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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 117 { 121ON THE REGULARITY OF GROUP ALGEBRASA. A. Bovdi and T. P. L�angiAbstract. We describe n-regular and n-weakly regular group algebras. KG isn-regular if and only if one of the following conditions holds:(1) charK = 0 and G is locally �nite; or(2) charK = p, G is locally �nite, �p(G) is �nite and contains all the elements ofG of p-power order and rad(K�p(G))n = 0.IntroductionAs it is well-known, a ring is said to be Neumann regular if the equation axa = ahas a solution x 2 R for any a 2 R, or is characterized so that every �nitely gener-ated left ideal ofR is generated by an idempotent. There are several generalizationsof regularity, for instance, n-weakly regular [4] and n-regular rings [1].De�nition. A ring R is called n-weakly regular if a 2 aRanR holds for anya 2 R.Obviously, a ring R is n-weakly regular if and only if the equation axany = acan be solved in R for any a 2 R.De�nition. If for any a1; : : :an 2 R there exist x1; : : :xn 2 R withR(a1 � a1x1a1)R : : :R(an � anxnan)R = 0then the ring R is called n-regular.The aim of this paper is to describe n-weakly regular and n-regular groupalgebras. Recall that a 1-regular ring is precisely a Neumann regular ring, andgroup rings satisfying this property were described by Auslander [2], Connel [3]and Villamayor [7]: KG is Neumann regular if and only if G is a locally �nitegroup, K is a Neumann regular ring and the order of any torsion element of G isinvertible in K.1991 Mathematics Subject Classi�cation : 16D40, 16S34, 20C05.Key words and phrases: group algebra, n-weakly regular ring, n-regular ring.Research supported by the Hungarian National Foundation for Scienti�c Research grantsNo. T014279 and No. T16432.Received November 28, 1995.



118 A. A. BOVDI AND T. P. L�ANGIOn n-weakly regular group rings we know only some elementary properties [6].1. n-regular group algebrasLet �(G) denote the union of the �nite conjugacy classes of G. Clearly, thesubgroup �p(G) generated by the p-elements of �(G) is normal in G.Let N (KG) be the union of the nilpotent ideals of KG and let rad(KG) denotethe prime radical of KG. In the proof of the theorem we use the following resultof Passman [5, Theorem 8.1.9 and Theorem 8.1.12]: if K is a �eld of characteristicp > 0, then the ideal N (KG) is nilpotent if and only if the subgroup �p(G) is�nite. Then N (KG) = rad(K�p(G))KG:Theorem 1. Let K be a �eld. The group algebra KG is n-regular if and onlyif at least one of the following conditions holds:(1) charK = 0 and G is locally �nite; or(2) charK = p and(a) G is locally �nite,(b) �p(G) is �nite and contains all the p-elements of G,(c) rad(K�p(G))n = 0.Proof. Let KG be an n-regular group algebra. Then for an arbitrary a 2 KGthere exist elements x1; : : : ; xn 2 KG withKG(a � ax1a)KG : : :KG(a� axna)KG = 0:It follows that for every prime ideal P of KG there exists i with a� axia 2 P andlet Ii denote the intersection of all the prime ideals P with a� axia 2 P . Clearly,we have rad(KG) = \ni=1Ii. By induction on t we will prove that there exists anelement bt 2 KG with a � abta 2 \ti=1Ii. This is true for t = 1 and we assumethat a� abta 2 \ti=1Ii. Thena�a(bt+xt+1�btaxt+1)a = (a�abta)(1�xt+1a) = (1�abt)(a�axt+1a) 2 \t+1i=1Iiand bt+1 = bt + xt+1 � btaxt+1. Thus KG=rad(KG) is a regular ring.Now let a1; : : : ; an 2 rad(KG) and b1; : : : ; bn 2 KG with(1) KG(a1 � a1b1a1)KG : : :KG(an � anbnan)KG = 0:Since biai 2 rad(KG), the element biai � 1 has an inverse and by (1)a1a2 : : : an = (a1b1a1 � a1)(b1a1 � 1)�1 : : : (anbnan � an)(bnan � 1)�1 = 0:We obtain that rad(KG)n = 0.Let charK = 0. It is well-known [5, Theorem 2.3.4] that KG does not containnilpotent ideals and rad(KG) = 0. Thus KG is a regular ring and by Auslander-Connel-Villamayor's theorem G is locally �nite.



ON THE REGULARITY OF GROUP ALGEBRAS 119Let charK = p. Then N (KG) is a nilpotent ideal and by Passman's theoremthe subgroup �p(G) is �nite. Let I(�p(G)) denote the ideal generated by all u�1,u 2 �p(G). Then K(G=�p(G)) �= KG=I(�p(G)):Since the factorgroup G=�p(G) has no �nite normal subgroups of order divisibleby p, by Passman's theorem [5, Theorem 4.2.13 ] KG=�p(G) does not containnilpotent ideals. Thus the prime radical of KG is contained in I(�p(G)) andKG=I(�p(G)) is the homomorphic image of KG=rad(KG). We conclude thatK(G=�p(G)) is a regular ring, and by Auslander-Connel-Villamayor's theoremthe group G=�p(G) is locally �nite and does not contain elements of order p.Since �p(G) is a �nite group, it implies that G is also locally �nite. Clearly,rad(KG) = N (KG) = rad(K�p(G))KG. We obtain that rad(K�p(G))n = 0and the necessity of the conditions of the theorem is proved.If charK = 0 and G is locally �nite then by Auslander-Connel-Villamayor'stheorem KG is a regular ring, and hence it is an n-regular ring.Now suppose that K is of characteristic p and KG satis�es the conditions (a),(b) and (c). If a 2 KG and H = hSupp(a);�p(G)i, then the subgroup H is�nite, �p(G) = �p(H) and by Passman's theorem N (KH) = rad(K�p(G))KH:Since KH has a �nite dimension, the radical rad(KH) is a nilpotent ideal andKH=rad(KH) is a semisimple artinian ring. It is well-known that a semisimpleartinian ring is a regular ring and for the element a there exists x 2 KH withaxa � a 2 rad(KH) � N (KG). It is proved then that KG=N (KG) is a regularring.If a1; : : : ; an 2 KG then for every ai there exists xi 2 KG with aixiai � ai 2N (KG). Since N (KG)n = 0, we conclude thatKG(a1 � a1x1a1)KG : : :KG(an � anxnan)KG = 0and KG is an n-regular ring. �2. n-weakly regular group algebrasA hamiltonian group is a non-abelian group in which every subgroup is normal.Such groups G are characterized as follows: G is a direct product of an elementaryabelian 2-group E, an abelian torsion group A in which any element is of oddorder, and a quaternion group Q of order 8.Theorem 2. Let K be a �eld and n � 2 a �xed natural number. The groupalgebraKG is n-weakly regular if and only if at least one of the following conditionsholds:(a) charK = p and G is an abelian torsion group containing no elements of orderp;



