; y); : : : ; (f1 � f2)(xn; y)) 2 r2 � s2;(l) ((f1(x1); f2(y)); : : : ; (f1(xn); f2(y))) 2 r2 � s2;(m) (f1(x1); : : : ; f1(xn)) 2 r2; (f2(y); : : : ; f2(y)) 2 s2;(n) (f1(x1); : : : ; f1(xn)) 2 r2.The equivalence of (f) and (n) implies that f1 is an s-isomorphism of X1 ontoX2. Similarly, we prove that f2 is an s-isomorphism of Y1 onto Y2.4.2. Lemma. Let X = (X; r); Y = (Y; s) be reexive mono-n-ary relational



INDUCED ISOMORPHISMS OF CERTAIN TERNARY SEMIGROUPS 211structures. Then any constant mapping of X into Y is an s-homomorphism of Xinto Y.Proof. If py is a constant mapping of X into Y , then for any (x1; : : : ; xn) 2 r, weobtain (py(x1); : : : ; py(xn)) = (y; : : : ; y) 2 s.Let X = (X; r); Y = (Y; s) be reexive mono-n-ary relational structures. Wedenote by H(X;Y) the set of all s-homomorphisms of X into Y. Furthermore,we put H[X;Y] = H(X;Y) � H(Y;X). By 4.2, we have C[X;Y ] � H[X;Y] �T [X;Y ]. Since the superposition of s-homomorphisms is an s-homomorphism, therestriction O0 of the ternary operation O to H[X;Y] de�nes a ternary semigroup(H[X;Y]; O0) on H[X;Y].As a consequence of 3.10 we obtain4.3. Lemma. Let X = (X; r); Y = (Y; s) be reexive mono-n-ary relationalstructures, (p; q) 2 H[X;Y] an arbitrary element. Then (p; q) is a left zero of(H[X;Y]; O0) if and only if (p; q) 2 C[X;Y ].4.4. Lemma. Let X1 = (X1; r1); X2 = (X2; r2); Y1 = (Y1; s1); Y2 = (Y2; s2) bereexive mono-n-ary relational structures. If F is an isomorphism of the ternarysemigroup (H[X1;Y1]; O01) onto (H[X2;Y2]; O02) , then the restriction G of Fto C[X1; Y1] is an isomorphism of the ternary semigroup (C[X1; Y1]; O001) onto(C[X2; Y2]; O002).Proof. Clearly, F assigns a left zero of (H[X2;Y2]; O02) to a left zero of(H[X1;Y1]; O01) and F�1 assigns a left zero of (H[X1;Y1]; O01) to any left zeroof (H[X2;Y2]; O02). By 4.3 the restriction G of F to C[X1; Y1] is a bijection ofC[X1; Y1] onto C[X2; Y2]. By 3.7 the operations O001 ; O002 are trivial. Thus, G is anisomorphism of (C[X1; Y1]; O001) onto (C[X2; Y2]; O002) by 3.2.5. INDUCED ISOMORPHISMS5.1. Lemma. Let X1 = (X1; r1); X2 = (X2; r2); Y1 = (Y1; s1); Y2 = (Y2; s2)be reexive mono-n-ary relational structures, f1 an s-isomorphism of X1 ontoX2, and f2 an s-isomorphism of Y1 onto Y2. For any (p; q) 2 H[X1;Y1] putF (p; q) = (f2 � p � f�11 ; f1 � q � f�12 ). Then F is an isomorphism of the ternarysemigroup (H[X1;Y1]; O01) onto (H[X2;Y2]; O02).Proof. Since a composite of s-homomorphisms is an s-homomorphism, we ob-tain f2 � p � f�11 2 H(X2;Y2); f1 � q � f�12 2 H(Y2;X2) and, hence, F (p; q) 2H(X2;Y2) � H(Y2;X2) = H[X2;Y2]. Thus, F is a mapping of H[X1;Y1] intoH[X2;Y2].Furthermore, if (p1; q1); (p2; q2); (p3; q3) are in H[X1;Y1], then weobtain O02(F (p1; q1); F (p2; q2); F (p3; q3)) = O02((f2 � p1 � f�11 ; f1 � q1 � f�12 );(f2 � p2 � f�11 ; f1 � q2 � f�12 ); (f2 � p3 � f�11 ; f1 � q3 � f�12 )) = (f2 � p1 � q2 � p3 � f�11 ;



