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SOME NATURAL OPERATORS
ON VECTOR FIELDS

JIRf ToMAS

ABSTRACT. We determine all natural operators transforming vector fields on a man-
ifold M to vector fields on T*TfM7 dim M > 2, and all natural operators trans-
forming vector fields on M to functions on T*TTZM, dimM > 3. We describe
some relations between these two kinds of natural operators.

0. PRELIMINARIES

We present a contribution to the theory of natural operators and we follow
the basic terminology used in [6]. Our starting point was a paper by Kobak,
[2], in which all natural operators T" — TT*T were determined. In Section 1
we find all natural operators T'— TT*T?, where T? denotes the bundle of (1,2)-
velocities. In Section 2 we solve a related problem of finding of all natural operators
transforming vector fields into functions on T*TTZ. Our approach is heavily based
on the technique of Weil bundles, [6].

All natural bundles and operators are considered on Mf,,, the category of
smooth m-dimensional manifolds and their local diffeomorphisms. Let Mf be
the category of smooth manifolds and smooth maps and FM be the category of
fibered manifolds.

Let A = E(k)/I be a Weil algebra, where E(k) is the algebra of germs of smooth
functions R¥ — R at zero and I is an ideal of finite codimension. We remind the
covariant definition of the Weil bundle functor 74 : Mf — FM, [6],[3]. Two
maps f,g : R®* — M satisfying f(0) = ¢(0) = z are said to be I-equivalent, if
for every germ h : M — R at z it holds ho f — ho g € I. Classes of such an
equivalence relation are called A-velocities and are denoted by j# f. They are the
elements of T4 M. For a smooth map f : M — N we define TAf : TAM — TP M
by T4f(j%g) = j4(f o g) for all j4g € TAM.

Given two Weil algebras A, B, we denote by Hom(A, B) the set of all algebra
homomorphisms. A classical result reads there is a bijection between the elements
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of Hom(A, B) and natural transformations 74 — T2, We shall need the following
form of the result. Let A = E(k)/I, B = E(p)/J and f : (R* 0) — (R?,0) be
a smooth map. Then j4f € T{R? is said to be a B-admissible A-velocity iff
jA(go f) = 04 for all g € J. It can be easily seen, that if j4f € T{RP is a B-
admissible A-velocity, then j4(g o f) depends only on jZg for every g : RF — M.
The main result of [3] is that every B-admissible A-velocity X = j4f defines a
natural transformation % : T2 M — TAM by jBg — j4(g 0 f). Moreover, every
natural transformation 7% — T4 is of this type. It is proved in [6], that all those
results remain valid if we restrict ourselves to the category M f,,.

The group Aut(A) of all algebra automorphismsis a closed subgroup in GL(A),
so it is a Lie subgroup. Every element D of its Lie algebra Aut(A) is tangent
to a one-parameter subgroup d(¢) and determines a vector field D(M) tangent to
(d(t))ar in t = 0 on TAM. Thus we have an absolute natural operator 7" — T'T%
such that X +— D(M) for every vector field X. This operator is denoted by op(D),
[6] ,[5] -

Furthermore, for every natural bundle F' we have the flow operator F, defined
by F(X) = Z|oF(FIX).

According to [6],[5], we have the following action of A on tangent vectors of
TAM. If m : R x TM — TM is the multiplication of the tangent vectors on M
by reals, applying the functor 74 we obtain T4m : TAR x TATM — TATM.
Since TATM = TA®PM and TAR = A, where I is the algebra of dual numbers,
we have constructed a map A x TTAM — TTAM. The coordinate expression
of the action of ¢ € A is c(ay,...,am,b1,...,bm) = (a1,...,am,chb1,. .., cby) for
all @y, ... am,b1,..., by € A. This is a natural affinor [5] and we denote it by
afy(c) : TTAM — TTAM.

Proposition 1 ([6]). All natural operators T — TT# are of the form af(c) o
T4 +op(D) for all c € A, D € Aut(A).

In the special case A =R[z]/ (z"*!) = I} we have TAM =TT M = Jj (R, M).
Using the standard coordinates (#',4%,..., 4%, X', Y¢,...,Y}) on TT] M, we find
an(x—|—<x’“+1>)(Xi,Yf, LY = (0, X YE . YE ). Let Qar denote afy (z+
(z7t1)).

