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ON THE EXISTENCE OF PERIODIC SOLUTIONS
FOR NONCONVEX DIFFERENTIAL INCLUSIONS

DIMITRIOS KRAVVARITIS AND NIKOLAOS S. PAPAGEORGIOU

ABsTRACT. Using a Nagumo type tangential condition and a recent theorem on the
existence of directionally continuous selector for a lower semicontinuous multifunc-
tions, we establish the existence of periodic trajectories for nonconvex differential
inclusions.

1. INTRODUCTION

In this paper we examine the following multivalued boundary value problem in

RN

. z(t) e F(t,z(t)) a.e.on T =10,0]
. +(0) = ()

with F/: T'x RV — QRN\{W being a multivalued vector field (an orientor field)
which has closed but not necessarily convex values. By a solution of (1) we mean
an absolutely continuous function z : T — R¥ satisfying (1) above. Recall that by
Lebesgue’s theorem the function #(+) is almost everywhere differentiable and # €
LY(T,RN). Earlier works on periodic solutions of differential inclusions considered
only systems with convex-valued orientor fields. We refer to Aubin-Cellina [2]
(theorem 4, p. 237), Haddad-Lasry [4], Macki-Nistri-Zecca [7] and Papageorgiou
[12] for further details. Here using a recent selection theorem of Bressan [3], we
obtain a periodic solution for nonconvex differential inclusions.

2. PRELIMINARIES

Throughout this paper we will be using the following notations:

Pf(c)(}RN) ={ACRY: nonempty, closed, (convex)}
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and
Pk(c)(}RN) ={ACRY: nonempty, compact, (convex)} .

Let K be a nonempty subset of R” and @ € K. The contingent cone Tk () is
defined by

Tk (z) = {v e RN li_mid(x—i— Av, ) = 0} ,
30 A

where d(x+ v, K) = inf{||lz+Av—z|| : z € K}. If K is convex and int K # 0, then
int T (z) # 0 and in fact  — int Tk (z) has an open graph (see Aubin-Cellina
[2], proposition 4, p. 221). Given a multifunction K : T = [0,b] — Pj.(RY) and
(t,z) € GrK = {(s,2) € T x BRY : 2 € K(s)} , we denote by DK(t,z), the
multivalued map from R into R whose graph is the contingent cone Tg,k (¢, ).
So v € DK(t,z)(r) if and only if (r,v) € Terk(t,z) and the multivalued map
DK (t,z) from R into RY is called the “contingent derivative” of K at (¢,z) €
GrK.

On P;(RY) we can define a (generalized) metric, known in the literature as the
Hausdorft metric, as follows:

h(A, B) = max | sup d(a, B), supd(b, A)|,
a A b B

where d(a, B) = inf{||la — b]| : b € B} and d(b, A) = inf{||b — a|| : @« € A}. Then
(Pf(RY), h) is a complete metric space and (P (R™), k) is a closed and separable
subspace of it.

Let Y, Z be Hausdorff topological spaces and G : Y — 2%\{0}. We say that
G(+) is lower semicontinuous (l.s.c.), if for every U C 7 open, G (U) ={y €Y :
G(y)NU # 0} is open in Y.

Our hypotheses on the data of (1) are the following:

H(F): F:T xRN — P¢(RY) is a lower semicontinuous (l.s.c.) multifunction
such that |F(¢t,z)| = sup{||v|| : v € F(t,z)} < M, with M > 0.

Also there is a multifunction K (-) satisfying the following two hypotheses H(K)
and Hr:

H(K): K : T — P (RY) is a Hausdorff Lipschitz multifunction (i.e.
K@), K@) < ylt —t with y > 0), K(b) € K(0) and
(i) (t,z) — DK(t,z)(1) is Ls.c. on GrK = {(s,2) € T xRN : z ¢
K(s)},
(i1) for all (¢,z) € GrK,int DK(¢,z) (1) £ 0.

Remark. This hypothesis is automatically satisfied if K(t) = K € Pg.(RY) for all
t € T and int K # 0 (see for example Aubin-Cellina [2], theorem 1 and proposition
4, pp. 220-221). Also note that the lower semicontinuity of (¢,2) — DK (t,2) (1)
on GrK, implies that for all (t,z) € GrK, DK(t,z)(1) € P;.(RY) (see Aubin
[1]). Following Aubin [1], we call a multifunction K(-) “sleek”, if (¢, z) € GrK —
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Gr(DK(t,z)) is L.s.c. Then for such a multifunction (¢,z) € GrK — DK (¢, 2) (1)
1s L.s.c.