212 ANTONI CHRONOWSKI AND MIROSLAV NOVOTN�Yf1 � q1 � p2 � q3 � f�12 ) = F (O01((p1; q1); (p2; q2); (p3; q3))) and, hence, F is a homo-morphism of (H[X1;Y1]; O01) into (H[X2;Y2]; O02).If (p; q) 2 H[X1;Y1]; (p0; q0) 2 H[X1;Y1] are such that F (p; q) = F (p0; q0), i.e.f2 � p � f�11 = f2 � p0 � f�11 ; f1 � q � f�12 = f1 � q0 � f�12 , we have p = p0; q = q0.Thus (p; q) = (p0; q0). Consequently F is injective.If (u; v) 2 H[X2;Y2], put p = f�12 �u � f1; q = f�11 � v � f2. Similarly as above,we state that (p; q) 2 H[X1;Y1] and it follows that F (p; q) = (u; v). Hence F issurjective.Thus F is an isomorphism of the ternary semigroup (H[X1;Y1]; O01) onto(H[X2;Y2]; O02).Let X1; X2; Y1; Y2 be reexive mono-n-ary relational structures, f1 an s-isomorphism of X1 onto X2 and f2 an s-isomorphism of Y1 onto Y2. For any(p; q) 2 H[X1;Y1] put F (p; q) = (f2 �p�f�11 ; f1�q�f�12 ). By 5.1, this mapping Fis an isomorphismof the ternary semigroup (H[X1;Y1]; O01) onto (H[X2;Y2]; O02).It will be called the isomorphism induced by the pair (f1; f2) of s-isomorphisms.There exist examples of reexive mono-n-ary relational structures X1; X2;Y1; Y2 and of isomorphisms of (H[X1;Y1]; O01) onto (H[X2;Y2]; O02) that arenot induced by any pair of s-isomorphisms (cf. [1]). Thus, we have the following5.2. Problem. If X1; X2; Y1; Y2 are reexive mono-n-ary relational structuresand F an isomorphism of (H[X1;Y1]; O01) onto (H[X2;Y2]; O02), formulate neces-sary and su�cient conditions for F to be induced by a pair of s-isomorphisms.Let X1 = (X1; r1); X2 = (X2; r2); Y1 = (Y1; s1); Y2 = (Y2; s2) be reex-ive mono-n-ary relational structures, F an isomorphism of the ternary semigroup(H[X1;Y1]; O01) onto (H[X2;Y2]; O02). By 4.4, the restriction G of F to theset C[X1; Y1] is an isomorphism of the ternary semigroup (C[X1; Y1]; O001) onto(C[X2; Y2]; O002). Similarly as in 3.8 we denote by py1 the constant mapping ofX1 into Y1 with the value y1, by qx1 the constant mapping of Y1 into X1 withthe value x1, by uy2 the constant mapping of X2 into Y2 with the value y2,and by vx2 the constant mapping of Y2 into X2 with the value x2. Further-more, put b11(x1) = qx1; b12(y1) = py1 for any (x1; y1) 2 X1 � Y1 and de�neb1 = b12�b11. By 3.8, b1 is an isomorphism of the ternary semigroup (Y1�X1; o1)onto (C[X1; Y1]; O001). Similarly, we put b21(x2) = vx2 ; b22(y2) = uy2 for any(x2; y2) 2 X2 � Y2 and de�ne b2 = b22 � b21. Then b2 is an isomorphism of theternary semigroup (Y2�X2; o2) onto (C[X2; Y2]; O002). It follows that f = b�12 �G�b1is an isomorphism of the ternary semigroup (Y1�X1; o1) onto (Y2�X2; o2). Thismapping f will be said to be the trace of F .5.3.Main Theorem. Let X1; X2; Y1; Y2 be reexive mono-n-ary relationalstructures, F an isomorphism of the ternary semigroup (H[X1;Y1]; O01) onto(H[X2;Y2]; O02). Then the following assertions are equivalent.(i) There exist s-isomorphisms f1 : X1 ! X2 and f2 : Y1 ! Y2 such that Fis induced by the pair (f1; f2).