Proposition 2 ([6]). All natural operators T — TT] are linearly generated by
T, QoTr, .. .,Q 0Ty  L,QoL,...,Q" " oL, where L is the generalized Liouville
vector field having the coordinate form X' = 0,Y! = sy’.

1. NATURAL OPERATORS TRANSFORMING VECTOR FIELDS TO T*T}

According to Proposition 1 we have five generating natural operators T' — TT?2
and according to [2] we have two generating natural operators T'— TT~, the flow
operator 'T*(aji,pi) = Xiaix, — Xgpjaip, and the Liouville field £(z?, p;) = piaip,’
where (', p;) are the standard coordinates on T* M.

Composing these two sets of generators we obtain the following natural opera-
tors T — TT*TE: Ay =T oT32, As =T o (QoT?), A3 = T* o (Q%* o T) and
absolute operators Ay =T oL, A5 =T 0(QoL), As = L.
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Let the canonical coordinates #* on R™ induce the coordinates y* = %xT L=

%2721 on TPR™ while the additional coordinates on T*T7R™ are defined by p;dx’ +
qzdy' + 7;dz*. Further, let z induce the additional coordinates w; on T"R™ and
wl = 0= G i = O = e o TRTRRM,

We have the natural equivalence s : T2T* — T*T? of Cantrijn et al [1]

(1) ($iawiavia7iawia6i) — ($iayiaziapiaQiari)
yo=v' 2 = pi =8 qi =2y i = wi
Thus we have two other natural operators: A7 = T's((Q o 7%) o £ 0 s71) and
As =Ts((Q* o T2) o Los™1).

Then the coordinate expressions of our operators are

9 9
A1 (X) ZXZ@JrXZy]@ P (X + Xy ) — (X{p; + X[ g5+
9 J J ok 9 i 0
‘|‘X 2r; ‘|‘sz11‘/ yr])ﬁpl (Xi g +2X;y Tj)ﬁ—qi—Xi rj@?“i
s .0 . . o d
As(X) = X' — +2X} (XY g5 42X —2X/
2( ) 63/2 622 ( Zq]+ zky rj)@p r]@
0 0 o) o) 0 0
As(X) = 2Xi = — 2X7 Aymy L 190 9 9. T
3(X) 0o Niligy  MTY E T TG, T gy
0 0 0
5 yﬁl rﬁqi 6 p@pi—i_q@qi—i_r@ri
0 0
A7 = 2r;— i Ag = 2r;
7 7 o0 +4q ap; S r B

Let par : FM — M be a natural bundle of order r. According to the general
theory, [6] ,there is a bijective correspondence between natural operators Ay : T —
TFM and natural transformations Ay : J"TM x 3y FM — TF M over the identity
of FM, which is given by A (j52X,y) = A X (y), © = pam(y). Furthermore, there
1s a bijection between these natural transformations and equivariant maps of the
standard fibers in question. Since T*T7? is a natural bundle of order three, we are
searching for equivariant maps (J3T)oR™ x (T*T2)oR™ — (TT*TZ)oR™. Let the
additional coordinates on TT*T{ be

(2) Wi=de', Yi=dy', 2" =d*, P; =dp;, Qi = dq;, Ri = dr;
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We evaluate the necessary transformation laws of the action of G on the
standard fibers. Denote by (a}l, ce @ g ) the canonical coordinates on G7, and
indicate by tilde the coordinates of the inverse element. The action of Gﬁl

(T*T?)oR™ looks as follows

N S Y B S | A B UL 1 ERE
v =ayy P =apr +ay 'yt m=airy 4= ajqy + 2a5,a0y'ry

(3)  pi =alp;+ aaly'q; + aal 2y + @al, 'y + @yan,ayy
Let B HY = {jitf, jrf = jridg,, }. Then

G4 = q; — Qaiky 75 for the action of Bfn

(4) Di = pi — a‘gklyk o r; for the action of B2,
and

(5) XZ: e = X' 4 ai» i L X5 for the action of B/t

Xijo = X — Gy, X — a5, Xi o+ 0 XF, + a5, X

for the action of B2,
where le...jr indicates the r-jets of a vector field X. Furthermore

(6) W' =daW’ Ri=aR;  andit holds
Vi=daly’ Qi=aQ; Z'=dz  P=dR;

whenever all the previous coordinates are zeros. Moreover, only P; are changed
by B2 and it holds

(7) P, = Pi— zklmykylerJ

Finally we need the following lemma. Let

g—times
—_—
Vg =V x . xVxV*x. .. xV",
———

p—times
where V' denotes the vector space R™ with the standard action of GiL,.

