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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 239 { 249SOME NATURAL OPERATORSON VECTOR FIELDSJi�r�� Tom�a�sAbstract. We determineall natural operators transformingvector �elds on a man-ifold M to vector �elds on T �T 21M , dimM � 2, and all natural operators trans-forming vector �elds on M to functions on T �TT 21M , dimM � 3. We describesome relations between these two kinds of natural operators.0. PreliminariesWe present a contribution to the theory of natural operators and we followthe basic terminology used in [6]. Our starting point was a paper by Kobak,[2], in which all natural operators T ! TT �T were determined. In Section 1we �nd all natural operators T ! TT �T 21 , where T 21 denotes the bundle of (1; 2)-velocities. In Section 2 we solve a related problem of �nding of all natural operatorstransforming vector �elds into functions on T �TT 21 . Our approach is heavily basedon the technique of Weil bundles, [6].All natural bundles and operators are considered on Mfm, the category ofsmooth m-dimensional manifolds and their local di�eomorphisms. Let Mf bethe category of smooth manifolds and smooth maps and FM be the category of�bered manifolds.Let A = E(k)=I be a Weil algebra, where E(k) is the algebra of germs of smoothfunctions Rk ! R at zero and I is an ideal of �nite codimension. We remind thecovariant de�nition of the Weil bundle functor TA : Mf ! FM, [6],[3]. Twomaps f; g : Rk ! M satisfying f(0) = g(0) = x are said to be I-equivalent, iffor every germ h : M ! R at x it holds h � f � h � g 2 I. Classes of such anequivalence relation are called A-velocities and are denoted by jAf . They are theelements of TAM . For a smooth map f :M ! N we de�ne TAf : TAM ! TBMby TAf(jAg) = jA(f � g) for all jAg 2 TAM .Given two Weil algebras A;B, we denote by Hom(A;B) the set of all algebrahomomorphisms. A classical result reads there is a bijection between the elements1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: vector �eld, natural bundle, natural operator, Weil bundle.Received March 25, 1995.



240 JI�R�I TOM�A�Sof Hom(A;B) and natural transformations TA ! TB . We shall need the followingform of the result. Let A = E(k)=I; B = E(p)=J and f : (Rk; 0) ! (Rp; 0) bea smooth map. Then jAf 2 TA0 Rp is said to be a B-admissible A-velocity i�jA(g � f) = 0A for all g 2 J . It can be easily seen, that if jAf 2 TA0 Rp is a B-admissible A-velocity, then jA(g � f) depends only on jBg for every g : Rp !M .The main result of [3] is that every B-admissible A-velocity X = jAf de�nes anatural transformation iX : TBM ! TAM by jBg 7! jA(g � f). Moreover, everynatural transformation TB ! TA is of this type. It is proved in [6], that all thoseresults remain valid if we restrict ourselves to the category Mfm.The group Aut(A) of all algebra automorphisms is a closed subgroup in GL(A),so it is a Lie subgroup. Every element D of its Lie algebra Aut(A) is tangentto a one-parameter subgroup d(t) and determines a vector �eld D(M ) tangent to(d(t))M in t = 0 on TAM . Thus we have an absolute natural operator T ! TTAsuch that X 7! D(M ) for every vector �eld X. This operator is denoted by op(D),[6] ,[5] .Furthermore, for every natural bundle F we have the ow operator F , de�nedby F(X) = @@t j0F (F lXt ).According to [6],[5], we have the following action of A on tangent vectors ofTAM . If m : R� TM ! TM is the multiplication of the tangent vectors on Mby reals, applying the functor TA we obtain TAm : TAR� TATM ! TATM .Since TATM = TA