INDUCED ISOMORPHISMS OF CERTAIN TERNARY SEMIGROUPS 213(ii) The trace f of F is a decomposable s-isomorphism of the cardinal productY1 �X1 onto the cardinal product Y2 �X2.Proof. We put Xi = (Xi; ri); Yi = (Yi; si) for i = 1; 2. Furthermore, we denote- similarly as above - by G the restriction of F to C[X1; Y1], by b1 = b12 � b11the isomorphism of (Y1 �X1; o1) onto (C[X1; Y1]; O001), and by b2 = b22 � b21 theisomorphismof (Y2�X2; o2) onto (C[X2; Y2]; O002) de�ned in 3.8. Let f = b�12 �G�b1be the trace of F . We know that f is an isomorphism of the ternary semigroup(Y1 �X1; o1) onto (Y2 �X2; o2).Let (i) hold. Then F (p; q) = (f2 � p � f�11 ; f1 � q � f�12 ) for any element(p; q) 2 H[X1;Y1]. Particularly, if (x1; y1) 2 X1 � Y1 is arbitrary, we obtainF (py1; qx1)(x2; y2) = (f2 � py1 � f�11 ; f1 � qx1 � f�12 )(x2; y2) = (f2(y1); f1(x1))for any (x2; y2) 2 X2 � Y2 which implies that F (py1 ; qx1) = (uf2(y1); vf1(x1)).Since b1(y1; x1) = (b12(y1); b11(x1)) = (py1 ; qx1); b2(y2; x2) = (b22(y2); b21(x2)) =(uy2 ; vx2), we obtain (G�b1)(y1; x1) = G(py1 ; qx1) = F (py1; qx1) = (uf2(y1); vf1(x1))= b2(f2(y1); f1(x1)) which means that (b�12 � G � b1)(y1; x1) = (f2 � f1)(y1; x1).Thus, the trace f = b�12 � G � b1 of F is decomposable and its componentsf1 : X1 ! X2; f2 : Y1 ! Y2 are s-isomorphisms. It follows that f = f2 � f1 isan s-isomorphism of Y1 �X1 onto Y2 �X2 by 4.1. Thus (ii) holds.Suppose that (ii) holds. Then f is an s-isomorphism of Y1�X1 onto Y2�X2and is decomposable, i.e., f = f2 � f1 where f1 is a mapping of X1 into X2 andf2 is a mapping of Y1 into Y2. By 2.3, f1 is a bijection of X1 onto X2 and f2 is abijection of Y1 onto Y2. By 4.1, f1 is an s-isomorphismofX1 ontoX2 and f2 is an s-isomorphismofY1 ontoY2. We must prove that F (p; q) = (f2�p�f�11 ; f1�q�f�12 )holds for any (p; q) 2 H[X1;Y1].Let (p; q) 2 H[X1;Y1] be arbitrary. Put (u; v) = F (p; q), let x2 2 X2; y02 2 Y2be arbitrarily chosen elements. We de�ne(1) y2 = u(x2); x02 = v(y02); y1 = f�12 (y2); x1 = f�11 (x2); x01 = f�11 (x02);y01 = f�12 (y02):Put (2) y001 = p(x1); x001 = q(y01):By 3.12 we obtain O01((p; q); (py01 ; qx1); (py001 ; qx001 )) = (py001 ; qx001 ). Since F is anisomorphism of (H[X1;Y1]; O01) onto (H[X2;Y2]; O02), we obtain(3) G(b1(y001 ; x001)) = G(py001 ; qx001 ) = F (py001 ; qx001 ) =O02(F (p; q); F (py01; qx1); F (py001 ; qx001 )) = O02((u; v); G(py01; qx1); G(py001 ; qx001 )):By 4.4 there exist x002 ; x0002 in X2 and y002 ; y0002 in Y2 such that(4) G(py01; qx1) = (uy002 ; vx002 ); G(py001 ; qx001 ) = (uy0002 ; vx0002 ):We obtain(5) b2(y002 ; x002) = (uy002 ; vx002 ) = G(py01 ; qx1) = G(b1(y01; x1));(6) b2(y0002 ; x0002 ) = (uy0002 ; vx0002 ) = G(py001 ; qx001 ) = G(b1(y001 ; x001))