Lemma 3 ([6]). (a) All smooth G}, -equivariant maps V), , — V are of the form

xkayl xja

Il M%

where g; : RP? = R are any smooth functions, j,k=1,...,p,l=1,...,¢
(b) All smooth G},-equivariant maps V, ; — V* are of the form

> (e, ),

where h; : RPY — IR are any smooth functions, k=1,...,p, hyl=1...¢q

The proof of the main result essentially uses the following two lemmas.
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Lemma 4. Let h : (J?T)gR™ x (T*T{)oR™ — R™ be an equivariant smooth
mapping, m > 2. Then it holds

(8) Wi:gl(Ila"'aIE))Xi+g2(11a"'a15)yi
where g1, g2 are any smooth functions R® — R and I, ..., I5 are invariants of the
form

(9) I :XZpZ—FX;y]qZ—l—(X;Z]—I—X;ky]yk)m IsziqZ’—l—QX;yj?“i

Is=X'r; Iy =y i+ 22'r; Is =y'r
Proof. The first formula from (5) implies, that W = h*(j2 X, y', 2%, pi, q;, 7) does
not depend on X; jajs- Therefore we are searching equivariant maps (J2T)oR™ x

(T*TE)R™ — R™.

Let Sy be Cj x (T*Tf)oRm, where (Y is the set of all 2-jets of constant vector
fields on R™ at zero. Since Sp is G -invariant and Wi = aé» W, the equivariance
and Lemma 1 yield W' = a1 X" + a2y’ + asz’ on Sy, where a1, o, as are some
functions of X'p;, Xiq;, X'vs, v’ pi, ' qi, y'ri, 2'pi, 2°qq, 2'r;. Since Xip;, X'q;, X'r;
coincide with Iy, I, Is on Sy, ay, as ag can be considered as functions of arguments
Iy, Iy, I3, 14, Is and y'p;, 2'pi, 2 qs, 27

Let S1 C Sy be the subset of all elements of Sy satisfying the following condi-
tions: X° and v’ as well as X° and 2’ as well as y* and 2’ are linearly independent
vectors and r; is a non-zero vector. Obviously, Sy is a dense subset of Sy. Let
i G, — G2, be the canonical injection. Fixing X', y', 2%, p;, ¢;, 7 we can find
some jof € Z(G1 ) transforming X° to &%, 2 to &%, while the other values are
transformed to the bared ones. This is possible on .S; due to the conditions from
its definition.

Let £ denote, in general, the left action of the r-th order diﬂerential group on the
standard fiber of an r-th order natural bundle. We have h(j2 X YL 2N pi, iy ) =
LG LGB R (GEX Y 2 piy g, i) = E( f alél + a2y’ + asél), where the
arguments of a1, as, az are I1,...I5 and §' p;, 2'p;, 7'q;, 2'F; satisfying 2° = 6%.
follows from the equivariance of i and the fact, that the last four arguments of
a1, (g, (g are G,ln—invariants.

The definition of S; implies, that there is jo > 2 such that y/° # 0. Let

: B2 — (2, denote the canonical inclusion. Taking j3f1 € i1(B2,) with all
aj, = 0 except a‘7 jo we can annihilate all expresions with z;. It follows from
(5) that j5 f1 stabilizes _]0( -). But we changed the value of ¥'p;, Wthh can be

annihilated by taking a sultable j2fo € B3, with all ai k1 = 0 except a]D]D]D, where
ko is an mdex such that 75, # 0. It follows directly from (4) and (5), that j3 f2
stabilizes j2 M .