DM and TAR= A, where D is the algebra of dual numbers,we have constructed a map A � TTAM ! TTAM . The coordinate expressionof the action of c 2 A is c(a1; : : : ; am; b1; : : : ; bm) = (a1; : : : ; am; cb1; : : : ; cbm) forall a1; : : : ; am; b1; : : : ; bm 2 A. This is a natural a�nor [5] and we denote it byafM (c) : TTAM ! TTAM .Proposition 1 ([6]). All natural operators T ! TTA are of the form af(c) �T A + op(D) for all c 2 A, D 2 Aut(A).In the special case A = R[x]=
xr+1� = D r1 we have TAM = T r1M = Jr0 (R;M ).Using the standard coordinates (xi; yi1; : : : ; yir; Xi; Y i1 ; : : : ; Y ir ) on TT r1M , we �ndafM (x+
xr+1�)(Xi; Y i1 ; : : : ; Y ir ) = (0; Xi; Y i1 ; : : : ; Y ir�1). Let QM denote afM (x+
xr+1�).Proposition 2 ([6]). All natural operators T ! TT r1 are linearly generated byT r1 ; Q�T r1 ; : : : ; Qr �T r1 ; L;Q�L; : : : ; Qr�1 �L, where L is the generalized Liouvillevector �eld having the coordinate form Xi = 0; Y is = syis.1. Natural Operators Transforming Vector Fields to T �T 21According to Proposition 1 we have �ve generating natural operators T ! TT 21and according to [2] we have two generating natural operators T ! TT �, the owoperator T �(xi; pi) = Xi @@xi � Xji pj @@pi and the Liouville �eld L(xi; pi) = pi @@pi ,where (xi; pi) are the standard coordinates on T �M .Composing these two sets of generators we obtain the following natural opera-tors T ! TT �T 21 : A1 = T � � T 21 , A2 = T � � (Q � T 21 ), A3 = T � � (Q2 � T 21 ) andabsolute operators A4 = T � � L, A5 = T � � (Q � L), A6 = L.



NATURAL OPERATORS : : : 241Let the canonical coordinates xi on Rm induce the coordinates yi = @xi@� , zi =@2xi@�2 on T 21Rm, while the additional coordinates on T �T 21Rm are de�ned by pidxi+qidyi + ridzi. Further, let xi induce the additional coordinates !i on T �Rm andui = @xi@� , i = @!i@� ; wi = @2xi@�2 ; �i = @2!i@�2 on T 21 T �Rm.We have the natural equivalence s : T 21 T � ! T �T 21 of Cantrijn et al [1](1) (xi; !i; vi; i; wi; �i) 7! (xi; yi; zi; pi; qi; ri)yi = vi; zi = wi; pi = �i; qi = 2i; ri = !iThus we have two other natural operators: A7 = Ts((Q � T 21 ) � L � s�1) andA8 = Ts((Q2 � T 21 ) � L � s�1).Then the coordinate expressions of our operators areA1(X) = Xi @@xi +Xijyj @@yi + (Xijzj +Xijkyjyk) @@zi � (Xji pj +Xjikykqj++Xjikzkrj +Xjiklykylrj) @@pi � (Xji qj + 2Xjikykrj) @@qi �Xji rj @@riA2(X) = Xi @@yi + 2Xijyj @@zi � (Xji qj + 2Xjikykrj) @@pi � 2Xji rj @@qiA3(X) = 2Xi @@zi � 2Xji rj @@pi A4 = yi @@yi + 2zi @@zi � qi @@qi � 2ri @@riA5 = 2yi @@zi � 2ri @@qi A6 = pi @@pi + qi @@qi + ri @@riA7 = 2ri @@qi + qi @@pi A8 = 2ri @@piLet pM : FM ! M be a natural bundle of order r. According to the generaltheory, [6] ,there is a bijective correspondence between natural operators AM : T !TFM and natural transformationsAM : JrTM�MFM ! TFM over the identityof FM , which is given by AM (jrxX; y) = AMX(y), x = pM (y). Furthermore, thereis a bijection between these natural transformations and equivariant maps of thestandard �bers in question. Since T �T 21 is a natural bundle of order three, we aresearching for equivariant maps (J3T )0Rm� (T �T 21 )0Rm ! (TT �T 21 )0Rm. Let theadditional coordinates on TT �T 21 be(2) W i = dxi, Y i = dyi, Zi = dzi, Pi = dpi, Qi = dqi, Ri = dri