Hrp: forall (t,z) € GrK, we have F(t,z)Nint DK (t,z) (1) # 0.

Let Cpr = {(t,z) € R x RY : ||z|| < Mt}. This is a closed, convex and pointed
cone. Let h : T x R RY be a map such that ||h(¢,z)|] < M. We say that h(-, -)
is Cyr-continuous, if (t,,x,) € (t,2) + Car, (tn, o) — (¢, ) in T x RY imply
that h(t,,zn) — h(t,2). For such a map we can define its set-valued Filippov
regularization G : 7' x RY — P; . (RY) as follows:

Gt x) = ﬂ convih(s,y) t|s—t| <e, |ly—=z|| <e}.
e>0

From Aubin-Cellina [2], p. 101, we know that (¢,z) — G(¢, ) is upper semi-
continuous (i.e. for all U C RY open, GT(U) = {(t,z) € T x RY : G(t,z) C U}
is open) and clearly for all (t,z) € T x RY  we have h(t,z) € G(t,z). Then we
consider the following two Cauchy problems:

{ () € G(t,2(t)) a.e.}

2(0)=z¢€ RN
and

() = h(t,z(t)) ae.
) { 2(0) =z e RN }

To make the presentation relatively self-contained, we state here some known
results that we will need in the sequel. We start with a useful description of the
elements of the contingent derivative DK (¢, ) which can be found in Aubin-

Cellina [2], p. 191:

K(t+ hu) —
v € DE(t,z)(u) if and only if li_md(v, %) —0 .
A0
Since we will be dealing with nonconvex multifunctions, we will need a “contin-
uous” selection theorem for such set-valued maps. This was done by Bressan [3]
who introduced the notion of directional (or K—) continuity already introduced
above for the cone K = Cys. Let us give here the general definition:

Definition. Let & C R be a cone and Y a metric space. A function f: RY — Y
is said to be K-continuous at z € RY if for every ¢ > 0 there is a § > 0 such that
d(f(x), f(z)) < ¢ for every = € B(z,6) N (z + K) with B(z,6) = {z € RV :
[|z—z|| < é} (equivalently f(z,,) — f(&) for every @z, — Z with z,—Z € K, n > 1

).

Using this notion Bressan [3] proved the following selection theorem:
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Theorem A. If Y is a complete metric space and F : RY — P:(Y) is a Ls.c.
multifunction, then for every cone K C RY, F(.) admits a K-continuous selector.

Again the nonconvexity of our setting, requires a fixed-point theorem for non-
convex-valued multifunctions. This can be found in Lasry-Robert [6]. First a def-
inition (see [6] definition 5).

Definition. Let X, Y be metric spaces and I' : X — 2Y\{(0}. We say that T'(")
1s “pseudo-acyclic” if there is a metric space 7, an u.s.c. multifunction L : X —
X — Pp(Z) with acyclic values and v : Z — Y continuous such that T =ro L.

Using this notion we can have the following fixed-point theorem (see [6] theorem

8).

Theorem B. If X is a metrizable locally convex vector space, C' C X is nonempty,
convex and I' : C' — 2°\{0} is pseudo-acyclic such that T'(C) is compact, then
there is x € C' such that x € T'(z).

3. AUXILIARY RESULTS

In this section we prove four lemmata, which will be needed in the proof our
main theorem (section 4) and which are also of independent interest.
Our first auxiliary result relates the solutions sets of (2) and (3).

Lemma 3.1. If = : T — RY is an absolutely continuous function solving (2),
then z(-) is also a solution of (3).

Proof. From Lusin’s theorem, we know that we can find 7, C 7', n > 1 dis-
joint measurable sets such that #|p, is continuous , #(t) € G(t,z(t)) on T,

and /\(T\ U1 Tn) = 0 with A(-) being Lebesgue measure on 7. Also invoking

Lebesgue’s density theorem (see for example Oxtoby [10], p. 17), we can find sets
N, C T, n > 1, with A(N,) = 0, such that every point in T,,\N,, is a density
point of T,,. Next let ¢ € T,\N,,. Then we can find {; € T,\N, tx >t k > 1
and tj t. Therefore #(t;) — #(t). Note that because ||h(t,z)|| < M we have
|G(t, x)| = sup{||v]] : v € G(t,2)} < M and so ||z(t) — z(s)|| < M|t — s| for all
t, s € T. Let ¢ > 0. Then we have &(tx) € G(ty, x(tx)) C h(tr,z(tx)) + 551,
where B; = {z € RY : ||z|| < 1}. Also since h(t, ) is Cps-continuous, we can find
ko(e) > 1 such that for k > ko(g), we will have