Thus we obtain, that W’ = £(j3 71, @16t + asy') on Sy, where the last four

arguments of oy, ay are zeros, while the invariants are not changed. So we have

W=t ai(l, ..., 15,0,0,0,0)8) + as(lh, ..., 15,0,0,0,0)5) =
=ai(l,...,15,0,0,0,00 X" + as(I,...,15,0,0,0,0)y,



244 JIRT TOMAS

which follows from the equivariance of the map h. Substituting g;(I1, ..., Is) for
a;(l1,...,15,0,0,0,0), i = 1,2, we have

(10) Wi=gi(L,..., Is)X" 4+ g2(I1,...,I5)y on Sy.

Since S7 is dense in Sp, this holds on Sy as well. Taking into account the equiv-
ariance of h, (10) can be extended to (J2T)oR™ x (T*T%)oR™, which completes
the proof. a

The following lemma is the dualization of Lemma 4 and since its proof i1s almost
the same as that of Lemma 4, we omit it.

Lemma 5. Let h : (J3T)gR™ x (T*T?)oR™ — R™* be an equivariant smooth
mapping, m > 2. Then

(11) Ri:gl(lla"'alf))ri

where g : R’ — R is a smooth function.

Proposition 6. Form > 2, every natural operator A : T'— TT*T? is of the form

A= 2?21 hi(Ih,...,I5)A;, where h; : R® — IR are some smooth functions and
=TT o= @ T A=To@ e
A7:T5((Qo7’1)o£os 1) Ag =Ts((Q* o T) o Los™H)

Proof. In the whole proof we use the coordinates (2). Let A : T — TT*TZ be a
natural operator and h be the corresponding equivariant map. Since Wi = aé» Wi,
applying Lemma 4 we get W' = g1([1,...,I5)X" + g2(11,..., I5)y". Taking the
natural operator By = A —g1(I1,..., I5)7T* o7 we get its equivariant map in the
form W' = go(Ih, ..., Is)y

First of all we prove, that gs is the zero function. Let a = (]0( ), 8%, 2 piy qiy i)
be an element of (J3T)gR™ x (T*T7)oR™ satisfying the ex1stence of a non-zero r;.
Let jo be the least index, for which r;, # 0, and let ji f € Bj, satisfy a]klm =0

except a2222. Then the formula (7) implies, that we can change the value of P,
stabilizing o, whenever g2(p1, q1,71, g2 + 22°r;, 72) # 0. Thus we obtain, that g5 is
the zero function on R°.

Now, put h; = g1 and consider the natural operator B;. Since its equivariant
map satisfies Wi = 0, the formula (6) and Lemma 4 yield Y = g3(Iy,..., I5) X* +
ga(ln, .. .15)yi. We can subtract gs(I1,...,I5)As+ ga(l1, ... I5) Aq and write hy =
g3 and hy = g4. We can iterate these steps using the formula (6), Lemmas 4 and
5. This way we prove our claim. a
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2. NATURAL OPERATORS T — C™(T*TTE, R)

In this part we are searching all natural operators transforming vector fields to
functions on T*TT#. We use essentially the following result by Kol , [4]. Let F
be a natural bundle, Y : FM — TF M be a vector field and Y denote the function
T*FM — R defined by ?(w) = (Y(p(w)), w), where p is the cotangent bundle
projection. Let F have the following properties I I1111.

I. The set Np of all natural operators 7' — T FM is a finite dimensional vector
space. (This property is satisfied for every Weil bundle.)

Let N} be the dual vector space and Nop(7,7*F x R) denote the set of all
natural operators T — C°(T*F,R). For every smooth function h : Nf — R
Kolaf constructed the following natural operator Dh : 7' — € (T*F,R). Fixing
a basis Ay, ..., A, of Np, its dual vector space N can be identified with R™ and
we can put (Dh)y X = (A X, ..., Ay uX) : T*FM — R. Thus we obtain a
mapping C™ (N}, R) — Nop(T,T*F x R).

IT. There exists a smooth function j : Ni — (T F)oR™ satisfying

(13) (A ) = Al (i)

for every A € Np, u € Np.
Let Diﬁé R™ denote the stability group of the origin and the vector field %.

ITI. The orbit of j(N}) with respect to Diffy R™ is dense in (T*F)R™.

Proposition 7 ([4]). If the assumptions I, II, IIT are satisfied, then all natural
operators T — C'(T*F,R) are of the form Dh for all h € C* (N}, R).