242 JI�R�I TOM�A�SWe evaluate the necessary transformation laws of the action of G4m on thestandard �bers. Denote by (aij1 ; : : : ; aij1:::jr ) the canonical coordinates on Grm andindicate by tilde the coordinates of the inverse element. The action of G4m on(T �T 21 )0Rm looks as follows�yi = aijyj �zi = aijzj + aijkyjyk �ri = ~ajirj �qi = ~aji qj + 2~ajikakl ylrj(3) �pi = ~ajipj + ~ajikakl ylqj + ~ajikakl zlrj + ~ajikaklmylymrj + ~ajiklakmalnymynrjLet Br+1m = fjr+10 f ; jr0f = jr0idRmg. Then�qi = qi � 2ajikykrj for the action of B2m(4) �pi = pi � ajiklykylrj for the action of B3mand(5) �Xij1 :::jr = Xi + aij1:::jrkXk for the action of Br+1m�Xij1j2 = Xij1j2 � aiklalj1j2Xk � akj1j2Xik + aij1kXkj2 + aij2kXkj1for the action of B2m;where Xij1:::jr indicates the r-jets of a vector �eld X. Furthermore(6) �W i = aijW j �Ri = ~ajiRj and it holds�Y i = aijY j �Qi = ~ajiQj �Zi = aijZj �Pi = ~ajiRjwhenever all the previous coordinates are zeros. Moreover, only Pi are changedby B4m and it holds(7) �Pi = Pi�ajiklmykylWmrjFinally we need the following lemma. LetVp;q = V � : : :� V| {z }p�times � q�timesz }| {V � � : : :� V �;where V denotes the vector space Rm with the standard action of G1m.Lemma 3 ([6]). (a) All smooth G1m-equivariant maps Vp;q ! V are of the formpXj=1 gj(hxk; yli)xj;where gj : Rpq ! R are any smooth functions, j; k = 1; : : : ; p, l = 1; : : : ; q.(b) All smooth G1m-equivariant maps Vp;q ! V � are of the formqXl=1 hl(hxk; yhi)yl;where hl : Rpq ! R are any smooth functions, k = 1; : : : ; p, h; l = 1; : : : ; q.The proof of the main result essentially uses the following two lemmas.



NATURAL OPERATORS : : : 243Lemma 4. Let h : (J3T )0Rm � (T �T 21 )0Rm ! Rm be an equivariant smoothmapping, m � 2. Then it holds(8) W i = g1(I1; : : : ; I5)Xi + g2(I1; : : : ; I5)yiwhere g1; g2 are any smooth functions R5! R and I1; : : : ; I5 are invariants of theform(9) I1 = Xipi +Xijyjqi + (Xijzj +Xijkyjyk)ri I2 = Xiqi + 2XijyjriI3 = Xiri I4 = yiqi + 2ziri I5 = yiriProof. The �rst formula from (5) implies, thatW i = hi(j30X; yi; zi; pi; qi; ri) doesnot depend on Xij1j2j3 . Therefore we are searching equivariant maps (J2T )0Rm�(T �T 21 )0Rm! Rm.Let S0 be C0 � (T �T 21 )0Rm, where C0 is the set of all 2-jets of constant vector�elds on Rm at zero. Since S0 is G1m-invariant and W i = aijW j, the equivarianceand Lemma 1 yield W i = �1Xi + �2yi + �3zi on S0, where �1; �2; �3 are somefunctions of Xipi; Xiqi; Xiri; yipi; yiqi; yiri; zipi; ziqi; ziri. Since Xipi; Xiqi; Xiricoincide with I1; I2; I3 on S0, �1; �2; �3 can be considered as functions of argumentsI1; I2; I3; I4; I5 and yipi; zipi; ziqi; ziri.Let S1 � S0 be the subset of all elements of S0 satisfying the following condi-tions: Xi and yi as well as Xi and zi as well as yi and zi are linearly independentvectors and ri is a non-zero vector. Obviously, S1 is a dense subset of S0. Leti : G1m ! G3m be the canonical injection. Fixing Xi; yi; zi; pi; qi; ri we can �ndsome j30f 2 i(G1m) transforming Xi to �i1, zi to �i2, while the other values aretransformed to the bared ones. This is possible on S1 due to the conditions fromits de�nition.Let ` denote, in general, the left action of the r-th order di�erential group on thestandard �ber of an r-th order natural bundle. We have hi(j20X; yi; zi; pi; qi; ri) =`(j30f�1; `(j30f; hi(j20X; yi; zi; pi; qi; ri))) = `(j30f�1; �1�i1+�2�yi+�3�i2), where thearguments of �1; �2; �3 are I1; : : : I5 and �yi�pi; �zi�pi, �zi�qi; �zi�ri satisfying �zi = �i2. Itfollows from the equivariance of h and the fact, that the last four arguments of�1; �2; �3 are G1m-invariants.The de�nition of S1 implies, that there is j0 � 2 such that yj0 6= 0. Leti1 : B2m ! G3m denote the canonical inclusion. Taking j30f1 2 i1(B2m) with allaijk = 0 except a2j0j0 we can annihilate all expresions with zi. It follows from(5) that j30f1 stabilizes j20( @@x1 ). But we changed the value of �yi�pi, which can beannihilated by taking a suitable j30f2 2 B3m with all aijkl = 0 except ak0j0j0j0 , wherek0 is an index such that �rk0 6= 0. It follows directly from (4) and (5), that j30f2stabilizes j20 @@x1 .Thus we obtain, that W i = `(j30f�1; �1�i1 + �2�yi) on S1, where the last fourarguments of �1; �2 are zeros, while the invariants are not changed. So we haveW i = `(j30f�1; �1(I1; : : : ; I5; 0; 0; 0; 0)�i1+ �2(I1; : : : ; I5; 0; 0; 0; 0)�yi) == �1(I1; : : : ; I5; 0; 0; 0; 0)Xi+ �2(I1; : : : ; I5; 0; 0; 0; 0)yi;



244 JI�R�I TOM�A�Swhich follows from the equivariance of the map h. Substituting gi(I1; : : : ; I5) for�i(I1; : : : ; I5; 0; 0; 0; 0), i = 1; 2, we have(10) W i = g1(I1; : : : ; I5)Xi + g2(I1; : : : ; I5)yi on S1:Since S1 is dense in S0, this holds on S0 as well. Taking into account the equiv-ariance of h, (10) can be extended to (J2T )0Rm � (T �T 21 )0Rm, which completesthe proof. �The following lemma is the dualization of Lemma 4 and since its proof is almostthe same as that of Lemma 4, we omit it.Lemma 5. Let h : (J3T )0Rm � (T �T 21 )0Rm ! Rm� be an equivariant smoothmapping, m � 2. Then(11) Ri = g1(I1; : : : ; I5)riwhere g : R5! R is a smooth function.Proposition 6. For m � 2, every natural operator A : T ! TT �T 21 is of the formA =P8j=1 hj(I1; : : : ; I5)Aj , where hj : R5! R are some smooth functions andA1 = T � � T 21 A2 = T � � (Q � T 21 ) A3 = T � � (Q2 � T 21 )(12) A4 = T � � L A5 = T � � (Q � L) A6 = LA7 = Ts((Q � T 21 ) � L � s�1) A8 = Ts((Q2 � T 21 ) � L � s�1)Proof. In the whole proof we use the coordinates (2). Let A : T ! TT �T 21 be anatural operator and h be the corresponding equivariant map. Since �W i = aijW j ,applying Lemma 4 we get W i = g1(I1; : : : ; I5)Xi + g2(I1; : : : ; I5)yi. Taking thenatural operator B1 = A� g1(I1; : : : ; I5)T � � T 21 we get its equivariant map in theform W i = g2(I1; : : : ; I5)yi.First of all we prove, that g2 is the zero function. Let �=(j30( @@x1 ); �i2; zi; pi; qi; ri)be an element of (J3T )0Rm� (T �T 21 )0Rm satisfying the existence of a non-zero ri.Let j0 be the least index, for which rj0 6= 0, and let j40f 2 B4m satisfy aijklm = 0except aj02222. Then the formula (7) implies, that we can change the value of P2stabilizing �, whenever g2(p1; q1; r1; q2+2ziri; r2) 6= 0. Thus we obtain, that g2 isthe zero function on R5.Now, put h1 = g1 and consider the natural operator B1. Since its equivariantmap satis�es W i = 0, the formula (6) and Lemma 4 yield Y i = g3(I1; : : : ; I5)Xi+g4(I1; : : : I5)yi. We can subtract g3(I1; : : : ; I5)A2+ g4(I1; : : : I5)A4 and write h2 =g3 and h4 = g4. We can iterate these steps using the formula (6), Lemmas 4 and5. This way we prove our claim. �



NATURAL OPERATORS : : : 2452. Natural Operators T ! C1(T �TT 21 ;R)In this part we are searching all natural operators transforming vector �elds tofunctions on T �TT 21 . We use essentially the following result by Kol�a�r , [4]. Let Fbe a natural bundle, Y : FM ! TFM be a vector �eld and eY denote the functionT �FM ! R de�ned by eY (w) = hY (p(w)); wi, where p is the cotangent bundleprojection. Let F have the following properties I,II,III.I. The set NF of all natural operators T ! TFM is a �nite dimensional vectorspace. (This property is satis�ed for every Weil