IA(te, 2(t1) = hlt, 2(0)] < 5
= h(ty, () € h(t, () + 231 .
So for k > ko(e), we have

E(ty) € h(t,z(t)) + ¢ By
= &(t) € h(t,z(t)) + ¢ By .
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Let ¢ 0. We finally get that for all t € |J (T,\N,) =T, AT —=T) =0, &(t) =
n 1
h(t, z(1)), z(0) = z, i.e. z(-) solves (3). O

The second auxiliary result, proves an invariance property for a class of differ-

ential inclusions. In what follows pg(;)(-) denotes the metric projection on the
set K(t), i, e. pg(1)(*r) = v, where v is the unique vector in K'(f) such that
||lv — z|| = min{||v! — z|| : v! € K(¢)}.
Lemma 3.2. If G : T x RN — P (RY) is a multifunction such that |G(t,z)| =
sup{||v]| : v € G(t,z)} < M, hypothesis H(K) holds, x : T — R¥ is an absolutely
continuous function such that #(t) € G(t, px(+)(x(t))) a.e., with z(0) € K(0) and
forall (t,z) € GrK, we have G(t,2) C DK(t,z) (1), then for allt € T »(t) € K(t).
Proof. Let ¢(t) = d(x(t), K(t)). Using hypothesis H(K), we can easily check that
¢(+) is an absolutely continuous function. Since ¢(0) = 0 (because x(0) € K(0)),
if we show that ¢(¢) < 0 a.e., then we are done. Let ¢t € T' be a point at which
both &(-) and ¢(-) exist. Then we have

et+h)—pt) dx@t+h), K{Et+h))—dz(t), K(t))

h h
_ d(@(t) + hi(t) + o(h), K(t + h)) — d(x(1), K (1))
h
< IIO(]f)II L ) + he(t), Kt Z h)) = d(x(t), K(t))

Observe that

d(z(t) + he(t), K+ h)) — d(z(t), K(1))
h

< N0 = pr@EOI | dpkm@®) +he(t), K{E+h) _ d(x(t), K1)
- h h h

oo (#() + hift), K (1 + 1))

h
_ d(a}(t), K(t+h) —hpK(t)(x(t)))
Since by h}}l/pothesis (1) € G(t,pr((x(t))) C DK, pro(x(t)))(1) a.e., from
section 2 we have

limd (i(1), Kt +h) —hPK<t>(x(t))) .
= im D=0 _ gy <o ne

Thus finally we have () = 0 for all t € T, hence x(t) € K(¢) forallt € T. O

Our third auxiliary result establishes a useful property of lower semicontinuous
multifunctions.
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Lemma 3.3. If 7 is a Hausdorfl topological space, F : 7 — Q]RN\{@} is a lower
semicontinuous multifunction with convex values and B(z,7) = {y € RN : ||y —
z|]| < #} C F(zp), then for every r € (0,7) there exists U an open neighborhood
of zy such that B(x,r) C F(z) for all z € U.

Proof. Letr € (0,7),0<r<r <rand0< e <r —r. Wehave B(z,r ) C F(z).
Let 6(z) = h(B(x,r), F(z)) = sup{d(v, F(z)) : v € B(z,r )}. From theorem 5,
p. 52 of Aubin-Cellina [2], we known that 0(-) is u.s.c. and 6(zy) = 0. So we can
find U an open neighborhood of zy such that 6(z) = h(B(z,r ), F(z)) < ¢ for all
z € U. Since by hypothesis F'(-) has convex values, from the lemma of Moreau [9],
we have for all z € U

d(x, RN\ B(x,r ))—d(x, RN\F(2)) < h(B(x,r ), F(2)) =0(z) < ¢
=d(z, RN\ B(z,r)) — e < d(x, RN\ F(2))
=r<r —e < d(x,RN\F(2))
=B(x,r) C F(z) forall zeU.
(I

Remark. Clearly we can not have » = 7. Just let 7 = R¥ and let F(z) = B(z, 7).
Remark that our lemma 3.3 improves lemma 3.1 of Papageorgiou [11].

Our final auxiliary result, gives us new conditions under which the intersection
of two multifunctions can be lower semicontinuous . Another result in this direction
can be found in Papageorgiou [13].