This result enables searching for natural operators T — C°°(T*F,R), where
F = T4 is a Weil bundle. Let 74 be of order r. In order to find all the natural
operators T — TT*T* we can use the following procedure consisting of four steps.

(a) We find a base By, ... By of all natural operators T — TT4.

(b) We take some immersion element i € T{R™. Over the element i we have a
space P in (T*T#4)R™, on which the stabilizing group H of i and jg(%) acts.

(c) We compute I; = E(%HP. If possible, we choose coordinates wr, . . ., wg,
Z1,...,%2 on P such that w; = I;.

(d) We prove, that we can annihilate z1,..., 2 on a dense subset of P by the
group H.

Then every natural operator T'— C(T*F,R) is smoothly generated by

E, ce E; Indeed we can define

(14) jiNp = (T*F)R™, by B '+ + b B — (by,...b,0,...,0)

which clearly satisfies (13). The denseness of the orbit j(N}.) is guaranteed by

(d).
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Now we use this procedure for the bundle 777. First of all we find all natural
operators T — TTTZ. Since TT? = TP®P3 where D@ D? = R[t, 7]/ (t?,73), every
element from TT2M is of the form z* + 27 + %zérz +yit+witt + %wétrz, where
(z%, 2% 24yt wi wh) are the canonical coordinates on TTZ M.

Lemma 8. All natural operators T'— TTT{ are linearly generated by the fol-
lowing ones

Ni=ToT} Ny =af(r+ @, )T o T7)
N3 =af(t+ & ) (T o T)) Ny=af(r —|—<t2 INT o TY)
Ns = af(tr+(t*, 7)) (T o T7) 6:af(t7' +<t2, T o T7)
; 0 o 0 ;, 0 0 0 0 0
N7_y3_yi+ 13w21+w23—w22 Ng_zla —1—2 3 —|—w18 —|—2w282
i 0 i 0 o 3
No=y owt 2 Lo, Mo =2y owt,
; 0 ; 0 ; 0 i
N11—2216—Z§+2 26w22 le:zlﬁ—uﬂi—i—sz wlz
NlB_QZl@wé

Proof. By Proposition 1 we have to determine the absolute operators. In our
case A =D ®D?. Every A-velocity in question is of the form

(15) at + bt + e + diT + etr?
ft+gr+ hr? + jtr + ktr?

Taking into account the conditions of admissibility we obtain 6 = 0, ac = 0 and
3fg? = 0. Since every A-admissible A-velocity induces a homomorphism 4 — A
and we are searching for curves in Aut(A) in a neighbourhood of the unit, we can
restrict ourselves to the connected component of the unit in Aut(A). Then we have
¢ =0 and f = 0. Renaming the parameters in (15), all considered automorphisms
A — A are given by

(16) t > at + bit + cit?
rdr+er’ + ftr —|—gt7'2

By Proposition 1 we find the operators N7,..., N1z in the form of the curves in
Aut(A) defined by reparametrization, e.g. N7 by reparametrization t — at, 7 — T
or Ng by reparametrization 7 — b7t — £. |

Now we prove the main result of this Section.
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Proposition 9. All natural operators TR™ — C®(T*TT?R™,R), m > 3, are of
the form

(17) h(Ny, Na, ..., Nis),

where h : R'® — R is an arbitrary smooth function and Ny, ..., N3 are the natural
operators from Lemma §.

Proof. We apply the procedure explained before Lemma 8. According to the
immersion theorem, we can consider ¢ in the form

yZ:(5 zl—éé,zz_wllzwlzzo

foralli=1,...,m. Let gidz® + r}dzt + r2d2d + pidy' + stdwt + s?dw’ define the
additional coordinates on T*TTZM. Taking the space P over the element i, we
obtain the following values of I; = Ni(%ﬂp

1 2 1 2
Li=q, Lb=r), Is=p, s =7r], Is =57, Is =57

_ 1 1 _ 2 _ 2 _1 _
It =pa, Is =r3, Iy = 55, I10 = 55, I11 = r3, I12 = s3, I13 = s3.