bundle.)Let N�F be the dual vector space and Nop(T; T �F � R) denote the set of allnatural operators T ! C1(T �F;R). For every smooth function h : N�F ! RKol�a�r constructed the following natural operator Dh : T ! C1(T �F;R). Fixinga basis A1; : : : ; An of NF , its dual vector space N�F can be identi�ed with Rn andwe can put (Dh)MX = h(Â1;MX; : : : ; Ân;MX) : T �FM ! R. Thus we obtain amapping C1(N�F ;R)! Nop(T; T �F �R).II. There exists a smooth function j : N�F ! (T �F )0Rm satisfying(13) hA; ui = Â( @@x1 )(ju)for every A 2 NF , u 2 N�F .Let Di�10Rm denote the stability group of the origin and the vector �eld @@x1 .III. The orbit of j(N�F ) with respect to Di�10Rm is dense in (T �F )0Rm.Proposition 7 ([4]). If the assumptions I, II, III are satis�ed, then all naturaloperators T ! C1(T �F;R) are of the form Dh for all h 2 C1(N�F ;R).This result enables searching for natural operators T ! C1(T �F;R), whereF = TA is a Weil bundle. Let TA be of order r. In order to �nd all the naturaloperators T ! TT �TA we can use the following procedure consisting of four steps.(a) We �nd a base B1; : : :Bk of all natural operators T ! TTA.(b) We take some immersion element i 2 TA0 Rm. Over the element i we have aspace P in (T �TA)0Rm, on which the stabilizing group H of i and jr0( @@x1 ) acts.(c) We compute Ii = fBi( @@x1 )jP . If possible, we choose coordinates w1; : : : ; wk;z1; : : : ; zl on P such that wi = Ii.(d) We prove, that we can annihilate z1; : : : ; zl on a dense subset of P by thegroup H.Then every natural operator T ! C1(T �F;R) is smoothly generated byfB1; : : : ;fBk. Indeed we can de�ne(14) j : N�F ! (T �F0)Rm; b1B1 + � � �+ bkBk 7! (b1; : : : bk; 0; : : : ; 0)which clearly satis�es (13). The denseness of the orbit j(N�F ) is guaranteed by(d).



246 JI�R�I TOM�A�SNow we use this procedure for the bundle TT 21 . First of all we �nd all naturaloperators T ! TTT 21 . Since TT 21 = TD
D21, where D 
D 21 = R[t; � ]= 
t2; �3�, everyelement from TT 21M is of the form xi+ zi1� + 12zi2�2+ yit+wi1t� + 12wi2t�2, where(xi; zi1; zi2; yi; wi1; wi2) are the canonical coordinates on TT 21M .Lemma 8. All natural operators T ! TTT 21 are linearly generated by the fol-lowing onesN1 = T � T 21 N2 = af(� + 
t2; �3�)(T � T 21 )N3 = af(t + 
t2; �3�)(T � T 21 ) N4 = af(�2 + 
t2; �3�)(T � T 21 )N5 = af(t�+
t2; �3�)(T � T 21 ) N6 = af(t�2 + 
t2; �3�)(T � T 21 )N7 = yi @@yi + wi1 @@wi1 + wi2 @@wi2 N8 = zi1 @@zi1 + 2zi2 @@zi2 + wi1 @@wi1 + 2wi2 @@wi2N9 = yi @@wi1 + 2wi1 @@wi2 N10 = 2yi @@wi2N11 = 2zi1 @@zi2 + 2zi2 @@wi2 N12 = zi1 @@wi1 + 2zi2 @@wi2N13 = 2zi1 @@wi2Proof. By Proposition 1 we have to determine the absolute operators. In ourcase A = D 
 D21 . Every A-velocity in question is of the form(15) at+ b� + c�2 + dt� + et�2ft + g� + h�2 + jt� + kt�2Taking into account the conditions of admissibility we obtain b = 0, ac = 0 and3fg2 = 0. Since every A-admissible A-velocity induces a homomorphism A ! Aand we are searching for curves in Aut(A) in a neighbourhood of the unit, we canrestrict ourselves to the connected component of the unit in Aut(A). Then we havec = 0 and f = 0. Renaming the parameters in (15), all considered automorphismsA! A are given by(16) t 7! at+ bt� + ct�2� 7! d� + e�2 + ft� + gt�2By Proposition 1 we �nd the operators N7; : : : ; N13 in the form of the curves inAut(A) de�ned by reparametrization, e.g. N7 by reparametrization t 7! at; � 7! �or N8 by reparametrization � 7! b�; t 7! t. �Now we prove the main result of this Section.