Lemma 3.4. If 7 is a Hausdorff topological space, Hi,Hs : 7 — Q]RN\{@} are
lower semicontinuous multifunctions such that Hs(-) has open and convex values
and for all z € Z Hi(z) N Ha(z) # 0, then z — Hi(z) N Ha(z) = H(z) is Ls.c.

Proof. We need to show given V C R open, theset H (V) ={z€ Z: H(z)N
V #£0}={z€ Z: Hi(z) N Hy(z) NV # 0} is open in Z. Because of the
local convexity of RY we can always assume V to be convex. Let zo € H (V)
and let # € H(z) NV. Since Ha(z9) NV is open, we can find # > 0 such that
B(xz,7) C Ha(zg) N V. Note that z — Hy(z) NV is lower semicontinuous (see
Michael [8], proposition 2.4). So we can apply lemma 3.3 and get for r < # a U
open neighborhood of zy such that B(z,r) C Ha(z) NV for all z € Uy. Since by
hypothesis Hy(+) is l.s.c. and « € Hy(zp), we can find Uz another neighborhood of
zg such that for all z € Us, we have Hi(z) N B(z,r) # 0. Set U = Uy N Us. Then

for z € U, we have
H(z)NV = Hi(z)NHa(z) NV D Hi(z) N B(w,7) # 0
=zeH (V)
=H (V) isopen
=H(:) isls.c.
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4. MAIN RESULT

In this section we state and prove our main result, concerning the existence of
solutions for problem (1).

Theorem 4.1. If hypotheses H(F'), H(K) and Hr hold, then problem (1) admits
a solution.

Proof. Let H : T x RY — P¢(R¥) be the multifunction defined by H(t,z) =
F(t,pry(x)) Nint DK (t, pr)(2))(1) # 0 (see hypothesis Hr).

By hypothesis H(K), (t,2z) — DK(t,z)(1) is l.s.c. on GrK and so it is convex-
valued (see Aubin [1]). Hence DK (t, pr(s)(x))(1) = int DK (t, pr(o)(2))(1) and
from proposition 2.3 of Michael [8], we get that (¢, ) — int DK (T, pr(o)(x))(1) is
ls.c. Hence applying lemma 3.4, we get that (t,x) — F(t, pr(z)) N
int DK(t, pr()(x))(1) is L.s.c. and so once again proposition 2.3 of Michael [8],
tells us that (t,z) — H(t,z) is Ls.c. Apply theorem A, to get h : T x RY — R¥

a Cpr-continuous selector of H (¢, z). Note that because of hypothesis H(F), we
have ||h(t, z)|| < M. Let G(t,x) = [ convih(s,y) : [s —t| < &, |ly — z|]| < £}
e>0

>
(the Filippov regularization of h(¢, )). Recall that (¢, 2) — G(¢, z) is u.s.c. and for
(t,z) € T xRN h(t,z) € G(t,z). Then consider the following multivalued Cauchy
problem
t(t) € G(t, pr)(x(t))) ae.
z(0) =z € K(0)

Let S @ K(0) — 2C(TEN\ {9} be the solution multifunction for the above
problem; i.e. for every z € K(0), S(z) is the set of solutions of the problem.
From Himmelberg-Van Vleck [5], we know that S(-) is an upper semicontinuous
multifunction with nonempty, compact and acyclic values. Also from lemma 3.1,
we know that for every z(-) € S(z), we have &(t) = h(t, pr(1)(x(t))) ae., 2(0) = z
and so lemma 3.2 tells us that x(t) € K(¢) for all t € T and all z(-) € S(z).
Let y : C(T,RY) — R be defined by y(x) = 2(b) (i.e. y(-) is the evaluation at
b map, hence is continuous). Set R = yo S : K(0) — Pi(K(0)) (recall that by
hypothesis K(b) C K(0)). Then R(-) is pseudo-acyclic in the sense of Lasry-Robert
[6] (see section 2) and applying theorem B, we get z € K(0) such that z € R(z).
Let # € S(z) such that z = y(x)(b). Then from what was said above we have
() = h(t,z(t)) a.e., 2(0) = x(b). So #(t) € F(t,z(1)) a.e., z(0) = x(b); i.e. 2(-) is
the desired solution of (1). O

Acknowledgement: The authors wish to express their gratitude to a very knowl-
edgable referee for his many corrections and remarks that improved this paper
considerably.
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