120 A. A. BOVDI AND T. P. L�ANGI(b) charK = 0 and G is an abelian torsion group, or a hamiltonian group G =Q�E�A that in KA the equation x2+y2+ z2 = 0 has only the trivial solution.Proof. LetKG be n-weakly regular. ThenKG does not contain nilpotent elmentsand G is torsion. Indeed, in the contrary case there exists 0 6= b 2 KG with b2 = 0and we obtain a contradiction b 2 bRbnR = 0. From n-weakly regularity we obtainthat if g 2 G then (1 � g) = (1 � g)x for some x 2 KG(1 � g)nKG, and hence(1� g)(x� 1) = 0: It is well-known that for an element g of in�nite order 1� g isnot zero divisior in KG, which implies that G is a torsion group.Clearly, if charK = p and h 2 G is of order p then x = 1 + h+ � � �+ hp�1 is anilpotent element in KG because x2 = px = 0. We obtain that the characteristicof the �eld K does not divide the order of any element of G.Let H = hg j gt = 1i be a cyclic subgroup of G. Then the elementy = (1 + : : :+ gt�2 + gt�1)c(1 � g) has the property y2 = 0 for any c 2 G. SinceKG has no nilpotent elements, we have y = 0 and c 2 NG(H). We proved thateach cyclic subgroup is normal in G, and hence G is either hamiltonian or abelian.Assume that G is a hamiltonian group, and let KG be of characteristic p. Thenthe characteristic of the �eld K does not divide the order of any element of G,and KG contains no nilpotent elements, which, by Sehgal's result [8, Proposition6.1.12], is impossible.Now suppose that charK = 0. Then the quaternion groupQ = ha; b j a4 = 1; b2 = a2; bab�1 = a�1iis a subgroup of G, G = Q�E �A. Let (y1; y2; y3) be a nontrivial solution of theequation(2) x2 + y2 + z2 = 0in KA. Put H = hQ;Supp(y1); Supp(y2); Supp(y3)i. Then H = Q�A1 and A1 isa �nite subgroup of A. By Artin-Wedderburn's theorem we have(3) KA1 = F1 � � � � � Fsand KH = �si=1FiQ:By (3) the equation (2) has a nontrivial solution (�; �; ) at least in one of the�elds Fi and x = �(a� a3) + �(a2b� b) + (ab� a3b)is a nilpotent element in KG, which is a contradiction.In order to prove the converse, suppose that (a) holds. Then H = hSupp(a)i isa �nite group for any a 2 KG, and hence KH is a semisimple artinian ring. ByArtin-Wedderburn's theorem KH is a direct sum of �elds. Obviously, KH is ann-weakly regular group algebra, and KG is also an n-weakly regular ring.



ON THE REGULARITY OF GROUP ALGEBRAS 121Now suppose that the condition (b) holds. Clearly, it is enough to prove thestatement for a �nite group G. Because E is an elementary abelian 2-group, byArtin-Wedderburn's theorem KE = K1 � � � � �Ks;where Ki = K and KiA = �dj=1Fji:It is easy to see that KG = �si=1 �dj=1 FjiQand FjiQ �= Fji � Fji � Fji � Fji � S;where S is the quaternion division algebra over Fji. Thus KG is n-weakly regular.�References[1] Anderson, D., D., Generalizations of Boolean rings. Boolean rings and von Neumann regularrings, Comment. Math. Univ. St. Pauli 35 (1986), 69-76.[2] Auslander, M., On regular group rings, Proc. Amer. Math. Soc. 8 (1957), 658-664.[3] Connel, I., On the group ring, Can. J. Math. 15 (1963), 650-685.[4] Gupta, V., A generalization of strongly regular rings, Acta Math. Hung. 43 (1984), No 1-2,57-61.[5] Passman, D. S., Algebraic structure of group rings, Interscience, New-York, 1977.[6] Vasantha Kandasamy, W. B., s-weakly regular group rings, Archiv. Math. (Brno) 29 (1993),No 1-2, 39-41.[7] Villamayor, O. E., On weak dimenson of algebras, Pacif. J. Math. 9 (1959), 491-502.[8] Sehgal, S. K., Topics in group rings, Marcel Dekker,Inc., New-York and Basel, 1978.Adalbert BovdiInstitute of Mathematics,Kossuth Lajos University,H-4010 Debrecen, pf. 12,HungaryTam�as L�angiInstitute of Mathematics,Kossuth Lajos University,H-4010 Debrecen, pf. 12,Hungary
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