The stabilizing group H C G2, of the element ¢ and % can be considered as a
subgroup of idg x Diffy R™~1. The group H acts in the following way:

(18) 7 = aéz{ 7 = aé»zg + a;kz{zf ¥ = aé»yj

u’}i = a‘?w{ + a‘?kz{yk wé = a‘?wg + a‘?kzgyk + 2a§»kz{wlf + a‘?klz{zfyl

for 4,7 > 2. It is useful to annihilate the excessive coordinates extra for m = 3
and m > 4.

= 3: We must annihilate p3, rd, r’ and q2, 3. 1t follows from the action of H,
that a = (V and for i,j > 2 it holds a3 = ab; = als; = 0. Taking into account
the actlon of BN Hon T*TTE, we have ¢ = 2 — a22335§, q3 =q3— a23335§,
we can annihilate ¢o, g3 by means of a2233, a§333 in the case s2 # 0. Furthermore
B2 N H turns p3 to p3 = p3—a§335 and r2 to 73— 2a2235 Thus we can annihilate
ps and r1 by means of a2,5 and a3, if s3 # 0. It remains to annihilate rZ. Since
B2, N H turns r3 to 73 = r3 — a‘%zsi, we can achieve r = (0 by means of a3, in the
case of non-zero s3. Since the condition s3 # 0 determines a dense subset in P,
our claim is proved for m = 3.

In the case m > 4 we put aé» = (5} Analogously to the case m = 3 we obtain
ahs = aby = abs3 = 0 from (18). We can annihilate ¢; for i > 2 by means of a%,,,
in the case s3 # 0, p; by a3 for i > 3 and r} by a?yg for i = 2 or i > 4 in the
case s3 # 0. It remains to annihilate »? for i = 2 or ¢ > 4, which can be done by
means of aZ, in the case s2 # 0. Since the condition s2 # 0 defines a dense subset
of P, our claim is proved for the case m > 4 too. a
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Now we show, how the generating operators 7' — TT*T} can be found by
means of the natural operators T' — C(T*TT{,R). Let GG be a natural bundle.
A natural operator 7' — C*®°(T*G,R) is called a natural T-function. Every
natural operator D : T'— T'G determines a natural T-function Dys : T*GM — R,
defined by DM(w) ={(Dy(quw),w), w € T*GM, q : T*G — G, which is linear on
fibers. Conversely, let far be a natural T-function linear on fibers 7*(G'M). Then
fu|TX(GM), where z € GM, is identified with an element fM(z) from the dual
vector space T,(GM). Thus we obtain a natural operator fM T — TG and a
canonical bijection between natural operators 7" — TG and natural T-functions,
which are linear on fibers of T*(GM).

Let 2 be the standard coordinates on R™ and p;dz’ define the additional
coordinates p; on T*R™. Let z’ p; induce the coordinates X! = dz',P; = dp;
on TT*R™. We can also define the additional coordinates &, 5’ on T*T*R™ by
&dx' 4+ npidp;. Furthermore, let #' induce the coordinates Y? = dz’ on TR™ and
the additional coordinates «;,3; on T*TR™ be defined by o;dz’ + 3;dY*.

We have the natural equivalence s : TT* — T*T by Modugno, Stefani, [8], and
the natural equivalence ¢ : TT* — T*T* by KolaF, Radziszewski, [7],

(19) 5($iapiaXi’Pi) == (l‘i’Yi’ai’ﬁi)’ where YZ = Xiaai == Plaﬁl = Pi

t(l‘l,p“Xi,PZ) == (xiapiagiani)a where €Z == Pzanl = _Xi

Let the standard coordinates z! on R™ induce the coordinates zi = %x;,
2 = %ix; on TZR™ and the additional coordinates on T*TZR™ be defined by

pidx’ + stdzi 4 s2dzi. Further, define the additional coordinates on T*T*T?R™
by qidz® + ridzt + rid2 — yidp; — widst — whds?.

Clearly, N : T — C*(T*TTZ,R) is a natural operator if and only if A =
N osot~!is anatural operator T' — C™°(T*T*T2 R).

Transforming all the generating natural operators T — C°°(T*TTZ,R) into the
generating natural operators T — C°(T*T*TZ R) and among the transformed
ones selecting those, which are linear on fibers over T*T%2, we finally obtain the
natural operators Ay, As, As, Aa, As, Ag, A7, Ag from Section 1.

I thank Prof. I. Kolaf for his useful help and suggestions.
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