214 ANTONI CHRONOWSKI AND MIROSLAV NOVOTN�Ywhich implies that(7) (y002 ; x002) = (b�12 �G � b1)(y01; x1) = (f2 � f1)(y01; x1) = (f2(y01); f1(x1));(8) (y0002 ; x0002 ) = (b�12 �G � b1)(y001 ; x001) = (f2 � f1)(y001 ; x001) = (f2(y001 ); f1(x001)):These conditions imply(9) y002 = f2(y01); x002 = f1(x1); y0002 = f2(y001 ); x0002 = f1(x001):Taking (1) into account, we have(10) y002 = y02; x002 = x2:By (3), (4), we obtain(11) (uy0002 ; vx0002 ) = O02((u; v); (uy002 ; vx002 ); (uy0002 ; vx0002 )):By 3.12 we have (12) u(x002) = y0002 ; v(y002 ) = x0002and (10) implies (13) u(x2) = y0002 ; v(y02) = x0002 :By (13), (9), (2), (1), we obtain(14) u(x2) = y0002 = f2(y001 ) = f2(p(x1)) = f2(p(f�11 (x2)));(15) v(y02) = x0002 = f1(x001) = f1(q(y01)) = f1(q(f�12 (y02))):Thus, u(x2) = (f2 �p�f�11 )(x2); v(y02) = (f1 �q�f�12 )(y02) for an arbitrary element(x2; y02) 2 X2 � Y2. Hence F (p; q) = (u; v) = (f2 � p � f�11 ; f1 � q � f�12 ) for any(p; q) 2 H[X1;Y1]. Thus (i) holds.6. EXAMPLES6.1. Example. Put X1 = fx11; x12g; X2 = fx21; x22g; Y1 = fy1g; Y2 = fy2g,r1 = f(x11; x11); (x11; x12); (x12; x12)g; r2 = f(x21; x21); (x22; x22)g; s1 = f(y1; y1)g,s2 = f(y2; y2)g; X1 = (X1; r1); X2 = (X2; r2); Y1 = (Y1; s1); Y2 = (Y2; s2).Suppose that the elements x11; x12; x21; x22; y1; y2 are mutually di�erent.Then X1; X2; Y1; Y2 are reexive mono-2-ary relational structures. Clearly,H(X1;Y1) = fpy1g; H(Y1;X1) = fqx11; qx12g; H(X2;Y2) = fuy2g; H(Y2;X2) =fvx21 ; vx22g. Hence H[X1;Y1] = f(py1 ; qx11); (py1 ; qx12)g;H[X2;Y2] =f(uy2 ; vx21); (uy2 ; vx22)g. Thus C[X1; Y1] = H[X1;Y1]; C[X2; Y2] = H[X2;Y2].Put F (py1; qx11) = (uy2 ; vx21); F (py1 ; qx12) = (uy2 ; vx22). By 3.2 and 3.7, F isan isomorphism of (H[X1;Y1]; O01) onto (H[X2;Y2]; O02). Its trace f is de�ned byf(y1; x11) = (y2; x21); f(y1; x12) = (y2; x22). Clearly, f is a decomposable bijectionof Y1 � X1 onto Y2 � X2. We have f = f2 � f1 where f2(y1) = y2; f1(x11) =x21; f1(x12) = x22. Since (x11; x12) 2 r1; (x21; x22) 62 r2, the bijection f1 is nos-isomorphism of X1 onto X2. Thus, f is no s-isomorphism of Y1 � X1 ontoY2 �X2 by 4.1. By 5.3, F is not induced by any pair of s-isomorphisms.6.2. Example. PutX1 = fx11; x12g; X2 = fx21; x22g; Y1 = fy11; y12g, Y2 = fy21;y22g; r1 = f(x11; x11); (x12; x12)g; r2 = f(x21; x21); (x22; x22)g, s1 = f(y11; y11);



INDUCED ISOMORPHISMS OF CERTAIN TERNARY SEMIGROUPS 215(y12; y12)g; s2 = f(y21; y21); (y22; y22)g; X1 = (X1; r1), X2 = (X2; r2);Y1 =(Y1; s1); Y2 = (Y2; s2). Suppose that the elements x11; x12; x21; x22; y11; y12; y21;y22 are mutually di�erent. Clearly H[X1;Y1] = T [X1; Y1] and H[X2;Y2] =T [X2; Y2]. Put h1(x11) = y21; h1(x12) = y22; h2(y11) = x21, h2(y12) = x22; h =h2 � h1. For any (p; q) 2 H[X1;Y1] put F 0(p; q) = (h2 � p � h�11 ; h1 � q � h�12 ).Since h1 is an s-isomorphism of X1 onto Y2 and h2 is an s-isomorphism ofY1 onto X2, F 