NATURAL OPERATORS : : : 247Proposition 9. All natural operators TRm! C1(T �TT 21Rm;R), m � 3, are ofthe form(17) h(fN1;fN2; : : : ;gN13);where h : R13! R is an arbitrary smooth function and N1; : : : ; N13 are the naturaloperators from Lemma 8.Proof. We apply the procedure explained before Lemma 8. According to theimmersion theorem, we can consider i in the formyi = �i2; zi1 = �i3; zi2 = wi1 = wi2 = 0for all i = 1; : : : ;m. Let qidxi+ r1i dzi1 + r2i dzi2 + pidyi + s1i dwi1 + s2i dwi2 de�ne theadditional coordinates on T �TT 21M . Taking the space P over the element i, weobtain the following values of Ii = fNi( @@x1 )jPI1 = q1; I2 = r11; I3 = p1; I4 = r21; I5 = s11; I6 = s21I7 = p2; I8 = r13; I9 = s12; I10 = s22; I11 = r23; I12 = s13; I13 = s23:The stabilizing group H � G4m of the element i and @@x1 can be considered as asubgroup of idR�Di�0Rm�1. The group H acts in the following way:(18) �zi1 = aijzj1 �zi2 = aijzj2 + aijkzj1zk1 �yi = aijyj�wi1 = aijwj1 + aijkzj1yk �wi2 = aijwj2 + aijkzj2yk + 2aijkzj1wk1 + aijklzj1zk1 ylfor i; j � 2. It is useful to annihilate the excessive coordinates extra for m = 3and m � 4.m = 3: We must annihilate p3; r12; r22 and q2; q3. It follows from the action of H,that aij = �ij , and for i; j � 2 it holds ai33 = ai23 = ai233 = 0. Taking into accountthe action of B4m \H on T �TT 21 , we have �q2 = q2�aj2233s2j ; �q3 = q3�aj2333s2j , sowe can annihilate q2; q3 by means of a22233; a22333 in the case s22 6= 0. FurthermoreB3m\H turns p3 to �p3 = p3�aj333s2j and r12 to �r12�2aj223s2j . Thus we can annihilatep3 and r12 by means of a2333 and a2223 if s22 6= 0. It remains to annihilate r22. SinceB2m \H turns r22 to �r22 = r22 � aj22s2j , we can achieve r22 = 0 by means of a222 in thecase of non-zero s22. Since the condition s22 6= 0 determines a dense subset in P ,our claim is proved for m = 3.In the case m � 4 we put aij = �ij . Analogously to the case m = 3 we obtainai33 = ai23 = ai233 = 0 from (18). We can annihilate qi for i � 2 by means of a2i233in the case s22 6= 0, pi by a2i33 for i � 3 and r1i by a2i23 for i = 2 or i � 4 in thecase s22 6= 0. It remains to annihilate r2i for i = 2 or i � 4, which can be done bymeans of a2i2 in the case s22 6= 0. Since the condition s22 6= 0 de�nes a dense subsetof P , our claim is proved for the case m � 4 too. �



248 JI�R�I TOM�A�SNow we show, how the generating operators T ! TT �T 21 can be found bymeans of the natural operators T ! C1(T �TT 21 ;R). Let G be a natural bundle.A natural operator T ! C1(T �G;R) is called a natural T -function. Everynatural operator D : T ! TG determines a natural T -function ~DM : T �GM ! R,de�ned by ~DM (w) = hDM (qw); wi, w 2 T �GM , q : T �G! G, which is linear on�bers. Conversely, let fM be a natural T -function linear on �bers T �(GM ). ThenfM jT �z (GM ), where z 2 GM , is identi�ed with an element ~fM (z) from