0 is an isomorphism of the ternary semigroup (H[X1;Y1]; O01) onto(H[Y2;X2]; O03) by 5.3 where we have O03((v1; u1); (v2; u2); (v3; u3)) =(v1 � u2 � v3; u1 � v2 � u3) for any (v1; u1); (v2; u2); (v3; u3) in H[Y2;X2]. Forany (v; u) 2 H[Y2;X2] put F 00(v; u) = (u; v). If (v1; u1); (v2; u2); (v3; u3) arearbitrary elements in H[Y2;X2], we have F 00(O03((v1; u1); (v2; u2); (v3; u3))) =F 00(v1�u2�v3; u1�v2�u3) = (u1�v2�u3; v1�u2�v3) = O02((u1; v1); (u2; v2); (u3; v3))= O02(F 00(v1; u1); F 00(v2; u2); F 00(v3; u3)) which implies that F 00 is a homomorphismof (H[Y2;X2]; O03) into (H[X2;Y2]; O02). Since F 00 is a bijection, it is an iso-morphism. It follows that F 00 � F 0 is an isomorphism of the ternary semigroup(H[X1;Y1]; O01) onto (H[X2;Y2]; O02) assigning the ordered pair (h1 � q � h�12 ;h2 � p � h�11 ) 2 H[X2;Y2] to any (p; q) 2 H[X1;Y1]. Put F = F 00 � F 0.The restriction G of F to the set C[X1; Y1] has the following proper-ties: G(py11 ; qx11) = F (py11 ; qx11) = F 00(F 0(py11 ; qx11)) = F 00(h2 � py11 � h�11 ; h1 �qx11�h�12 ) = F 00(vx21 ; uy21) = (uy21 ; vx21) and, similarly,G(py12 ; qx11) = (uy21 ; vx22);G(py11 ; qx12) = (uy22 ; vx21); G(py12; qx12) = (uy22 ; vx22). Thus, the trace f ofF de�ned by f = b�12 � G � b1 satis�es the following conditions: f(y11; x11) =(y21; x21); f(y12; x11) = (y21; x22); f(y11; x12) = (y22; x21); f(y12; x12) = (y22; x22).This mapping f is no decomposable mapping of Y1�X1 onto Y2�X2. Indeed, iff = f2�f1, then f(y11; x11) = (y21; x21) implies that f2(y11) = y21; f1(x11) = x21which entails that f(y11; x12) = (f2(y11); f1(x12)) = (y21; f1(x12)). But we havef(y11; x12) = (y22; x21) which implies that y21 = y22; this is a contradiction. Thus,the trace of F is not decomposable and, therefore, F is not induced.6.3. Example. Let X1; X2; Y1; Y2 be nonempty sets, suppose that f1 is abijection of X1 onto X2, f2 a bijection of Y1 onto Y2. Put r1 = X1 � X1; r2 =X2 � X2; s1 = Y1 � Y1; s2 = Y2 � Y2; X1 = (X1; r1); X2 = (X2; r2); Y1 =(Y1; s1); Y2 = (Y2; s2). Then, clearly, H[X1;Y1] = T [X1; Y1]; H[X2;Y2] =T [X2; Y2], f1 is an s-isomorphism of X1 onto X2, and f2 is an s-isomorphism ofY1 onto Y2. Put F (p; q) = (f2 � p � f�11 ; f1 � q � f�12 ) for any (p; q) 2 H[X1;Y1].Then F is an isomorphism of H[X1;Y1] onto H[X2;Y2] that is induced by thepair (f1; f2) of s-isomorphisms. References1. Chronowski, A., On ternary semigroups of homomorphisms of ordered sets, ArchivumMath-ematicum Brno 30 (1994), 85-95.2. Chronowski, A., Novotn�, M., Ternary semigroups of morphisms of objects in categories,Archivum Mathematicum Brno 31 (1995), 147-153.3. McKenzie, R. N., McNulty, G. F., Taylor, W. F., Algebras, lattices, varieties, Vol. I.,Wadsworth & Brooks/Cole, Monterey 1987.
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