the dualvector space Tz(GM ). Thus we obtain a natural operator ~fM : T ! TG and acanonical bijection between natural operators T ! TG and natural T -functions,which are linear on �bers of T �(GM ).Let xi be the standard coordinates on Rm and pidxi de�ne the additionalcoordinates pi on T �Rm. Let xi; pi induce the coordinates Xi1 = dxi,Pi = dpion TT �Rm. We can also de�ne the additional coordinates �i; �i on T �T �Rm by�idxi + �idpi. Furthermore, let xi induce the coordinates Y i = dxi on TRm andthe additional coordinates �i,�i on T �TRm be de�ned by �idxi + �idY i.We have the natural equivalence s : TT � ! T �T by Modugno, Stefani, [8], andthe natural equivalence t : TT � ! T �T � by Kol�a�r, Radziszewski, [7],(19) s(xi; pi; Xi1; Pi) = (xi; Y i; �i; �i); where Y i = Xi1; �i = Pi; �i = pit(xi; pi; Xi1; Pi) = (xi; pi; �i; �i); where �i = Pi; �i = �Xi1. Let the standard coordinates xi on Rm induce the coordinates zi1 = @xi@� ,zi2 = @2xi@�2 on T 21Rm and the additional coordinates on T �T 21Rm be de�ned bypidxi + s1i dzi1 + s2i dzi2. Further, de�ne the additional coordinates on T �T �T 21Rmby qidxi + r1i dzi1 + r2i dzi2 � yidpi �wi1ds1i � wi2ds2i .Clearly, N : T ! C1(T �TT 21 ;R) is a natural operator if and only if A =N � s � t�1 is a natural operator T ! C1(T �T �T 21 ;R).Transforming all the generating natural operators T ! C1(T �TT 21 ;R) into thegenerating natural operators T ! C1(T �T �T 21 ;R) and among the transformedones selecting those, which are linear on �bers over T �T 21 , we �nally obtain thenatural operators A1; A2; A3; A4; A5; A6; A7; A8 from Section 1.I thank Prof. I. Kol�a�r for his useful help and suggestions.References[1] Cantrijn, F., Crampin, M., Sarlet, W. and Saunders, D., The canonical isomorphism be-tween T kT �M and T �T kM , C. R. Acad. Sci. Paris 309 (1989), 1509-1514.[2] Kobak, P., Natural liftings of vector �elds to tangent bundles of 1-forms, MathematicaBohemica 116 (1991), 319-326.[3] Kol�a�r, I., Covariant Approach to Natural Transformations of Weil Bundles, Comment.Math. Univ. Carolinae (1986).



NATURAL OPERATORS : : : 249[4] Kol�a�r, I., On Cotagent Bundles of Some Natural Bundles, to appear in Rendiconti delCircolo Matematico di Palermo.[5] , On the Natural Operators on Vector Fields, Ann. Global Anal. Geometry 6 (1988),109-117.[6] Kol�a�r, I., Michor, P. W., Slov�ak, J., Natural Operations in Di�erential Geometry, Springer{ Verlag, 1993.[7] Kol�a�r, I., Radziszewski, Z., Natural Transformations of Second Tangent and CotangentBundles, Czechoslovak Math. (1988), 274-279.[8] Modugno, M., Stefani, G., Some results on second tangent and cotangent spaces, Quadernidell'Universit�a di Lecce (1978).Ji�r�� Tom�a�sDepartment of Algebra and GeometryFaculty of ScienceMasaryk UniversityJan�a�ckovo n�am 2a662 95 Brno, CZECH REPUBLIC
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